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Controllability of complex networks 
with unilateral inputs
Gustav Lindmark & Claudio Altafini

In this paper, we study the problem of controlling complex networks with unilateral controls, i.e., 
controls which can assume only positive or negative values, not both. Given a complex network 
represented by the adjacency matrix A, an algorithm is developed that constructs an input matrix B 
such that the resulting system (A, B) is controllable with a near minimal number of unilateral control 
inputs. This is made possible by a reformulation of classical conditions for controllability that casts the 
minimal unilateral input selection problem into well known optimization problems. We identify network 
properties that make unilateral controllability relatively easy to achieve as compared to unrestricted 
controllability. The analysis of the network topology for instance allows us to establish theoretical 
bounds on the minimal number of controls required. For various categories of random networks as well 
as for a number of real-world networks these lower bounds are often achieved by our heuristics.

In Engineering sciences, the concept of controllability has a long history, with a large body of theory and many 
ramifications covering different aspects of the problem1, 2. In recent times, the topic has received a considerable 
attention in connection with the study of complex networks3–9. Complex networks appear in a broad spectrum 
of scientific disciplines, ranging from Biology to Social Sciences, from Technology to Engineering. Controlling 
a complex network means steering the state variables associated with its nodes to an arbitrary state using the 
available control inputs. When a network is given but there is no a-priori information on how it can be controlled, 
then an interesting problem is to find a minimal set of driver nodes (i.e. nodes on which an external control input 
is acting) that render the network controllable4, 5. This problem has elegant solutions when linear dynamics is 
assumed and the amplitude of the control inputs is unrestricted. Different approaches are discussed in the liter-
ature. The simplest situation is when both topology and interaction strength of the connections are completely 
known (i.e. the weighted adjacency matrix of the network is available). In this case standard controllability tests 
such as the Kalman rank condition10 or the PBH test can be used7, 11, 12. Another situation that has received a lot 
of attention is when only the topology of a network is available but not the exact weights. Concepts like structural 
controllability (i.e. a controllability notion that holds for almost all values of the edge weights) have then been 
used4–6.

All the publications mentioned so far present general controllability results based on the assumption that the 
control inputs are unrestricted i.e. they can assume any value. However in many different fields in which con-
trollability of large scale networks is studied, the control action is intrinsically constrained. In the literature this 
has been considered for some specific network control problems13. The most common form of constraint is that 
control inputs are unilateral, i.e. they can assume either positive or negative values, but not both. For instance, 
in a biological network where nodes correspond to molecular components, a drug acting on a molecule can 
be considered a control input. Usually its mode of action is to either activate its target or to inhibit it, not both. 
Complex networks in which inputs are naturally unilateral occur in many other domains, such as for instance in 
transportation, in trade, or in power networks, see Table 1 for more motivating examples.

Also controllability with constrained inputs has a long history, see Chapter 5 of Jacobson14 for a survey focus-
ing on driven control systems. A key result in this literature was obtained in Brammer15 based on the knowledge 
of the system eigenvalues. In this paper the classical results from Brammer15 are reformulated for unilateral con-
trols and arbitrarily large networks. In order to do that, Brammer’s conditions for controllability are expressed 
using the theory of positively spanning sets16, 17. The problem of finding a minimal set of unilateral control inputs 
that guarantee controllability can then be formulated in terms of standard optimization problems. An algo-
rithm is developed that constructs a near-minimal set of unilateral control inputs for a given network with linear 
dynamics. The performance of the algorithm is verified by comparison with theoretical bounds on the number of 
unilateral controls obtained from the network topology. Using the algorithm we study how the minimal number 
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of unilateral controls, Nr, relates to the minimal number of unrestricted controls, Nu. We compare Nr with Nu 
for various categories of networks in order to find out what is the additional cost of adding sign constraints in a 
network controllability problem.

Methods
The minimal unilateral controllability problem.  The networks that we study can be described by the 
continuous linear control system

= +x t Ax t Bu t( ) ( ) ( ), (1)

where ∈ ×A n n and ∈ ×B n m are matrices, usually sparse. The vector ∈x t( ) n represents the state of the n 
“agents” (i.e. nodes) and u(t) is the vector of the m control inputs. The directed graph of the network, denoted 
 A( ), is the set of nodes ψ1, …, ψn and edges (ψi, ψj), i, j s.t. Aji ≠ 0, with weights given by the numerical values of 
the elements in A.

