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Experimental investigation of 
quantum entropic uncertainty 
relations for multiple 
measurements in pure diamond
Jian Xing1,2, Yu-Ran Zhang1,2, Shang Liu3, Yan-Chun Chang1,2, Jie-Dong Yue1,2, Heng Fan1,2,4 & 
Xin-Yu Pan1,2,4

One unique feature of quantum mechanics is the Heisenberg uncertainty principle, which states that 
the outcomes of two incompatible measurements cannot simultaneously achieve arbitrary precision. In 
an information-theoretic context of quantum information, the uncertainty principle can be formulated 
as entropic uncertainty relations with two measurements for a quantum bit (qubit) in two-dimensional 
system. New entropic uncertainty relations are studied for a higher-dimensional quantum state with 
multiple measurements, and the uncertainty bounds can be tighter than that expected from two 
measurements settings and cannot result from qubits system with or without a quantum memory. 
Here we report the first room-temperature experimental testing of the entropic uncertainty relations 
with three measurements in a natural three-dimensional solid-state system: the nitrogen-vacancy 
center in pure diamond. The experimental results confirm the entropic uncertainty relations for multiple 
measurements. Our result represents a more precise demonstrating of the fundamental uncertainty 
principle of quantum mechanics.

One significant feature of quantum theory that differs from our everyday life experience is the uncertainty prin-
ciple which was first introduced in 1927 by Heisenberg1. The uncertainty relation that bounds the uncertainties 
about the measurement outcomes of two incompatible observables on one particle can be formulated using the 
standard deviation. One widely accepted form of this relation is expressed by the Heisenberg-Robertson relation2: 
ΔRΔS ≥ |〈[R, S]〉|/2 where ΔR is the standard deviation of an observable R. Since this form of relations is 
state-dependent on the right-hand-side, an improvement of uncertainty relation, in an information-theoretic 
context, was subsequently proposed and expressed as3, 4 H(R) + H(S) ≥ log2[1/c(R, S)] where H(R) denotes the 
Shannon entropy of the probability distribution of the outcomes when R is measured and ≡ | |c R S r s( , ) max j k j k,

2 
given |rj〉 and |sk〉 the eigenvectors of R and S, respectively. In the presence of a quantum memory, the uncertainty 
relation can be generalized as5 H(R | B) + H(S | B) ≥ log2[1/c(R, S)] H(A | B) where H(R | B) denotes the conditional 
von Neumann entropy. It provides a bound on the uncertainties of the measurement outcomes depending on the 
entanglement between measured particle A and the quantum memory B and is validated by recent experiments6, 7. 
These results as well as related investigations8–10 have been discovered to have many significant applications, such 
as the security proofs for quantum cryptography11, 12, nonlocality13 and the separability problem14. Besides, in 
some recent researches, the fundamental reason of uncertainty relations have been investigated extending to 
more general theories such as thermodynamics15, 16 and relativity17. It is indicated that the violation of the uncer-
tainty relations would lead to a violation of the second law of thermodynamics.

There are also efforts made to generalize the uncertainty relations to more than two observables18 and the 
entropic uncertainty relations for multiple measurements with general condition are studied theoretically by 
some of us19 and another group20. The bounds19 for multiple measurements in higher-dimension are tighter than 
that obtained from two measurements results, so those uncertainty relations provide a more precise description 
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of the uncertainty principle which may highlight the boundary between quantum and classical physics. Thus, 
the essence of those uncertainty relations can be well demonstrated in a three-dimension quantum system like 
a spin-1 state for the reasons that they cannot be obtained from the ordinary two measurements setting, and the 
indivisible quantum system cannot result in nonlocality or entanglement21.

In this work, we report the first room-temperature proof-of-principle implementation of the entropic uncer-
tainty relations for multiple measurements19 in a solid-state system: the nitrogen-vacancy (NV) center in pure 
diamond single crystal. An individual NV center can be viewed as a basic unit of a quantum computer and is one 
of the most promising candidates for quantum information processing (QIP), since many coherent control and 
manipulation processes have been performed with this system22–37. Here, we demonstrate the entropic uncer-
tainty relations for multiple measurements via the triplet ground states of the spin-1 electron spin of a single NV 
center. Since the entropic uncertainty relations are state dependent, we further investigate different initial states 
of spin-1 electron spin of a single NV center. We also change the complementarity of three measured observables 
and verify different types of entropic uncertainty relations for multiple measurements. Moreover, our system is 
a truly three-level system and has overcome the defects of post-selection in the most common optical systems, 
which differs from earlier relative works.

