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Scaling of average receiving time 
on weighted polymer networks 
with some topological properties
Dandan Ye1,2, Song Liu1,2, Jia Li1,2, Fei Zhang1,2, Changling Han1,2, Wei Chen1,2 & Yingze 
Zhang1,2

In this paper, a family of the weighted polymer networks is introduced depending on the number of 
copies f and a weight factor r. The topological properties of weighted polymer networks can be 
completely analytically characterized in terms of the involved parameters and/or of the fractal 
dimension. Moreover, assuming that the walker, at each step, starting from its current node, moves to 
any of its neighbors with probability proportional to the weight of edge linking them, namely weight-
dependent walk. Then, we calculate the average receiving time (ART) with weighted-dependent walks, 
which is the sum of mean first-passage times (MFPTs) for all nodes absorpt at the trap located at the 
central node as a recursive relation. The obtained remarkable results display that when r< < 1

f
1
+ 1

, the 
ART grows sublinearly with the network size; when r =

f
1
+ 1

, ART grows with increasing size Ng as Nln g
2 ; 

when r0 < <
f
1
+ 1

, ART grows with increasing size Ng as ln Ng. In the treelike polymer networks, ART 
grows with linearly with the network size Ng when r = 1. Thus, the weighted polymer networks are more 
efficient than treelike polymer networks in receiving information.

Complex networks, as a powerful tool to describe and characterize the natural and man-made systems, have 
attracted considerable attention in many fields, such as mathematics, biology, life science and engineering dis-
ciplines1–3. Besides, as rapid developing discipline, polymer science has attracted much attention in the past few 
years, since it provides a powerful tool to study the macromolecules with various structures4. Flexible polymer 
structures are various, such as dendrimers5, mesh-like polymers6, 7, fractals8, 9, dendritic10, 11, regular hyper-
branched structures12, 13, scale-free and small-world networks14, 15, and so on.

Weighted networks represent the natural framework to describe natural, social, and technological systems, 
in which the intensity of a relation or the traffic between elements is an important parameters16, 17. In general 
terms, weighted networks are extension of networks or graphs18, 19, in which each edge between nodes i and j is 
associated with a variable wij, called the weight. Much attention has been paid to the study of weighted networks 
because most real networks, which include airport networks20, ecosystems21, the Internet networks22 and so on, 
often show weighted properties, so it is also meaningful to investigate the behavior on the weighted networks23. 
Motivated by complex networks and polymer structures, Zhang et al. defined a category of treelike polymer net-
works controlled by a parameter, which is built in an iterative way24, 25. Combining the weighted networks26 and 
polymer structures, a family of the weighted polymer networks is introduced depending on the number of copies 
f and a weight factor r.

In 2015, Dai et al. introduced comprehensively three kinds of walks: random walk, weigh-dependent walk 
and strength-dependent walk on the weighted networks27. On weighted networks, the walker will choose an 
edge according to its weight of the node connected by it, i.e. weight-dependent walk. A key quantity related to 
weighted networks is the mean first-passage time(MFPT), that is, the expected first time for the walker starting 
from a source node to a given target node. The average receiving time (ART) is the sum of mean first-passage 
times (MFPTs) for all nodes absorpt at the trap located at a given target node28–31.

In this paper, we define a family of weighted polymer networks controlled by two parameters, which is built 
in an iterative way. According to the construction, we study some structural properties of the weighted polymer 
networks, showing that (1) in the limit of large network order g, the average degree of weighted polymer networks 
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tends to 2; (2) when 0 < r < 1, their average node strength goes to zero as g increases; (3) their node strength 
distribution follows a power-law distribution; (4) the weighted polymer networks networks have small-world 
property: in the infinite network, the average weighted shortest path (AWSP) tends to be a constant value which 
depends on two parameters f, r. However, the average shortest path (ASP) increases logarithmically with the net-
work size. Then, by applying recursive relations of weighted polymer networks, we calculate the average receiving 
time (ART) with weighted-dependent walks, which is the sum of mean first-passage times (MFPTs) for all nodes 
absorpt at the trap located at the central node. So we derive exactly the ART formula, which displays that in large 
networks, the leading behaviors of ART for the weighted polymer networks follow distinct scalings, with the trap-
ping efficiency associated with the network size Ng, the number of copies f and a weight factor r.