Only control inputs that act on a single node (driver node) are considered in the following. This corresponds 
to assuming that the columns of B are elementary vectors, i.e., have only one non-zero entry. The problem of 
finding a minimal set of driver nodes that renders the system (1) controllable is studied in several recent publica-
tions4–7. In this literature the control inputs are assumed unrestricted, i.e., an input ui can take values anywhere in 
. The minimum number of unrestricted control inputs that guarantee controllability of (1), Nu, can be inter-
preted as a measure of how difficult it is to control a certain network4.

Constraints on the control inputs can be formalized by introducing a control restraint set, Ω ⊂ m. The admis-
sible controls are then all vector functions u(t) taking value in the control restraint set,

∈ Ω ∀ .u t t( ) , (2)

In particular, when the control inputs are unilateral we have Ω = +
m, and the sign of the elements of B deter-

mine if the control action is positive or negative. Assume that we are free to add control inputs acting on any 
single node either positively or negatively. Then B has the following form:

= ± … ±B e e[ ] (3)i im1

with ei the i-th elementary vector, i ∈ 1, …, n. It is not a restriction to assume unit gain on the columns of B as this 
only corresponds to a rescaling of the inputs.

Our first task can then be formulated as follows: given A( ) , determine the minimal number of unilateral 
control inputs Nr so that the system (1) with the unilateral controls (2) is controllable.

Conditions for unilateral controllability.  Conditions for controllability of the linear system (1) subject to 
the control restraint (2) were derived in Brammer15. Brammer’s necessary and sufficient conditions for controlla-
bility are reported in the Supplemental Information (SI). The key points are that

	 (i)	 Rank [B AB A2B … An−1B] = n;
	(ii)	 There is no real left eigenvector v of A s.t. ∀ ∈ Ω⩽v Bu u, 0 .

The first condition is the same as for controllability with unrestricted controls. The second condition is instead 
specific for systems with control restrains and describes how such inputs have to excite the real modes of the 
system.

Network type Unilateral controls

Biology In a network with nodes corresponding to molecular components, a drug acting on a molecule can be considered a 
control input, and acts by activating or inhibiting its target, not both.

Power grid In controlling the power flow over a power network, loads are absorbing power but not producing it, while generators 
normally play the opposite role.

Transport
Measures to reduce the capacity/flow through a node in a road network are for instance traffic lights or variable speed 
limitations or tolls. For an air transport network, increasing/decreasing the number of flights at a node for instance 
through subsidies/fees can increase the airport capacity. Increasing/decreasing the number of departures towards a 
specific destination allows instead to modulate the flow over the edges.

Internet Server workload can be controlled by redirecting or declining tasks. Different processes or clients may be allocated 
bandwidth dynamically based on priority.

Food-web Food-webs describe how the species in an ecosystem interact. A species can be added by stocking/feeding or 
selectively reduced by hunting/fishing. Such measures can be regarded as unilateral control inputs.

Trade Economic policies such as import restrictions and tolls as well as subsidies of the domestic production can be 
considered as unilateral controls in international trade networks.

Water distribution Nodes represent junctions of pipes, reservoirs or tanks that are connected by pipes. For instance pumps and valves 
can take the role of unilateral controls.

Table 1.  Application areas with naturally unilateral control inputs. For each of the classes of networks listed in 
the table, examples of constrained controls are provided. Most often these constraints take the form of unilateral 
inputs.
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When the control restraint set is Ω = +
m, i.e. the control inputs are unilateral, we can reformulate Brammer’s 

condition in more suitable terms using the theory of positive linear dependence16. See the SI for an overview of this 
topic. Here, the concept of positive span is important: The vectors … ∈a a, , r

n
1  positively span n if for any 

∈x n, ∃ θ1, …, θr ≥ 0 s.t. x = θ1a1 + … + θrar. The number of vectors needed to accomplish this is bounded by 
r ≥ n + 1, a number which is achieved if for instance a1, …, an linearly span n and an+1 = −(a1 + … + an).

