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Metabolomics biomarkers to 
predict acamprosate treatment 
response in alcohol-dependent 
subjects
David J. Hinton1,2,3, Marely Santiago Vázquez1,4, Jennifer R. Geske5, Mario J. Hitschfeld  6, 
Ada M. C. Ho  2, Victor M. Karpyak1, Joanna M. Biernacka  1,5 & Doo-Sup Choi1,2,3

Precision medicine for alcohol use disorder (AUD) allows optimal treatment of the right patient with the 
right drug at the right time. Here, we generated multivariable models incorporating clinical information 
and serum metabolite levels to predict acamprosate treatment response. The sample of 120 patients 
was randomly split into a training set (n = 80) and test set (n = 40) five independent times. Treatment 
response was defined as complete abstinence (no alcohol consumption during 3 months of acamprosate 
treatment) while nonresponse was defined as any alcohol consumption during this period. In each of 
the five training sets, we built a predictive model using a least absolute shrinkage and section operator 
(LASSO) penalized selection method and then evaluated the predictive performance of each model 
in the corresponding test set. The models predicted acamprosate treatment response with a mean 
sensitivity and specificity in the test sets of 0.83 and 0.31, respectively, suggesting our model performed 
well at predicting responders, but not non-responders (i.e. many non-responders were predicted to 
respond). Studies with larger sample sizes and additional biomarkers will expand the clinical utility of 
predictive algorithms for pharmaceutical response in AUD.

Alcohol use disorder (AUD) is a heterogeneous and complex psychiatric disorder that affects 4–5% of the world 
population1. It is often associated with other substance disorders as well as other psychiatric disorders and rep-
resents a substantial worldwide economic burden2, 3. The heterogeneity of patient populations with AUD as well 
as associated comorbidities complicate treatment outcome4, 5. This is underscored by the fact that the number 
needed to treat (NNT) to prevent one person from returning to any alcohol consumption for acamprosate is 12 
and for naltrexone is 20 while studies of disulfiram do not support an association with preventing return to heavy 
drinking6. This heterogeneity in AUD suggests that a single drug will not work for all patients7. Although research 
should focus on the development of novel medications for the treatment of AUD, perhaps the best way to opti-
mize the currently available FDA approved medications (disulfiram, naltrexone and acamprosate) as well as any 
new drugs that are approved in the future, is to identify biomarkers of treatment response in an effort to develop 
a personalized medicine approach in AUD.

The goal of personalized medicine is to identify a single or group of measurable biological factors that are 
capable of identifying which patients have the highest likelihood of responding to a particular treatment inter-
vention8, 9. Personalized medicine in alcohol use disorder is still at its early stages but has first focused on phar-
macogenomics biomarkers of treatment response10, 11. A single nucleotide polymorphism (SNP) in the μ-opioid 
receptor gene (OPRM1) was found to be associated with naltrexone treatment response12–14. However, when 
a prospective study was conducted to determine whether this particular SNP in OPRM1 predicts naltrexone 
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response, the authors were unable to conclude that the Asp40 allele of OPRM1 moderates response to naltrex-
one treatment15. More traction has been gained when examining pharmacogenomics makers of acamprosate 
treatment response. Several independent groups have found associations between SNPs in a GABAA receptor 
subunit gene [GABRB216], a transcription factor for atrial natriuretic peptide [GATA417] and an NMDA glutamate 
receptor subunit gene [GRIN2B18] with acamprosate treatment response. In addition, in animal studies, mice 
that lack type 1 equilibrative nucleoside transporter [ENT119] or have a mutation in period 2 [PER220] showed 
reduced alcohol consumption in response to acamprosate treatment while no effect was observed in wild-type 
mice. However, prospective studies to evaluate the predictive power of these pharmacogenomics biomarkers have 
not been performed.

Metabolomics can identify pretreatment or response-to-treatment metabolotypes that can be associated with 
the outcome of a particular pharmacological intervention. Thus, metabolic signatures that are associated with a 
positive or negative treatment response could be used to predict patient treatment outcomes21–23. Several studies 
have used metabolomics to identify baseline pre-treatment metabolic signatures that are associated with treat-
ment response to sertraline in depression24, 25, and to antipsychotics in schizophrenia26, 27. In addition, we have 
used a metabolomics method to identify baseline metabolites that are associated with treatment response to 
acamprosate in patients with AUD28.