This paper is organized as follow. Based on weighted networks26 and polymer structures, a family of the 
weighted polymer networks is introduced depending on the number of copies f and a weight factor r in the 
next section. In Section 3, some a priori prescribed topology is described in terms of average degree, average 
node strength, node strength distribution, and the average weighted shortest path, depending on the two main 
parameters: the number of copies f and the weight factor r. In Section 4, the average receiving time (ART) with 
weighted-dependent walk is obtained by recursive formulas for F1(g) and Ttot(g). In the last section, we draw some 
conclusions that (1) the topology of weighted polymer networks can be completely analytically characterized in 
terms of the involved parameters and/or of the fractal dimension; (2) the weighted polymer networks are more 
efficient than treelike polymer networks in term of receiving information.

Weighted treelike networks
In this section, a family of weighted polymer networks are introduced. Intuited by polymer networks24, 25 and 
Weighted Fractal Networks (WFN for short)26, a family of weighted polymer networks are constructed in a deter-
ministically iterative way.

Let r(0 < r < 1) be a positive real numbers, and f(f  ≥ 1) be a positive integer. Denote by Gg the weighted poly-
mer networks after g iterations, and the following is the iterative algorithm to create weighted polymer networks:

	(1)	 For g = 0, G0 consists of an isolated node, called the central node. For g = 1, f new nodes are generated 
connecting the central node to form G1. Let G1 be our base graph, composed by f + 1 nodes and f edges 
with unit weight. The f + 1 nodes in G1 are all the attaching nodes, labeled by  f0, 1, 2, , .

	(2)	 For g = 2, G2 is obtained from G1: Let G G G, , , f
1
(0)

1
(1)

1
( ) be f + 1 replicas of G1, whose weighted edges have 

been scaled by the weight factor r. For = i f0, 1, 2, , , let us denote by i′ the central node in G i
1
( ). Then 

merge the central node i′ in G i
1
( ) and Node i in G1 into a single new node, still labelled by = i i f( 0, 1, , ). 

Figure 1 illustrates the iterative construction processes of a particular network from g = 1 to g = 3 for the 

Figure 1.  Iterative construction method for weighted polymer networks from g = 1 to g = 3 for the case of f = 3.
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case of f = 3.
	(3)	 For g ≥ 1, Gg is obtained from Gg−1 (see Fig. 2): Let − − −G G G, , ,g g g

f
1

(0)
1

(1)
1

( )  be f + 1 replicas of Gg−1, whose 
weighted edges have been scaled by the weight factor r. For = i f0, 1, 2, , , let us denote by i′ the central 
node in −Gg

i
1

( ) . Then merge the central node i′ in −Gg
i

1
( )  and Node i in G1 into a single new node, still labelled 

by = i i f( 0, 1, , ). The weighted polymer networks is set up.

The weighted polymer networks is one of type of WFN. According to Carletti and Righi26, WFN are scale-free, 
the exponent being the fractal dimension. WFN exhibit the “small-world” property (i.e. slow (logarithmic) 
increase of the average shortest path with the network size) and large average clustering coefficient. Thus, the 
fractal dimension of weighted polymer networks is completely characterized by two main parameters: the num-
ber of copies f ≥ 1 and the weight factor 0 < r < 1. We have that the fractal dimension of the weighted polymer 
networks is = − +dfract

f
r

log( 1)
log

.
According to the construction approach, it is easy to derive that at each iterative step gi(gi ≥ 1), the number of 

newly generated nodes is = + −L g f f( ) ( 1)i
g 1i . Then the total number of nodes at each generation g is

∑= + = +
=

N L g f1 ( ) ( 1) ,
(1)

g
g

g

i
g

1i

and the total number of edges in Gg is Eg = Ng − 1 = (f + 1)g − 1.