In order to investigate controllability with unilateral control inputs, the eigenspaces corresponding to the real 
eigenvalues of A must be determined. Since the eigenvalues of A depend on the numerical entries of A, the prob-
lem is not generic in the structural controllability sense18, 19. Assume λ λ λ= …



0, , ,0 1  are the real eigenvalues of 
A of geometric multiplicity µ µ µ…



, , ,0 1 . Let = … = …µ V v v i[ ], 0,1, ,i i i,1 , i
, be a matrix whose columns form 

a basis for the left eigenspace associated with the real eigenvalue λi. Then Brammer’s condition becomes:
Theorem 1. The system (1) is controllable with unilateral control inputs if

	 (i)	 The matrix [B AB A2B … An−1B] has rank n.
	(ii)	 The columns of V Bi

T  positively span µi ∀ = … i 0, 1, , .

A proof of this theorem is provided in the SI. Condition (i) of the theorem will in the following be referred to 
as the rank condition and condition (ii) as the positive span condition. Since u ≥ 0, the set = ≥C Bu u{V , 0}i i

T  is 
a cone, hence the positive span condition (ii) of the theorem can be rephrased as all cones i, = … i 0, , , being 
simultaneously vector spaces of dimension equal to the geometric multiplicities µ µ…



, ,0  of the real eigenvalues 
λ λ…



, ,0  of A. In order to do that, it is enough that each i is not contained in any half space of µi, see Fig. S1 for 
an illustration.

Constructing a minimal set of unilateral control inputs.  Assume that we are given a large network 
specified by the system matrix A and that our problem is to find a minimal number of unilateral control inputs 
such that the resulting system is controllable. Using the controllability conditions of Theorem 1, this problem can 

Figure 1.  Constructing a minimal set of unilateral control inputs. (a) When the real eigenvalues of A are 
simple, condition (ii) of Theorem 1 leads to a set cover problem: Each control input “covers” the row-vectors Vi

T 
either positively or negatively or not at all. A minimal set of control inputs should be constructed such that all 
vectors are covered both positively and negatively. The two highlighted columns form a set cover solution and 
correspond to =B e e[ ]1 6 . (b) Consider the eigenspace of a real eigenvalue of geometric multiplicity μ = 2. The 
controllability condition is then a problem of positively spanning sets. The three highlighted columns 
correspond to =B e e e[ ]1 2 6  and they positively span 2.

http://S1


www.nature.com/scientificreports/

4Scientific Reports | 7: 1824  | DOI:10.1038/s41598-017-01846-6

be reformulated in terms of well studied optimization problems. When the real eigenvalues of A are all simple, the 
matrices = … V B i, 0, ,i

T  are row-vectors. The positive span condition is met when each of them have both a 
positive and a negative entry. Our problem can then be formulated as a variant of the well known combinatorial 
Set-Cover Problem20, see Fig. 1(a) for an illustration. When on the other hand there is a real eigenvalue λi with 
geometric multiplicity μi > 1, then the problem can be mapped into the computation of a minimal positively 

Figure 2.  Examples of networks and control inputs that make them controllable. The system matrices A are 
shown with their real eigenvalues and left eigenvectors, as well as the minimal B that verifies condition (ii) of 
Theorem 1. (a) A circular network requires either one or two unilateral controls for controllability depending on 
the edge weights. When one edge weight is negative, all eigenvalues of A are complex and condition (ii) of 
Theorem 1 is trivially met. When all edge weights are positive, there are two real eigenvalues with eigenspaces of 
dimension 1. In this case condition (ii) of Theorem 1 is equivalent to requiring that each of the row vectors V BT

1  
and V BT

2  have both a positive and a negative entry. (b) A hub with incoming edges. The only real eigenvalue is 
λ0 = 0 of geometric multiplicity 3. Three unrestricted or 6 unilateral controls are required for controllability. The 
columns of V BT

0  positively span 3. (c) A hub with outgoing edges. 5 unilateral control inputs are enough to 
achieve controllability.
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spanning set21, illustrated in Fig. 1(b). Both these optimization problems are NP-complete, meaning that finding 
the exact global minimum becomes infeasible when the size of the system grows.

The greedy heuristics which we use in this paper are described in detail in the SI. They do not guarantee opti-
mality, but produce an approximate solution with a near-minimal set of control inputs.