In this study, we aimed to investigate the potential utility of multivariable models incorporating baseline meta-
bolic and clinical biomarkers to identify patients that have the highest likelihood of a positive treatment response 
(no alcohol consumption for at least 3 months) to acamprosate. Overall, the identification of biomarkers and the 
development of predictive models that are capable of predicting therapeutic response to pharmacological agents 
for treatment of AUD could help physicians to determine which medication to prescribe for individual AUD 
patients, enabling personalized medicine in AUD. To our knowledge, this is the first study describing the use of 
predictive models incorporating both metabolomic and clinical biomarkers to determine treatment response to 
acamprosate.

Results
Differences in baseline demographics, alcohol use history and clinical features between responders  
and non-responders. Prior to building multivariable predictive models of acamprosate response, we com-
pared baseline demographic and clinical features between responders and non-responders. There was no dif-
ference in age at time of consent or race between responders and non-responders; however, there was a higher 
proportion of males in the responder group (P = 0.029). In addition, there was marginally significant evidence 
suggesting that responders reported a heavier drinking pattern (average number of drinks per drinking day) in 
the 3 months prior to entering the study compared to non-responders (P =0.059).There was no difference in 
average number of drinks per drinking day in the past month before entering the study or the average number of 
days sober in the past 3 months before entering the study. Baseline PACS scores were higher in non-responders 
compared to responders (P <0.001). The baseline activity of glutamine synthetase and baseline GGT levels were 
similar between the groups (Table 1).

Differences in baseline serum metabolites between responders and non-responders. We 
evaluated the level of 36 serum amino acids and amino acid derivatives in responders and non-responders 
to 3 months of acamprosate treatment (Table 2). We found that levels of 6 metabolites (glutamate, ammonia, 
1-methylhistidine, taurine, aspartate, and threonine) were different between responders and non-responders 
(uncorrected P < 0.05).

Predictive model development using the training samples and evaluation of performance in 
the test samples. Table 3 shows the best model, based on five-fold cross-validation, for prediction of aca-
mprosate treatment response in each of the 5 random training subsets. PACS score and aspartate were the most 

Measure

Responders (n = 71) Non-responders (n = 49)

P ValueMean or n SD or % Mean or n SD or %

Demographics

Age at consent 45.9 10.5 44.7 11.6 0.549

Gender (male) 54 76.1 28 57.1 0.029

Race (Caucasian) 67 94.4 43 87.8 0.198

No. of drinks/day (3 months prior) 11.9 9.9 9.0 4.7 0.059

No. of drinks/day (1 month prior) 10.4 12.7 7.5 5.5 0.137

No. of days since last drink 27.7 24.2 20.9 19.7 0.157

Clinical Characteristics

Baseline PACS Score 11.6 7.1 16.4 8.6 <0.001

GS activity 4.3 2.7 3.8 1.9 0.660

GGT 82.1 88.1 62.0 70.4 0.737

Table 1. Comparison of demographics, drinking history, and clinical characteristics between responders 
and non-responders. GS: glutamine synthetase; GGT: glutamyl transpeptidase; PACS: Pennsylvania Alcohol 
Craving Scale; SD: Standard Deviation.
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consistently selected predictors, being included in all five predictive models. 1-Methylhistidine, ammonia, tau-
rine, threonine, and male gender were all included in at least two predictive models. Table 4 presents the per-
formance of the models in the five testing samples. The area under the ROC curve (AUC) in the test set varied 
between the five random data splits, ranging from 0.570 to 0.724 (mean 0.647) (Fig. 1). In the test samples, the 
models predicted acamprosate treatment response with a sensitivity ranging from 0.708 to 1.000 (mean sensitiv-
ity = 0.833) and a specificity ranging from 0.059 to 0.500 (mean specificity = 0.310).