Topological properties of weighted polymer networks
The aim of this section is to characterize the topology of weighted polymer networks, by analytically studying 
their properties such as the average degree, the average node strength, the node strength distribution, and the 
average weighted shortest path.

Average degree and average node strength.  The degree of a node i in a network, that is, the number of 
connections or edges the node i has to other nodes, is denoted by deg(i). The average degree of the weighted pol-
ymer networks Gg, denoted by ad(Gg), is defined as =ad G( )g

E

N

2 g

g

32. Hence in the limit of large g, the average 
degree ad(Gg) is finite and it is asymptotically given by

= =
+ −

+
→ → ∞.ad G

E
N

f
f

g( )
2 2( 1) 2

( 1)
2,g

g

g

g

g

In the weighted polymer networks Gg, a weight wij is assigned to the edge connecting the nodes i and j, and the 
strength of node i can be defined as

∑=
ν∈

s w ,
(2)

i
j i

ij
( )

where the sum index j runs over the set ν(i) of neighbors of i. The strength of a node integrates the information 
concerning its connectivity and the weights of its links33, 34. Then using the recursive construction, we can explic-
itly compute the total node strength = ∑ ∈S sg i G ig

, and, provided ≠
+

r
f

1
1
, easily show that

Figure 2.  Construction method of weighted polymer networks. The open circles and triangles represent Node 
i′ of −Gg

i
1

( )  and i of = G i f( 0, 1, 2, , )1 , respectively.
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=
+ −
+ −

.S f fr r
fr r

2 ( ) 1
1g

g

Because r <  1, we trivially find that the average node strength goes to zero as g  increases: 
= − → → ∞

+ − + − +
S N g/ 0( )g g

fr
fr r

f
fr r f

2
1

2
( 1)( 1)

g

g .
Especially, let us observe that the same is true if =

+
r

f
1

1
; in this case, in fact Sg = 2fg grows linearly with g, thus 

slower than Ng.

Node strength distribution.  Let n(s) denote the number of nodes in the weighted polymer networks Gg 
that have strength s. Let si(gi) be the strength of any one of newly generated nodes i at each iterative step gi(gi > 0). 
Assume that node i entered the networks at generation g(g > 0), then si(g) = rg−1. By construction, the strength of 
node i entered the networks at generation gi(0 < gi < g) is = + + + +− − −

s g r f r r r( ) ( )i i
g g g g1 1 2i i . For gi = 0, 

the strength of the initial central node labeled by 0, equals to = + + + +− −
s f r r r(0) ( 1)g g

0
1 2 . Using the 

property of iterative construction method, we can conclude:

= + = .−n s g f f and n s( ( )) ( 1) , ( (0)) 1i i
g 1

0i

For g = 100, n(s) versus s in the weighted polymer networks is on a log-log scale in Fig. 3. The slope of the 
weighted polymer networks G100 with 8100 nodes, f = 7 and r = 1/4 is −1.4992, which differs by 0.0008 from its the 
negative of the fractal dimension − = = − .d 1 5000frac

log8
log1/4

. The slope of the weighted polymer networks G100 
with 9100 nodes, f = 8 and r = 1/8 is −1.0565, which differs by 0.0001 from its the negative of the fractal dimension 
− = = − .d 1 0566frac

log9
log1/8

. The slope of the weighted polymer networks G100 with 31100 nodes, f = 30 and r = 1/2 
is −4.9339, which differs by 0.0203 from its the negative of the fractal dimension − = = − .d 4 9542frac

log31
log1/2

. The 
slope of the weighted polymer networks G100 with 4100 nodes, f = 3 and r = 1/30 is −0.4077, which differs by 
−0.0001 from its the negative of the fractal dimension − = = − .d 0 4076frac

log4
log1/30

. The results show that for 
different weight factor r and different copy number f, every line slope of log n(s) versus log s is nearly equal to the 
negative of the fractal dimension − = < <+d r(0 1)fract

f
r

log( 1)
log

. This implies that n(s) are distributed according 

to a power law with exponent = − +dfract
f

r
log( 1)

log
. And therefore, for large g, n(s) can be obtained as

∼ −n s cs( ) ,dfract

where c is constant. Thus, n(s) also follows a power-law distribution.