Results
System description and experimental setup. The electron spin of NV center interacts with the exter-
nal magnetic field, causing a splitting of the three-energy spin states. The Hamiltonian of a negative charged NV 
center (NV−) in pure diamond under an external magnetic field B is written as
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where Δ = 2.87 GHz is the zero-field splitting of the spin-1 ground states. γe = 2.80 × 1010 T−1s−1 and 
γc = 1.07 × 107 T−1s−1 are the gyromagnetic ratio of electron spins and 13C nuclear spins, respectively. Ai is the 
hyperfine tensor for Ii

C( ). A N( ) and ⊥A N( ) are hyperfine constants for I(N). In this condition, the electron spin couples 
with the = ±I 1(m 1,0)N Ns

 nuclear spin, so ms = −1 level splits into three energy levels with states denoted by the 
Dirac notation | 〉m m,N ss

: |1, −1〉, |0, −1〉 and |−1, −1〉. In Fig. 1(e) and (f), each one of the three transitions from 
an energy level ms = 0 to another level ms = ±1 indicates a dip in the spectra.

The experiment is implemented with one single NV center in pure diamond (Sumitomo, Nitrogen 
Concentration <5 ppb). The decoherence of NV centers in this sample is dominated by the nuclear spins of 13C 
atoms. NV centers in diamond are surrounded by randomly distributed 13C atoms as the natural abundance of 13C 
is 1.1%. The nuclear spin of the 13C atom would interact with NV center electron spin leading to the extra splitting 
and decoherence. The typical dephasing time ( ⁎T2 ) of NV centers in this sample is over 600 ns. For a better manip-
ulation fidelity, we choose the NV center without nearby 13C atoms. A permanent magnet is used to apply an 
external magnetic field on the system and is tuneable in both strength and orientation. Under several circum-
stance, excited-state level anti-crossing (ESLAC) of the center electron spin is used for the nuclear spin polariza-
tion38. When the magnetic field is around the ESLAC point (about 507 Gauss), laser driven electron spin 
polarization would transfer to nearby nuclear spins. In this experiment, the magnet is adjusted to about 370 Gauss 
as the 14N nuclear spin is partially polarized to improve the operation fidelity.

Hyperfine spectra of the NV center is obtained by optically detected magnetic resonance (ODMR)39 scanning 
as shown is Fig. 1. A home-built scanning confocal microscope combined with integrated microwave (MW) 
devices, as shown in Fig. 2, is employed to initialize, manipulate and read out the electron spin state. A 532 nm 
laser beam from the laser device is switched by an acoustic optic modulator (AOM) and focused on the sample 
through a microscope objective. The fluorescence of NV center is collected by the same objective and detected by 
the single photon counting meter (SPCM). The galvanometer is used to perform an X-Y scan of the sample while 
the dichroic beam-splitter (BS) is used to split the fluorescence of NV center and laser. Resonance microwave is 
used to control the electron spin state. To enhance the photon collection efficiency, a solid immersion lens (SIL)40 
is etched above the NV center. A coplanar waveguide (CPW) antenna is deposited close to the SIL to deliver the 
microwave pulses to the NV center. Typical fluorescence scanning chart of the SIL and the NV center in it is 
shown in Fig. 2(b). The photo of SIL taken by electron microscope and sketch map of microwave system is also 
indicated in Fig. 2(c). Four MW channels (MW0, MW1, MW2, MW3) controlled by individual RF switches for 
state and phase controls of the electron spin (Fig. 1) are used in this experiment. MW1 and MW3 are respectively 
set to have a π/2 phase shift relative to MW0 and MW2. In Fig. 3(a–d), the Rabi oscillations carried out by the four 
MW channels are implemented. Figure 3(e) and (f) show that the relative phase between MW1 and MW0 and the 
one between MW3 and MW2 are both π/2.