Discussion
This study investigated the possibility of establishing a model to predict acamprosate treatment response in alco-
hol dependent patients utilizing demographics, alcohol use history, clinical assessments and serum metabolite 
levels. Overall, our findings suggest that combining baseline serum metabolites and clinical scores as variables in 
a multivariate model provides some predictive power to differentiate responders and non-responders to 3 months 
of acamprosate treatment. However, the mean AUC of 0.65 and the poor specificity of the predictive models, 
suggests that studies with larger sample sizes that explore more potential biomarkers are needed to expand the 
clinical utility of predictive algorithms for pharmaceutical response in AUD. To our knowledge, this is the first 
study that evaluates the potential accuracy of predictive models that incorporate metabolomic biomarkers and 
clinical factors to determine treatment response to acamprosate. This approach could potentially be used to pre-
dict response to other FDA-approved medications as well as novel drugs to treat AUD.

Measure

Responders (n = 71) Non-responders (n = 49)

P ValueMean or n SD or % Mean or n SD or %

Serum Metabolite Levels

1-Methylhistidine 7.50 5.87 13.14 17.19 0.023

3-Methylhistidine 4.36 2.92 4.47 2.20 0.822

α-aminoadipic acid 1.10 0.68 0.83 0.60 0.027

α-amino-n-butyric 13.63 5.33 15.57 7.03 0.089

Alanine 400.38 79.59 389.94 92.85 0.511

Ammonia 34.40 17.66 26.17 13.22 0.007

Arginine 100.39 23.52 98.41 24.69 0.659

Asparagine 61.20 14.97 61.86 17.51 0.825

Aspartate 19.00 10.14 13.00 6.90 <0.001

β-alanine 5.47 2.05 6.30 5.18 0.225

β-aminoisobutyric acid 0.89 0.50 0.91 0.58 0.865

Citrulline 27.86 8.16 29.81 9.55 0.233

Cysthationine 1.10 1.05 0.92 0.99 0.387

Cystine 77.64 21.48 81.03 20.75 0.391

Ethanolamine 8.74 2.39 7.93 2.87 0.096

Glutamate 31.71 16.14 22.66 9.98 <0.001

Glutamine 741.99 157.06 760.09 208.16 0.589

Glycine 283.35 93.11 261.24 63.52 0.151

Histidine 90.74 25.94 91.11 19.61 0.933

Hydroxylysine 1.35 0.91 1.13 0.82 0.184

Hydroxyproline 17.06 8.21 14.99 8.60 0.187

Isoleucine 64.72 21.46 66.02 21.86 0.747

Leucine 132.23 40.55 130.75 38.45 0.841

Lysine 153.08 45.09 157.85 60.55 0.622

Methionine 20.23 5.82 21.37 7.47 0.350

Ornitine 94.43 38.11 83.39 38.21 0.122

Phenylalanine 69.98 17.69 65.87 15.15 0.188

Phosphoethanolamine 1.95 1.69 1.42 1.21 0.069

Proline 220.76 62.32 221.87 80.47 0.932

Sarcosine 1.19 0.55 1.27 0.79 0.557

Serine 113.12 26.58 108.07 28.73 0.325

Taurine 171.69 94.39 131.01 51.67 0.007

Threonine 113.63 23.25 130.04 43.70 0.009

Tryptophan 60.12 15.74 63.33 18.62 0.310

Tyrosine 70.60 21.15 70.67 27.07 0.986

Valine 232.19 65.14 225.92 55.37 0.583

Table 2. Baseline serum metabolite levels in responders and non-responders to 3-month acamprosate 
treatment in the training sample. SD: Standard Deviation.
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We found that the average sensitivity was high in the training (94.9%) and the test (83.3%) samples. A high 
sensitivity suggests that this model is very good at detecting true positives or those that are predicted to respond 
and do respond to acamprosate. From a clinical perspective, identifying those patients that are predicted to 
respond would allow the patient to get the best medication for them at the beginning of treatment. This could 
dramatically improve the ways that patients with AUD are treated. The low specificity indicates that the model 
is unable to identify non-responders. Caution should be noted as, if too many people are predicted to “respond” 
among eventual non-responders, they may be given a treatment from which they may not benefit. However, given 
how few pharmacological treatment options are available for AUDs, we believe that in this context high sensitivity 
is more important than high specificity, i.e. we are willing to accept some false positives – patients who are pre-
dicted to respond but eventually do not respond to acamprosate treatment – in order to correctly identify most 
patients that are likely to respond to this treatment. Nevertheless, to be clinically useful a predictive model should 
have high sensitivity and at least moderately high specificity. The low specificity in our study may partly reflect 
over-fitting and is also due to the difference in responder/non-responder proportions (i.e. data imbalance). In our 
random split of the sample into training and test data (which was done 5 independent times), we performed a 
stratified random split, so that the ratio of responders to non-responders would be similar in all the training and 
test subsets. Because in the complete sample the number of responders is higher than non-responders (59% vs. 
41%), each training and test set also had this unbalanced number of cases and controls.