Average weighted shortest path.  By definition the average weighted shortest path(AWSP) of the 
weighted networks Gg

35 is given by

=
−

d
N N

S g2
( 1)

( ),
(3)

g
g g

tot

where

∑=
∈ ≠

S g d g( ) ( ),
(4)

tot
i j G i j

ij
, ,g

Figure 3.  The log-log plot of n(s) versus s for different weight factor r and different copy number f.
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dij(g) being the weighted shortest path linking nodes i and j in Gg.
The modular recursive construction of Gg allows us to calculate the exact value of Stot(g). At step g + 1, we 

incise Gg into f + 1 branches, which we label as = G i f( 0, 1, , )g
i( ) . Each branch = G i f( 0, 1, , )g

i( )  is a copy of 
Gg and has the same structure as Gg, while their edge weights have been scaled by a weight factor r. The central 
nodes i′ of = G i f( 1, , )g

i( )  are all connected to central node 0′ of Gg
(0) by f edges with unit weight. Thus, the total 

of shortest distances Stot(g) satisfies the following recursion:

+ = + + ΩS g f rS g( 1) ( 1) ( ) , (5)tot tot g

where Ωg is the sum over all weighted shortest paths whose nodes are not in the same copy of = G i f( 0, 1, , )g
i( ) . 

Note that the weighted paths that contribute to Ωg must all go through central node 0′ of Gg
(0) at which the different 

= G i f( 0, 1, , )g
i( )  branches are connected. This recursive relation can be elaborated as follows:

The first term on the rhs of (5) describes the sum of the weighted shortest path linking nodes i and j in 
= G i f( 0, 1, , )g

i( ) , respectively, i.e.,

∑ ∑ ∑+ + +
∈ ∈ ∈



i j G i j G i j G, , ,g g g
f(0) (1) ( )

Using the scaling mechanism for the edges, the above sum can be easily identified with

∑ ∑ ∑ ∑+ + + = + = +
∈ ∈ ∈ ∈

r r r f r f rS g( 1) ( 1) ( )
i j G i j G i j G i j G

tot
, , , ,g g g g

One can prove (see Method) that

Ω =










−
+ +

−
−

+ < <

+ + = .

f
r

r f f r
r

f if r

f g f if r
1

( 1) ( 2)
1

( 1) , 0 1,

( 1)( 1) , 1 (6)
g

g g g

g

2
2

2
2

2 2

Considering Stot(1) = f  2, we can solve Eq. (4) recursively to yield

=











−
+ − −

+ +
−

+ −
+

+



 −

−
−

+ − −






+ < <

− + + + = .

− −

− −

− −

S g

f r
f r r

f f fr
f r

r f

f
r

f r
f r r

r f if r

fg f f if r

( )

( 2)
( 1 )( 1)

( 1) ( 1)
( 1)( 1)

( 1)

1
( 2)

( 1 )( 1)
( 1) , 0 1,

( 1)( 1) ( 1) , 1 (7)

tot

g g g

g g

g g

2
2 1 1

2
1 2 1

2 1 1

We find that if r = 1 then Stot(g) = (fg − 1)(f + 1)2g−1 + (f + 1)g−1, which coincides with the Stot(g) in ref. 24. 
Therefore

=











−
+ − −

+
+ −

+
−

+ − + −

+



 −

−
−

+ − −






+
+ −

< <

− + +
+ − +

= .