To demonstrate that our system is a truly three-level system which can overcome the defects of post-selection 
in common optical systems, we plot the state tomography result of an electron spin superposition state 
ψ = + − + +( 0 1 1 )1

3
 in Fig. 4(a) and (b). See Methods for details. Pulse sequence for state tomography 

is shown in Fig. 4(c) with MW pulses for different measurement bases shown in Table 1. The fidelity of the exper-
imental result is about 95.35%, which is calculated from ρ σ ρ σ=F( ) Tr  with σ = |ψ〉〈ψ|. As a result, our 
truly three-level system is well suitable for the investigation of generalized entropic uncertainty relations for 
multiple measurements.
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Figure 1. Typical structure of NV center in pure diamond single crystal. (a) The NV center consists of a 
nearest-neighbor pair of a 14N atom, which substitutes for a 12C atom, and a lattice vacancy (V). (b) Three 
energy levels of the ground state of NV center. The electron spin state is controlled by MW pulses. MW0 and 
MW2 indicate MW pulses with a phase of 0, while MW1 and MW3 indicate MW pulses with a phase of π/2. (c) 
ODMR spectra of transition ms = 0 to ms = −1. (d) ODMR spectra of transition ms = 0 to ms = +1.

Figure 2. Experimental setup. (a) Sketch map of the home-built scanning confocal microscope. A 532 nm Laser 
beam from laser device is switched by an acoustic optic modulator (AOM) and focused on the sample through 
a microscope objective. The fluorescence of NV center is collected by the same objective and detected by the 
single photon counting meter (SPCM). The galvanometer is used to perform an X-Y scan of the sample while 
the dichroic beam-splitter (BS) is used to split the fluorescence of NV center and Laser. (b) Typical fluorescence 
scanning chart of the SIL and the NV center in it. (c) Typical photo of the SIL taken by electron microscope and 
sketch map of microwave system.
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Entropic uncertainty for multiple relations and multiple measurements. Here we summarize the 
details of several multiple-measurement entropic uncertainty relations being used in the main article. Generally, 
a multiple-measurement entropic uncertainty relation is of the following form.

∑ ρ≥ ...
=

H M B M M M( ) ( , , , , ),
(2)m

N

m N
1

1 2

Figure 3. Rabi oscillations carried out by the four MW channels. (a) MW0. (b) MW1. (c) MW2. (d) MW3. (e) 
Red line shows the Rabi oscillation carried out by MW0. Blue line shows the Rabi oscillation carried out by 
MW1 after a MW0 π2  pulse. (f) Red line shows the Rabi oscillation carried out by MW2. Blue line shows the Rabi 
oscillation carried out by MW3 after a MW2 π2  pulse.
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where {Mm} is a set of quantum measurements of cardinality N and B(⋅) is a non-negative bound which is gener-
ally a function of the measurements as well as the density operator ρ of the measured system.

For experimental demonstration for entropic uncertainty relations for multiple measurements, we choose 
to measure three measurement operators in three-dimensional space. Our system, a truly three-level system, 
of which the quantum states corresponding to ms = 0, ms = −1 and ms = +1 are denoted by |0〉, |−1〉 and |+1〉, 
respectively. Generally, the entropic uncertainty for the three-measurement case is lower bounded by B(M1, M2, 
M3, ρ) which depends on the measurements M1, M2 and M3 and chosen initial states ρ. The measurements are 
chosen with eigenvectors as

= − +

= . − + − . + +

= + − − − +

M
M

M a b b a

{ 0 , 1 , 1 },
{ 0 5 ( 0 1 ), 1 , 0 5 ( 0 1 )},

{ 0 1 , 0 1 , 1 }, (3)

1

2

3

where b = 1 − a and a ∈ [0, 1] is required. For a detailed comparison, we take three different lower bounds into 
consideration, which include Rudnicki-Puchala-Zyczkowski (RPZ) direct sum majorization bound20, simply con-
structed bound (SCB) and the recent generalized Maassen-Uffink (MU) bound figured out by Liu, Mu and Fan 
(LMF)19. See Methods for details.

The electron spin of NV center is initialized with a 532 nm laser pulse. Projection measurements with three 
sets of eigenvectors are used to ensure the initial state of the NV electron spin, then the measurement entropy of 

Figure 4. State tomography and pulse sequences for entropy measurement and state tomography. (a) Real part 
of state tomography result of an electron spin superposition state + − + +( 0 1 1 )1

3
. (b) Imaginary part 

of state tomography result. (c) Pulse sequence for state tomography. State preparation is executed by adopting 
MW0 with 26 ns and MW2 with 26 ns. Population reversal is implemented by MW pulses shown in Table 1. (d) 
Pulse sequence for generalized entropic uncertainty relations for multiple measurements. The projection 
scheme is carried out by MW pulses shown in Table 2. The MW pulse whose length is τ indicates the Rabi 
oscillation scheme.
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each set of eigenvectors is determined. MW pulses of various length, frequencies and phases as shown in Table 2, 
are employed to carry out the projection. A Rabi oscillation signal is used to read out the result after a projection. 
The pulse sequence is shown in Fig. 4(d).