Unrestricted vs. unilateral control inputs.  In the following of this paper we analyze the minimal num-
ber of unilateral controls, Nr, and compare it with Nu for different classes of networks. Readers can consult for 
instance Rugh1 for a thorough treatment of the rank condition (i) of Theorem 1 which applies also when the 
control inputs are unrestricted. Instead, we will mostly elaborate on the positive span condition (ii) and assume 
that condition (i) is met.

Trivial bounds on Nr are Nu ≤ Nr ≤ 2Nu. The upper bound is obtained when each unrestricted control input 
is replaced with an equivalent set of one positive and one negative unilateral control input acting on the same 
node as the original input. On the other hand, clearly Nr ≥ Nu because a system that is not controllable with a 
certain set of unrestricted control inputs cannot become controllable if these are constrained. We use the quo-
tient η = Nr/Nu ∈ [1, 2] as a relative measure of the ability to control a network using unilateral controls instead 
of unrestricted controls. Clearly the cases worthwhile exploring are those for which η is significantly less than 
two. A trivial case in which the conditions for unilateral resp. unrestricted controllability coincide and the lower 
bound Nr = Nu is achieved is when all eigenvalues of A are complex conjugate. In general, however, A will have 
one or more real eigenvalues, hence the problem of controlling with unilateral inputs is a non-trivial one. One 
important subtask is to understand when such real eigenvalues are induced by the topology and when instead by 
the numerical values of the edge weights.

To illustrate what can happen, four simple networks are discussed in Fig. 2. Consider first the circular network 
in Fig. 2(a). All eigenvalues of A are complex when there is an odd number of edge weights with negative sign. 
In this case the positive span condition is trivially met and the rank condition is satisfied with one single control 
input, hence Nr = Nu = 1 and η = 1. When instead there is an even number of edge weights with negative sign, 
then at least one eigenvalue is real and the positive span condition comes into play. In this case Nr = 2 and we 
conclude that Nr in general depends on the numerical values of the edge weights of a network, see the SI for more 
details.

The zero eigenvalue must be handled separately in analyzing controllability of complex networks. We will use 


A( )  for the left null space of A and µ =


Adim ( )0  for its dimension (which coincide with the geometric mul-
tiplicity). What is special with the zero eigenvalue is that its geometric multiplicity depends on topological prop-
erties of  A( ). Any root node (i.e., a node having indegree kin = 0) generates one eigenvalue. Also a “dilation” in 
the network, i.e. a set of nodes with a smaller set of in-neighbours (see the SI for formal definition), generates one 
or several zero eigenvalues. In the literature on structural controllability (where controls are unrestricted), μ0 is 
often referred to as the rank deficiency of the system18, 22. Control inputs (driver nodes) are required to target each 
root and dilation of  A( ). This leads to the lower bound Nu ≥ μ0 on the number of unrestricted controls22. Unlike 
other eigenvalues in for instance networks with random edge-weights (see below for more details), the geometric 
multiplicity of the zero eigenvalue, μ0, may be high. In the case of unilateral controllability, this results in a poten-
tially very large problem of positive spanning sets.

Both the networks in Fig. 2(b,c) are acyclic and correspond to nilpotent adjacency matrices A, which means 
that λ0 = 0 is the only eigenvalue of A regardless of the numerical entries on the edges of A( ) . In Fig. 2(b), a num-
ber of roots have outgoing edges to a hub, while in the network in Fig. 2(c), the directions of the edges are 
switched and we have a dilation. The number Nu is the same for both networks, but Nr differs: In Fig. 2(b), each 
root must be controlled with one unrestricted control input or two unilateral controls - one positive and one 
negative. However, the dilation in Fig. 2(c) requires less unilateral controls. In Table 2 this result is generalized to 
single layer trees with a single hub having arbitrary indegree and outdegree. In particular, in the limit n → ∞, 
η → 2 in the first case while η → 1 in the second case.

Rooted directed trees and directed acyclic graphs.  The observations regarding indegree vs. outdegree 
can be extended to Rooted Directed Trees (RDTs) and Directed Acyclic Graphs (DAGs).