− −

− −

+

d

f r
f r r

f
f

f fr
f r

r
f

f
r

f r
f r r

r f
f

if r

fg f
f f

if r

2 ( 2)
( 1 )( 1)

( 1)
( 1) 1

2 ( 1)
( 1)( 1) ( 1) 1

2
1

( 2)
( 1 )( 1)

( 1)
( 1) 1

, 0 1,

2( 1)( 1) 2
( 1) ( 1)

, 1
(8)

g

g

g

g

g

g g

g

g

g

2 1 1

2 1 1

1

which provides the following asymptotic behavior in the limit of large g (see Fig. 4). When g → ∞,

→
−

+ − −
< <d f r

f r r
if r2 ( 2)

( 1 )( 1)
, 0 1

(9)g

2

Thus the network grows unbounded but with the logarithm of the network size, while the weighted shortest 
distances stay bounded.

Recalling Ng = (f + 1)g as given in Eq. (1), we have = +g N fln /ln( 1)g . We can also compute the average short-
est path (ASP), dg , formally obtained by setting r = 1. Hence, when the network size is large enough, we have

≅
+ +

= .d f
f f

N if r2
( 1) ln( 1)

ln , 1
(10)g g

Average receiving time on weighted polymer networks
The purpose of this section is to determine explicitly the average receiving time 〈T〉g and show how it scales with 
network order. We aim at a particular case on Gg with the perfect trap being located at the central node, labelled 
by 0. The process of biased walks is that the particle (walker), at each time step, starting from its current Node i, 
jumps to its neighbor Node j with probability 

→pi j
w  (see Eq. (11)).
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For weight-dependent walk, a walker chooses one of its nearest neighbors with probability proportional to the 
weight of edge linking them36, 37. The transition probability from node i to its neighbor j is

= =
∑ ν

→
∈

p
w
s

w
w

,
(11)

i j
w ij

i

ij

j i ij( )

where si denotes the strength of node i (see Eq. (2)).
For convenience of description, let us denote by  f0, 1, 2, ,  the f + 1 attaching nodes in Gg, and by 

− N4, 5, , 2g  and Ng − 1 all other nodes except for the f + 1 attaching nodes. Let Fij(g) be the mean first-passage 
time (MFPT) for a walker starting from Node i to Node j. Let Fi(g) be the MFPT from Node i to the trap. 〈T〉g is 
the average receiving time (ART), which is defined as the average of Fi(g) over all starting nodes other than the 
trap. 〈T〉g is the key question considered in this section.

By definition, 〈T〉g is given by

∑= .
=

−

T
N

F g1 ( )g
g i

N

i
0

1g

Here we denote by Ttot(g) the sum of MFPTs for all nodes to absorption at the trap located the central Node 
0, i.e.,

∑= .
=

−

T g F g( ) ( )tot
i

N

i
0

1g

Thus, the problem of determining 〈T〉g is reduced to finding Ttot(g). We will compute Ttot(g) by segmenting Gg.
From the iterative construction method of Gg, Gg can be regarded as merging f + 1 groups, sequentially 

denoted by =− G i f( 0, 1, , )g
i

1
( ) . The f + 1 groups are obtained as follows: − − −G G G, , ,g g g

f
1

(0)
1

(1)
1

( )  are f + 1 replicas 
of Gg−1, whose weighted edges have been scaled by the weight factor r. For = i f0, 1, 2, , , let us denote by i′ the 
central node in −Gg

i
1

( ) . Then merge the central node i′ in −Gg
i

1
( )  and Node i in G1 into a single new node, still labelled 

by = i i f( 0, 1, , ). The process is described in Fig. 2.
Through this division we could rewrite the sum Ttot(g) as follows:

∑= + − + .−
=

T g f T g N F g( ) ( 1) ( 1) ( )
(12)tot tot g

i

f

i1
1

We now elaborate Eq. (12). The first term on the rhs of Eq. (12) describes the sum of MFPTs for all nodes in 
−Gg
i

1
( )  to reach its attaching nodes = i i f( 0, 1, , ). Recalling −Gg

i
1

( )  linked to Node = i i f( 0, 1, , ) is a copy of 
Gg−1 and the scaling mechanism for edges, the first term in the rhs of Eq. (12) can be identified with 
(f + 1)Ttot(g − 1); the second term describes the sum of MFPTs for all nodes in −Gg

j
1

( )  from Node = j j f( 1, 2, , ) 
to Central Node 0.