Specifically, since entropic uncertainty relations are state dependent, we choose two initial states |0〉 and |−1〉 
in our experiment and the theoretic predictions compared with the three kinds of lower bounds are shown in 
Fig. 5(a). It should be noticed that initial state |−1〉 is proven to have the minimum sum of entropies for the meas-
urements expressed in Eq. (3). The experimental results of the sum of entropies of two initial states with respect 
to different values of a are compared with the theoretic predictions in Fig. 5(b). These results have clearly verified 
the entropic uncertainty relations predicted by the theory and the lower bounds. The difference between the 
theoretic prediction and experiment result may be attributed to decoherence of electron spin during the controls 
and measurements. Since the measured state is initially prepared as a pure state, decoherence will increase the von 
Neumann entropy of the measured state and enhance the sum of entropic uncertainties. These analyzes can be 
also manifested by the lower bounds of entropic uncertainty relations discussed in the Methods.

Eigenvector Population reversal Rabi

set 1

|0〉 NA MW0

|−1〉 NA MW0

. − −0 5 ( 0 1 ) NA MW0

. − −i0 5 ( 0 1 ) NA MW1

set 2

|0〉 NA MW2

|+1〉 NA MW2

. − +0 5 ( 0 1 ) NA MW2

. − +i0 5 ( 0 1 ) NA MW3

set 3

|0〉 MW2 MW0

|−1〉 MW2 MW0

. + − −0 5 ( 1 1 ) MW2 MW0

. + − −i0 5 ( 1 1 ) MW2 MW1

Table 1. Eigenvectors for state tomography. NA, not available. A MW2 π pulse is used to carry out population 
reversal when eigenvector set 3 is used. Rabi oscillation scheme is then executed by MW channel listed in 
collum “Rabi”.

Eigenvector MW channel MW length

(1 0 0)1 MW0 0

(0 1 0) MW0 π

(0 0 1) MW2 π

(0 .0 5  .0 5 ) MW2, MW0 π, 1.5π

(0 .0 5  − .0 5 ) MW2, MW0 π, 0.5π

( .0 1  .i 0 9  0) MW1 1.9π

( .0 9  − .i 0 1  0) MW1 0.1π

( .0 2  .i 0 8  0) MW1 1.8π

( .0 8  − .i 0 2  0) MW1 0.2π

( .0 3  .i 0 7  0) MW1 1.7π

( .0 7  − .i 0 3  0) MW1 0.3π

( .0 4  .i 0 6  0) MW1 1.6π

( .0 6  − .i 0 4  0) MW1 0.4π

( .0 5  .i 0 5  0) MW1 1.5π

( .0 5  − .i 0 5  0) MW1 0.5π

( .0 5  0 .i 0 5 ) MW2 1.5π

( .0 5  0 − .i 0 5 ) MW2 0.5π

Table 2. Projection of the Eigenvectors. 1The vector (α, β, γ) stands for α|0〉 + β|−1〉 + γ|+1〉. Each projection 
process is carried out by MW pulses from left to right with MW lengths listed behind.
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Discussion
In conclusion, we report the first room-temperature implementation of entropic uncertainty relations for three 
measurements in a three-dimensional solid-state system: the nitrogen-vacancy center in pure diamond. As sum-
marized in Fig. 5(b), we have experimentally investigated entropic uncertainty relations for multiple measure-
ments with different measured states of spin-1 electron spin of a single NV center and different kinds of three 
observables. Differing from ordinary used optical systems, our system is a truly three-level system and has over-
come the defects of post-selection. The significance of physics for multiple measurements is that the uncertainty 
principle can be more precisely formulated and demonstrated for a high-dimension quantum state. Differring 
from the well-studied nonlocality, entanglement or other quantumness of correlations, the uncertainty relations 
are due to the superposition principle in quantum mechanics. Thus the demanding for physical implementation 
is that it should be an indivisible quantum system. Our experiment system is naturally three-dimension, and our 
experimental results confirm the theoretical expectation from the uncertainty relations. Our result may shed new 
light on the differences between quantum and classical physics in higher-dimension.