Our models had an average area under a receive operating characteristic (ROC) curve of 0.80 in the training 
samples and an AUC of 0.65 in the test samples. Prospective studies using a larger sample are necessary to identify 
new models with improved predictive power. A novel aspect of our model is the inclusion of serum metabolites 
as predictors. Using metabolomics to aid in prescription of medications is feasible since metabolomics can be 
ordered as a clinical test used to evaluate a patient’s pretreatment metabolite signature prior to selection of a phar-
macological agent29, but standardization of the method between laboratories is critical.

We found that baseline PACS and aspartate levels were the two variables that consistently were associated with 
acamprosate treatment response in all 5 models. Lower craving scores have been reported by our previous study 
to be associated with acamprosate treatment response28. Furthermore, our group has also found that increased 
alcohol craving is associated with shorter abstinence18. These data suggest that patients with low craving for alco-
hol may be more likely to be treated with acamprosate or abstain in general from alcohol consumption. On the 
other hand, data from the COMBINE study was reanalyzed and it was found that acamprosate was most effective 
in patients with shorter abstinence (1 week or less) length before initiation of treatment30. Although this is not a 
direct assessment of alcohol craving, it suggests that a patient with lower craving that has been abstinent from 1 
week or less may be the ideal candidate for treatment. Previously, we found that acamprosate treatment response 
was associated with elevated baseline glutamate levels28. In addition, several studies have identified genetic asso-
ciations related to glutamate signaling with acamprosate treatment response16–18. In the present study, we found 
that aspartate and glutamate levels were significantly elevated in responders to acamprosate and associated with 
acamprosate treatment response, although aspartate was the only amino acid significantly associated with aca-
mprosate response in all 5 predictive models. Interestingly, aspartate can be converted to glutamate via aspartate 
transaminase (AST) in serum. AST is frequently used as a marker of liver function and has been used as a marker 
of alcohol use. Future studies that incorporate metabolomic, genetic, and clinical characteristics as variables may 
reveal better prospective predictive models that could be used to predict acamprosate treatment response.

Our findings should be considered in light of the study’s limitations. It is important to emphasize that the 
metabolomic variables considered in this investigation were collected from serum, which may not directly reflect 
the metabolite levels in the brain. Future studies should be conducted to evaluate baseline brain metabolite level 
differences between responders and non-responders using non-invasive techniques such as magnetic resonance 
spectroscopy (MRS)31–33, and establish the relationship between blood and brain metabolites, so that using 
blood metabolites, which is more cost-effective, as proxy to those in the brain could be justified. On the other 
hand, a baseline serum metabolite profile provides a more feasible clinical test to screen for potential response 
type than that from an MRS scan. In addition, the clinical features and the types of metabolites we used in the 
development of the predictive models are vast yet limited. Further studies using global metabolomics, which 
covers all the detectable metabolites may lead to stronger predictive models to predict acamprosate treatment 
response. In addition, based on recent finding that the active component of acamprosate might be calcium34, 
calcium-regulating metabolites may play a role in determining acamprosate treatment response. However, global 

Predictor Model 1 Model 2 Model 3 Model 4 Model 5

Intercept −0.601 0.558 0.643 0.252 0.340

Baseline PACS −0.015 −0.061 −0.057 −0.005 −0.023

Aspartate 0.026 0.034 0.030 0.012 0.014

Methylhistidine −0.006 −0.001 — −0.027 —

Ammonia 0.009 — — 0.005 —

Taurine — 0.003 — — 0.001

Threonine — −0.003 — — —

Phosphoethanolamine — — — — 0.012

Gender (male) 0.554 — — 0.182 —

Caucasian 0.110 — — — —

Table 3. Multivariable logistic regression model variables selected by Lasso penalized selection method.
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metabolomics approaches are only semi-quantitative. Finally, although the quantification of metabolite concen-
trations using LC/MS/MS is based on standard concentration curves and each sample is spiked with an inter-
nal standard for normalization between sample runs, it is possible that concentrations of metabolites may vary 
between analysis batches or institutions. Thus, the use of metabolite ratios may allow consistency between anal-
ysis batches or institutions.