Because of the symmetry of nodes  f1, 2, , , = = =F g F g F g( ) ( ) ( )f1 2 . Eq. (12) can be simplified as

= + − + .−T g f T g f N F g( ) ( 1) ( 1) ( ) (13)tot tot g 1 1

Thus, the problem of determining Ttot(g) is reduced to finding F1(g). Using the construction of the weighted 
polymer networks Gg and the scaling mechanism for edges, we obtain

Figure 4.  The average weighted shortest path. Plot of the renormalized average weighted shortest path ∼dg  
versus the iteration g, where =

∼ −

−

{ }
{ } { }dg
d d

d d

min

max min
g g

g g
.
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= + + + + + +

+ + − + −

− − −




F g fr fr fr f r F r F
r F g rF g

( ) (1 ) [ (1) (2)
( 2) ( 1)], (14)

g g g
1

2 1 1
1

2
1

2
1 1

and

− = + + + + +

+ + + − + − .

− −

−





F g fr fr fr f r F
r F r F g rF g

( 1) (1 ) [ (1)
(2) ( 3) ( 2)] (15)

g g

g
1

2 2 2
1

3
1

2
1 1

From Eqs (14) and (15), we can further have

− + − = + − .F g fr r F g fr r( ) ( ) ( 1) 1 (16)1 1

Considering the initial condition F1(1) = 1, we can solve recursively Eq. (16) to obtain

=











+
+ −

−
+ −
+ −

≠
+

+ − − − =
+

.

−

F g

fr fr r
fr r

fr r
fr r

if r
f

fr r g fr r if r
f

( )

2 ( )
1

1
1

, 1
1

,

(1 ) ( ), 1
1 (17)

g

1

1

Considering Ttot(1) = f and inserting Eq. (17), we can solve Eq. (13) inductively to yield

=
+ −

+ −
+ −
+ −

+

−
+ −

+ ≠
+

=
+ −

+ −
+ −

+

+ + − + =
+

.

+
− −

−

− −

−

T g f r
fr r

f f fr r
fr r

g f

f r
fr r

f if r
f

T g f fr r g f f fr r g f

f fr r f if r
f

( ) 2
( 1)

( 1) ( 1 )
1

( 1)

2
( 1)

( 1) , 1
1

,

( ) (1 )
2

( 1) (1 3 3 )
2

( 1)

(1 )( 1) , 1
1 (18)

tot

g
g g

g

tot
g g

g

2 1

2
2 1 1

2

2
1

2 1 1

1

Hence, 〈T〉g, which we are concerned about, could be expressed as follows:
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Figure 5.  Average receiving time 〈T〉g versus g is on a semilogarithmic scale for the range of < ≤
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which coincides with the 〈T〉g in ref. 24.
Recalling Ng = (f + 1)g and g = ln Ng/ln(f + 1), we have

≈
+

−
+ + +
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f
f N

f f
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f
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which coincides with that in ref. 24.
For systems with large order, i.e. Ng → ∞,
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According to Eqs (19) and (20), ART 〈T〉g versus g for the range of g ≤ 50 on a semilogarithmic scale is shown 
in Figs 5, 6 and 7. From Eq. (22), we can have draw the conclusions as follows:

Case 1: ≈
+

T g
N

f

2

1
g .

When r = 1, ART grows linearly with the network size Ng. Figure 5 shows that ART increases with the increase 
of the values of f. That is to say, the smaller the value of f is, the more efficient the trapping process is.