Methods
State tomography. State tomography is performed by projecting the initial state, denoted by ρ, to three sets 
of eigenvectors indicated in Table 1. Figure 2(b) indicates the pulse sequence of a state tomography measurement. 
The initial state is prepared by adopting MW0 26 ns and MW2 26 ns to the electron spin of NV center, then Rabi 
oscillations carried out by various MW channels are used to read out the projection value on each eigenvector 
(Table 1). Diagonal elements ρ0,0 = 〈0|ρ|0〉, ρ−1,−1 = 〈−1|ρ|−1〉, ρ+1,+1 = 〈+1|ρ|+1〉 are obtained by projection 
values directly. Non-diagonal elements, for example, ρ−1,0 = 〈−1|ρ|0〉 and ρ0,−1 = 〈0|ρ|−1〉 are solved from a set 
of equations

ρ ρ ρ ρ ρ= + − −− − − − − − , (4)( 0 1 ) 0,0 1, 1 0, 1 1,0

ρ ρ ρ ρ ρ= + − + .− − − − − −i i (5)i( 0 1 ) 0,0 1, 1 0, 1 1,0

A π-pulse of MW2 is used to change the population between ms = 0 and ms = +1 in order to get the diagonal and 
nonagonal elements between ms = −1 and ms = +1. The state tomography result of the electron spin superposi-
tion state + − + +( 0 1 1 )1

3
 is









. . − . . + .
. + . . . + .
. − . . − . .









i i
i i
i i

0 3314 0 2977 0 0392 0 3200 0 0583
0 2977 0 0392 0 3306 0 2460 0 0621
0 3200 0 0583 0 2460 0 0621 0 3380 (6)

with which von-Neumann entropy S(ρ) = −Tr(ρlog2ρ) can be calculated to be 0.4022 and the fidelity is calculated.

SCB. From the two-measurement MU inequality as well as the simple relation H(Mi) ≥ S(ρ), we can easily 
obtain a lower bound as

ρ=




−


 − . ..B N k S c M M c M M c M M

2
( ) 1

2
log[ ( , ) ( , ) ( , )]

(7)k1 2 2 3 1

where we have 2 ≤ k ≤ N or k = 0 with which we define the second term of the r.h.s. to be zero. We call the max-
imal value among all bounds deduced in this manner the simply constructed bound (SCB), which is explicitly 
expressed as

Figure 5. Entropic uncertainty relations for three measurements in the three-dimensional system. (a) 
Comparison between several bounds and entropic uncertainty with respect to a, including the maximal SCB 
(long-dashed black line), RPZ bound (dotted red line) and LMF bound (solid orange line). Dashed green line is 
for the theoretic result of state |0〉 and dashed-dotted blue line is for that of state |−1〉. (b) Comparison between 
the predicted measurement entropy, experiment results and SCB with respect to parameter a. The error bars use 
the standard error (SE).
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ρ= − + −
σ

σ{ }B C N k Smax 1
2
log[ ] (

2
) ( ) ,

(8)k
kSCB

,
,

where Ck,σ := c(Mσ(1), Mσ(2))... c(Mσ(k), Mσ(1)). Note that we have considered all possible permutations σ among the 
indices of the measurements.

LMF’s generalized MU bound. In a recent work19 the following lower bound of generalized entropic 
uncertainty relations for multiple measurements has been proven

ρ= − −B N S b( 1) ( ) log( ), (9)LMF

where
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where ui
j  denotes to the i th basis vector of the j th measurement =c u u u u( , )m

n
i
j

m
n

i
j 2. We regard this LMF 

lower bound as a generalization of the MU bound because it explicitly reduces to MU bound if we take N = 2. One 
advantage of this result is that the role of the intrinsic uncertainty of the pre-measurement state has been explicitly 
demonstrated.

RPZ direct sum majorization bound. RPZ have introduced an alternative approach to 
multiple-measurement entropic uncertainty relations20. By choosing a certain orthonormal basis in the 
d-dimensional state space, we can rewrite all those basis vectors u{ }i

j  as column vectors in Cd. Then define coef-
ficients Sk as follow.

S σ= | | |
+
+
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where σ ⋅( )1
2  denotes the square of the largest singular value of a matrix and the maximum ranges over all subsets 

{(i1, j1), (i2, j2), …, (ik+1, jk+1)} of cardinality k + 1 of the set {1, 2, …, d} × {1, 2, …, N}. With this definition, a 
majorization relation as follows can be proven

S S S S S− −= ≺ �p{ } { , , , }, (12)i
j
i j
d N
, 1
,

0 1 0 2 1

where pi
j is the probability of getting the i th outcome of the j th measurement. This relation leads to the RPZ 

lower bound
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