Also for them, λ0 = 0 is the only eigenvalue of A and only V BT
0  must be considered when evaluating the posi-

tive span condition of Theorem 1 for unilateral controllability. For RDTs we can derive both Nr and Nu entirely 

Network type Nu Nr η

Circular network, positive cycle 1 2 2

Circular network, negative cycle 1 1 1

Hub with n − 1 outgoing edges n − 1 n + 1 η → 1 when n → ∞

Hub with n − 1 incoming edges n − 1 2(n − 1) 2

Rooted directed tree, outgoing edges from the root nleaf nleaf + r + 1 (nleaf + r + 1)/nleaf

Full network, simple eigenvalues 1 2 2

Full network, skew-symmetric 1 1 1

Table 2.  The number of unrestricted or unilateral control inputs required for controllability of some specific 
network structures. For the RDT, the number of leaves coincides with the dimension of the null space, i.e. 
nleaf = μ0, and r is the number of nodes with outdegree ≥2.
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from the topology: Expressions for Nr and Nu in terms of the number of nodes with outdegree ≥2 and leaves in 
the tree are stated in Table 2 and derived in the SI. In general, when the tree is “flat”, i.e. with few but broad layers, 
then μ0 and thus also Nu are high, but the additional cost for using unilateral controls is low and η is close to 1. 
When instead the tree is deep (i.e. with many layers), then less unrestricted control inputs are required, but the 
ratio η approaches 2.

The same principles apply also to DAGs, although no explicit expressions for Nr and Nu are availa-
ble. Controllability with unilateral control inputs is relatively easy to achieve for a DAG with one or a few 
roots and hubs with a majority of outgoing edges, as η is close to 1 in these cases. When instead hubs are 

Figure 3.  Rooted directed trees and directed acyclic graphs. (a) A RDT with 16 nodes of which 4 have 
outdegree ≥2 and 11 are leaves. For such tree it holds that Nu = μ0 = nleaf, and a minimal set of unrestricted 
inputs is indicated in the left panel (green arrows). To the right is a sparse plot of V0. The columns of V0 form a 
basis for 



A( ). Each node with outdegree ≥2 is a separate dilation, and the null space is the union of d = 5 
structurally disjoint subspaces that are associated to the root and the dilations. A minimal set of unilateral 
controls is indicated in the left panel (red and blue arrows). For a RDT, Nr does not depend on the numerical 
values of the edge weights, but the signs of the controls do. (b) Edges are added between nodes on the same 
layer. The tree structure is lost and the network is a DAG. By adding edges this way, longer paths are created. The 
depth hmax is increased and μ0 is reduced. Both Nr and Nu are reduced. (c) Descending edges are added to the 
original RDT. Neither hmax nor μ0 is altered and Nu is unchanged. However, d is reduced and the lower bound 
Nr ≥ μ0 + d is achieved.
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indegree-dominated, then the graphs tend to have many roots, hence Nr tends to be closer to its upper bound 
2Nu and η close to 2. In a DAG we can define the “depth”, hmax,i, of node ψi, i = 1, …, n, as the maximal path length 
from any root to ψi. The depth of the whole DAG is defined as hmax = maxi=1,…,nhmax,i. In general, a deep DAG 
requires few unrestricted or unilateral control inputs. In the extreme case where the DAG consists of a single path 
that runs from the root through all nodes, then Nu = 1 and Nr = 2.

Figure 3(a) shows Nr and Nu for a RDT. In Fig. 3(b), the RDT is extended with additional “non-ascending” 
edges between the nodes. This transforms the tree into a DAG. The density and the depth hmax have increased, 
making controllability easier to achieve. Both Nr and Nu are reduced while η is essentially unchanged. In Fig. 3(c), 
the RDT of Fig. 3(a) is instead extended with strictly “descending” edges added from the hubs. Interestingly, this 
makes unilateral controllability easier but not unrestricted controllability, and η is reduced. This can be under-
stood from topological considerations and the structure of 



A( )  as explained in the next paragraph.

Topology induced bound on the minimum number of unilateral controls.  Since the columns of 
V BT

0  have μ0 rows, the positive span condition means that V BT
0  must have no less than μ0 + 1 columns. Since each 

column corresponds to one unilateral control input, μ0 + 1 is a lower bound on Nr. This lower bound can however 
be refined from the analysis of the network topology.