In conclusion, our study highlights the use of metabolic and clinical biomarkers to create a predictive model to 
determine whether or not any single patient with AUD has a good probability of responding to acamprosate. This 
study takes us one step closer to a personalized treatment approach for patients with AUD.

Methods
Subjects. The study was conducted in compliance with the Code of Ethics of the World Medical Association 
(Declaration of Helsinki) and was approved by the Institutional Review Board of Mayo Clinic (IRB number: 
07-007204); all participants provided informed consent. We utilized metabolomics data from a subset of 120 sub-
jects recruited as part of a previously described study18, 28. All participants met DSM-IV-TR criteria for alcohol 
dependence. A detailed description of inclusion and exclusion criteria used for this study has been published previ-
ously28. Recruitment of subjects was from community based residential and outpatient treatment programs affiliated 
with Mayo Clinic in Rochester, Minnesota and the Mayo Clinic Health System sites in Austin, Minnesota, Albert 
Lea, Minnesota and La Crosse, Wisconsin as previously described18, 28. In total, 443 subjects were assessed for eligi-
bility and acamprosate was initiated. Metabolomics assays were performed on a subset of 120 subjects with complete 
demographic and clinical data, including alcohol use data at 12-week follow-up, and available serum samples. This 
group of 120 included 71 subjects that remained completely abstinent during the 12 weeks of acamprosate treatment 
(“treatment responders”) and 49 subjects that relapse (any alcohol consumption; “non-responders”).

Performance 
Index

Model 1 Model 2 Model 3 Model 4 Model 5 Training Test

Training Test Training Test Training Test Training Test Training Test Average SD Average SD

True positives 44 17 42 19 43 17 48 22 48 23 45.0 2.8 19.6 2.8

True negatives 13 8 18 6 17 7 7 1 5 3 12.0 5.8 5.0 2.9

False negatives 3 7 5 5 4 7 0 1 0 0 2.4 2.3 4.0 3.3

False positives 20 8 15 10 16 9 25 16 27 14 20.6 5.3 11.4 3.4

Sensitivity 0.936 0.708 0.893 0.792 0.915 0.708 1.000 0.957 1.000 1.000 0.949 0.049 0.833 0.138

Specificity 0.394 0.500 0.545 0.375 0.515 0.438 0.219 0.059 0.156 0.176 0.366 0.174 0.310 0.186

Accuracy 0.713 0.625 0.750 0.625 0.750 0.600 0.688 0.575 0.663 0.650 0.713 0.038 0.615 0.029

ROC AUC 0.832 0.659 0.845 0.578 0.802 0.570 0.756 0.724 0.771 0.703 0.801 0.038 0.647 0.071

Table 4. Predictive model performance.

Figure 1. Receiver operating characteristic (ROC) curves illustrating the ability of the Lasso penalized selection 
models to predict acamprosate treatment response in the test set for each of the 5 random splits of the data.
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Acamprosate treatment and monitoring. Participants were prescribed one 333 mg tablet three times 
a day for the first week to determine tolerance of medication. Then, a standard dose of two 333 mg tablet three 
times a day was prescribed. Subjects were followed monthly for 3 months by in-person interviews (the first and 
third months) and by phone (the second month) to obtain accurate sobriety, medication compliance (pill counts) 
and presence of psychiatric symptoms. Response to acamprosate was defined as no alcohol consumption during 
the 3-month treatment period while non-response was defined as any amount of alcohol consumption during the 
3-month treatment period. Response vs. non-response outcome was determined by self-report (TLFB-30) and by 
measuring levels of GGT to assess accuracy of self-report.