Case 2: ≈ =
+ − +
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+T N Ng
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r f r
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.
When < <

+
r 1

f
1

1
, in large network, the ART grows as a power-law function of the network size Ng with the 

exponent, represented by θ = + = −+f r r( , ) 1 log 1f d1
1

fract
 as follows:

	(1)	 When f is kept fixed, the exponent θ(f, r) is an increasing function of r(0 < r < 1) in Fig. 5. When r grows 
from 0 to 1, the exponent increases from 0 and approaches 1, indicating that ART grows sublinearly with 
the network size Ng. This also means that the efficiency of the trapping process depends on the parameter r: 
the smaller the value of r, the more efficient the trapping process is.

	(2)	 When r(r ≠ 1) is kept fixed, ART grows sublinearly with the network size Ng and the exponent θ(f, r) is an 
increasing function of the values of f in Fig. 5. That is to say, the smaller the value of f is, the more efficient 
the trapping process is.

	(3)	 The fractal dimension dfract of the weighted polymer networks play a relevant role in calculating the ART. 
The exponent −1

d
1

fract
 is an increasing function of the values of dfract, which means that the smaller the 

value of dfract is, the more efficient the trapping process is.
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Figure 6.  Average receiving time 〈T〉g versus g is on a semilogarithmic scale for the range of =
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When =
+

r
f

1
1
, ART grows with increasing size Ng as ln2 Ng according to Eq. (22). Figure 6 shows the smaller 

the value of f is, the more efficient the trapping process is.
Case 4: ≈ + −

− − + +
T Nlng

f fr r
fr r f f g

( 1 )
(1 )( 1) ln( 1)

.
When < <

+
r0

f
1

1
, ART grows with increasing size Ng as ln Ng in Fig. 7. When f is kept fixed, the smaller the 

value of r, the more efficient the trapping process is. When r(r ≠ 1) is kept fixed, the smaller the value of f is, the 
more efficient the trapping process is.

Method
The analytical expression for Ωg is not difficult to find, we denote as Ωg

ab the sum of all shortest paths with nodes 
in Ωg

a( ) and Ωg
b( ) = a b f( , 0, 1, 2, , ). Then the sum Ωg is
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Considering the self-similar network structure, we can easily know that at step g, the quantity Δg evolves 
recursively as
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Figure 7.  Average receiving time 〈T〉g versus g is on a semilogarithmic scale for the range of < <
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On the other hand, we have
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where d10 = 1, d12 = 2 have been used.
Substituting Eqs (24) and (25) into Eq. (23), we have
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Conclusions
In this paper, we have introduced a family of weighted polymer networks, and studied its topological structure:(1) 
in the limit of large g, the average degree of weighted polymer networks tends to 2; (2) when 0 < r < 1, their aver-
age node strength goes to zero as g increases; (3) their node strength distribution follows a power-law distribu-
tion; (4) the weighted polymer networks networks have small-world property: in the infinite network, the AWSP 
tends to be a constant value which depends on two parameters f, r. However, the ASP increases logarithmically 
with the network size. Finally, we calculate the average receiving time (ART) with weighted-dependent walks on 
weighted polymer networks. Our analysis has indicated that (1) when < <

+
r 1

f
1

1
, in large network, the ART 

grows as a power-law function of the network size Ng with the exponent,  represented by 
θ = + = −+f r r( , ) 1 log 1f d1

1

fract
. ART grows sublinearly with the network size Ng and the exponent −1

d
1

fract
 is 

an increasing function of the values of dfract, which means that the smaller the value of dfract is, the more efficient 
the trapping process is; (2) when =

+
r

f
1

1
, ART grows with increasing size Ng as ln2 Ng; (3) when < <

+
r0

f
1

1
, 

ART grows with increasing size Ng as ln Ng. In the treelike polymer networks, ART grows with linearly with the 
network size Ng when r = 1. Thus, the weighted polymer networks are more efficient than treelike polymer net-
works in receiving information.
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