Let d be the number of roots and dilations in the graph A( ) . As already mentioned, any root/dilation gener-
ates one or several zero eigenvalues of A with corresponding left eigenspaces. Denote by σi, i = 1, …, d, the dimen-
sion of the eigenspace generated by the i:th root/dilation. For instance a root generates an eigenspace of dimension 

Figure 4.  Unilateral controllability of Erdős–Rényi networks. Networks of size n = 1000 are generated with 
different edge-probabilities, p. For each configuration, 1000 random networks are generated with edge weights 
sampled from a normal distribution. Averaged values are shown. Note that the x-axis shows np, which is the 
expected indegree/outdegree for the nodes. (a) Both Nu and Nr decrease as p increases. Nu follows μ0 (shown in 
(b)). (b) The dimension of 



A( ), μ0, the number roots nroot and the number of structurally disjoint subspaces d 
are shown. The networks in the left-end side of the plot have few edges and many roots. As the networks become 
more dense, the number of roots decreases and instead dilations appear in the networks. (c) The ratio η with its 
lower and upper bounds are shown. For np ≤ 6, η is always close to its lower bound (μ0 + d)/Nu i.e. the extra 
Nr − Nu controls needed for unilateral controllability are due to the roots and dilations. When the networks 
become sufficiently dense there are neither roots nor dilations. Then Nr approaches 2, a lower bound that comes 
from the presence of simple real eigenvalues in the adjacency matrix A. (d) The number of real eigenvalues  
approaches the constant level predicted by the theory as p increases.
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σi = 1, while dilations can be of different sizes and generate eigenspaces of arbitrary dimensions. The left null 
space of any matrix A representing a network is the union of these eigenspaces, hence ∑iσi = μ0 (see the SI).

When V0 is constructed from a sparse basis of 


A( ) , then it has a particular structure23–25. Columns that 
originate from different roots/dilations are structurally disjoint, i.e. the positions of their non-zero entries are 
non-overlapping. See Fig. 3 for an illustration of V0 for the studied RDT/DAGs. The structure of V0 propagates to 
the matrix V BT

0  to which the positive span condition applies. Consequently, the unilateral control input selection 
problem becomes separable with respect to the different roots and dilations. In order to meet the positive span 
condition, the root/dilation i requires at least σi + 1 unilateral controls. When summing over all of them this leads 
to the refined lower bound Nr ≥ μ0 + d.

When descending edges are added to the RDT as in Fig. 3(c), the number of subspaces, d, is reduced although 
μ0 unchanged. Hence the lower bound on Nr is reduced but not the lower bound on Nu. See the SI for a full deri-
vation of the lower bound.

The properties of these simple examples can help our understanding of more complex large scale networks.

Results
In this section we study the minimal sets of unilateral resp. unrestricted control inputs that are required for con-
trollability of random Erdős–Rényi networks26 and directed scale-free networks27, 28 with random edge weights. 
Also a number of real-world networks are studied. Controllability with unrestricted control inputs can also be 
addressed by the structural controllability framework7. When the edge weights are sampled from a continuous 
distribution as for instance a normal distribution, all the non-zero eigenvalues of A are generically simple29. 
On the contrary, the multiplicity of the zero eigenvalue is determined by the topology of the network, and it is 

Figure 5.  Unilateral controllability of scale-free networks. Networks of size n = 1000 are generated with 
different indegree and outdegree exponents, γin and γout. For each configuration of γin and γout, 1000 random 
networks with edge weights sampled from a normal distribution are generated and the figures show their 
averaged values. The total number of edges is the same for all configurations. (a) Nu follows μ0 (shown in (b)) 
and is relatively constant for all configurations while Nr drops significantly when the networks are shifted from 
indegree-dominated to outdegree-dominated. (b) μ0, nroot and d are shown. In the left-end side of the plot 



A( ) 
is essentially generated by the many roots present in these networks. As the degree exponents are shifted (from 
left to right of the plot), the roots tend to disappear and instead dilations add to the dimension of 



A( ). At the 
right end of the plots 



A( )  is essentially generated by one or a few large dilations, hence d ≪ μ0. (c) η with its 
upper and lower bounds are shown. Moving from left to right the lower bound (μ0 + d)/Nu decreases and η 
follows it. The bound is however not achieved, which in part can depend on the heuristics that is used to 
compute Nr. (d) The number of real eigenvalues  is fairly constant across degree distributions (the total density 
of edges is fixed).
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generically invariant to the values of the numerical entries of A, see SI for more information. This implies that 
although controllability with unilateral controls is not a generic property in the sense of structural controllability, 
the problem is to a high degree “structural” (and generic). More precisely:

	 (i)	 Since all real non-zero eigenvalues are simple, for them the positive span condition of Theorem 1 leads to a 
set-cover problem.