Clinical assessments. Prior to the start of acamprosate treatment (baseline), self-reported history of alcohol 
consumption was collected by a research coordinator via the 30-day Timeline Follow Back (TLFB-30) method35. 
Baseline anxiety and depressive symptom severity were assessed by the 7-item General Anxiety Disorder 
Questionnaire [GAD-7; ref. 36] and the 9-item Patient Health Questionnaire [PHQ-937]. Baseline alcohol craving 
was assessed by the Pennsylvania Alcohol Craving Scale [PACS; ref. 38]. The PACS is a five-item self-report meas-
ure with each question scaled from 0 to 6. It quantifies the frequency, intensity, duration of alcohol craving, and 
the ability to resist drinking over the previous week. Higher scores indicate stronger craving.

Serum collection. At baseline, approximately 20 ml of blood was collected from each subject, which usually 
occurred between noon and 3PM. Blood was collected to analyze metabolite levels as well as gamma-glutamyl 
transpeptidase (GGT) levels as a biological marker of alcohol consumption. Venipuncture was performed using 
standard techniques. All tubes were labeled with a study identifier, collection date, and time of draw. After collec-
tion, samples were electronically accessioned at the Biospecimens Accessioning Processing (BAP) facility at Mayo 
Clinic. Samples were subsequently spun down for 15 min at 2900 × g at 4 °C and serum was aliquoted into 250 μl 
samples and stored at −80 °C within 2 h to minimize any possible metabolite degradation. All serum samples 
were thawed on ice for approximately 2 h before use. Glutamine synthetase activity was measured as described39.

Metabolomics using LC-MS/MS. The metabolomics method for analyzing these serum samples using 
LC-MS/MS has been described previously28. Briefly, serum amino acid calibration standards were prepared with 
a MassTrak Amino Acid Analysis Solution (AAA) kit (Waters Corp, Milford, MA) according to instructions 
with slight modifications for detection on a mass spectrometer40. To measure accurate metabolite concentra-
tions, we first normalized each sample to the internal standard. Serum samples of 10 μl were spiked with an 
internal standard then derivatized according to MassTrak instructions. The amino acid derivatizing reagent used 
was 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Then, concentrations based on the standard curve 
were determined. A 10-point standard concentration curve was made from the calibration standard solution to 
calculate amino acid concentrations in serum samples. High resolution separation was done using an Acquity 
UPLC system and injecting 1 ml of derviatized solution, with a UPLC BEH C18 column (Waters Corp, Milford, 
MA). Mass detection was completed on a TSQ Ultra Quantum running in ESI positive mode (Thermo Scientific, 
Waltham, MA).

Statistical analysis. Prior to building multivariable predictive models of acamprosate response, we compared 
baseline demographic, clinical, and metabolomic features between responders (n = 71) and non-responders (n = 49). 
Unpaired t test were used for continuous variables, while chi-square tests were used for categorical variables.

To investigate the potential utility of multivariable prediction of acamprosate treatment response, subjects 
were randomized into a training set (2/3 of subjects; n = 80) and a test/validation set (1/3 of subjects; n = 40); this 
random split was repeated 5 times to allow assessment of variability in the performance of the predictive models. 
The random split of subjects into test and training datasets was performed in responder/non-responder strata, to 
ensure a similar proportion of responders across training and test subsets. Sparse logistic regression based on the 
Lasso approach with four-fold cross-validation optimized for the model deviance was then used for model build-
ing, beginning with all variables shown in Tables 1 and 2. The analysis was implemented using the cv.glmnet func-
tion in the glmnet R package (https://cran.r-project.org/web/packages/glmnet/glmnet.pdf), with nfolds = 4 and 
the type = “deviance” option. The models built in the training sets were then used to predict response in the cor-
responding independent test sets, and the area under the Receiver Operating Characteristic (ROC) curve (AUC), 
as well as the sensitivity and specificity based on a 0.5 predicted probability cut-off, were calculated to evaluate 
model performance in the test sets. Mean imputation of five of the metabolic predictors (predictor ([% missing]: 
phosphoethanolamine [6.7], 1-methylhistidine [17.5], 3- methylhistidine3 [5.8], β-aminoisobutyric-acid [9.2], 
cysthationine [5.8]) was conducted prior to analysis to preserve the sample size and create the complete data 
needed for the Lasso models.
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