	(ii)	 Structural properties of 


A( ) limit the number of unilateral controls required to solve the problem of 
positively spanning sets that appear when μ0 > 1.

The first problem may be solved for all non-zero real eigenvalues simultaneously with only a few (but not less 
than two) unilateral control inputs. The second problem is more complicated but we will see in the following 
sections that the lower bound μ0 + d is often achieved.

A special case is when there is no zero eigenvalue (or it is simple) and the network has a node from which 
there exists a path to all other nodes. Then the network can be controlled with a single unrestricted control input. 
For instance a full network with random edge weights meets these conditions. On the other hand, the number of 
unilateral control inputs required for controllability of such a network can be either one or two. If A has one or 
more real eigenvalues (which is the general case for random networks, more details below) then two unilateral 
control inputs are required. However, if all eigenvalues are complex then one is sufficient. An example of a class of 
networks for which all eigenvalues of A are either zero or purely imaginary is given by skew-symmetric adjacency 
matrices, i.e. aij = −aji. Hence, a full skew-symmetric network is controllable with only one unilateral control 
input.

When  A( ) contains a dilation then the geometric multiplicity of the zero eigenvalue (and hence 


Adim ( ) ) 
becomes larger than 1 and the unilateral controllability problem more interesting to investigate.

Erdős–Rényi networks.  Let Pin(kin) be the indegree distribution and Pout(kout) the outdegree distribution of 
a network. A random Erdős–Rényi network with n nodes and edge-probability p has Pin(kin) = Pout(kout) ~ Pois(n
p) where Pois(np) is the Poisson distribution with expected value np.

Figure 4 shows results on controllability with unilateral and unrestricted control inputs for random Erdős–
Rényi networks with n = 1000. The number Nr is compared to Nu in Fig. 4(a). The ratio η = Nr/Nu is shown in 
Fig. 4(c). This plot also shows the different bounds that apply to Nr and thus also to η: The lower bounds are 
Nr ≥ Nu, Nr ≥ μ0 + d and Nr ≥ 2. The latter holds when A has least one real eigenvalue. The only upper bound is 
Nr ≤ 2Nu i.e. η ≤ 2. The null space is characterized in Fig. 4(b) by its dimension, μ0, the number of roots, nroot, and 
d (the sum of nroot and the number of dilations).

Network type Name Nodes Edges Nr Nu µ + d
N u
0 η

Biology, transcr.
E. coli-transcr. 1623 3620 1692 1466 1.13 1.16

Yeast-transcr. 664 1064 759 500 1.45 1.52

Biology, signal.

EGFR-signal 329 852 123 67 1.84 1.84

Toll-signal 680 2204 249 147 1.65 1.69

Macrophage 678 1582 300 185 1.60 1.62

Biology, metab.
Yeast-metab. 780 4420 174 142 1.21 1.23

E. coli-metab. 757 6116 116 102 1.02 1.14

Power grid

North Europe 236 320 85 43 1.95 1.98

USPowerGrid 4941 6591 3887 2166 1.72 1.79

French Power Grid 1888 2531 1692 945 1.75 1.79

Transport
US Air lines 332 2126 191 111 1.51 1.72

US Air traffic 1206 13106 511 420 1.15 1.21

Internet
Gnutella 6301 20777 8047 4106 1.94 1.96

AS-733 3015 10312 1928 1883 1.03 1.03

Food-web

Florida 128 2106 35 30 1.10 1.17

Michigan 39 221 16 13 1.23 1.23

Mangdry 97 1491 26 22 1.14 1.18

Everglades 69 916 26 21 1.14 1.24

Trade
Similar export 866 2532 100 84 1.19 1.19

Wheat 166 1789 59 35 1.60 1.69

Water dist.
EXNET 1893 4832 167 113 1.47 1.48

Richmond 865 1870 110 65 1.57 1.69

Table 3.  Network characteristics and controllability results for the real-world networks considered in this 
paper. See SI for data sources. Just as for Erdős–Rényi networks and directed scale-free networks, η is in many 
cases close to the lower bound (d + μ0)/Nu.
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The dimension of the null space decreases with increasing edge probability, and both Nu and Nr follow 
(Fig. 4(a)). For structural controllability the minimal number of unrestricted control inputs is mainly determined 
by the node degree distribution and dense networks requires less control inputs4. Our results suggest that this is 
also the case for unilateral controls.

Figure 6.  (a) The lower bound Nu ≥ μ0, or Nu/μ0 ≥ 1 is in most cases achieved for the real-world networks in 
Table 3. (b) Here η is plotted against the ratio d/μ0 ∈ [0, 1] for the networks of Table 3. This ratio reflects in what 
extent 



A( )  is generated by roots and dilations. A linear regression curve is fitted to the data-points. The results 
for the different networks within a specific category are in most cases similar. (c) In this plot Nr and Nu are 
normalized with the network size. The admissible region Nu ≤ Nr ≤ 2Nu is the area between the dashed lines. 
Here we can see that some networks require a large number of unrestricted or unilateral control inputs (far from 
the origin) although the ratio η is close to one (near the orange line). (d) The same plot as in (b) but for the 
Erdős–Rényi and directed scale free networks of Figs 4 and 5. There is one marker for each configuration. The 
outliers in the top right corner are dense Erdős–Rényi networks for which the null space parameters are of little 
importance in computing η. (e) Same as (c) but for the Erdős–Rényi and directed scale free networks.
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The ratio η is close to 2 for very sparse networks. This is explained by the high number of roots in such net-
works. Almost the entire null space is generated by root nodes and the interval μ0 + d ≤ Nr ≤ 2Nu is tight. The ratio 
η follows its lower bound (μ0 + d)/Nu closely as long as there exist roots or dilations in the networks (and μ0 ≥ 1), 
see Fig. 4(c). Hence, the most important factor for controllability with unilateral inputs is rather the network 
topology than the numerical values of the edge weights in this region. Moreover, the lower bound is in many cases 
achievable.

As can be seen in Fig. 4(c), for a significant range (roughly 1, 6), η behaves nontrivially: it drops from its upper 
bound 2 and its minimum is η ≈ 1.7. The drop occurs when d is significantly below μ0, meaning that the null 
space includes a number of subspaces with dimension ≥2. This is explained by the appearance of dilations; hubs 
with high outdegree or DAG-like submotifs. These structures often require only a few more unilateral inputs than 
unrestricted inputs in order to achieve controllability (as in Fig. 3).

In Fig. 4(d), we see that the number of real eigenvalues, , approaches a constant level when p is increased. This 
is consistent with the asymptotic expression for the number of real eigenvalues of random matrices30: If 

⁎E( ) is 
the expected number of real eigenvalues of a full n-by-n random matrix whose elements are independent varia-
bles of a normal distribution, then π=

⁎E n( )/ 2/  as n → ∞. For the value of n = 1000 used in our numerical 
examples, even though A is sparse, we can see in Fig. 4(d) that the number of real eigenvalues of A approaches 


⁎E( ) as the density is increased. (Notice that the most dense networks in our simulations are still very sparse.)
Since each real eigenvalue entails a condition for unilateral controllability according to Theorem 1, one could 

think that the number of real eigenvalues influences the minimal number of unilateral controls. But since all 
non-zero real eigenvalues are simple, the positive span condition is met for several or even all simple real eigen-
values with very few unilateral controls. Even two controls are enough when the network consists of one strongly 
connected component, as in the example of Fig. 2(a). Hence when A has at least one real eigenvalue we have the 
third lower bound on Nr: Nr ≥ 2 (or η ≥ 2/Nu). This bound is very conservative in most cases, but as the network 
density increases and the null space disappears (at np ~ 8) this becomes in fact the limiting bound on Nr, see 
Fig. 4(c).

Corresponding results are presented for smaller networks (n = 100) in Fig. S2. Since the results are essentially 
the same, we can conclude that our observations are valid regardless of the size of the Erdős–Rényi networks.

Directed scale-free networks.  The indegree and outdegree distributions of a directed scale-free network 
follow power-laws, ∝ γ−P k k( )in in in

in and ∝ γ−P k k( )out out out
out respectively. For real-world networks the degree expo-

nents are typically in the range γin, γout ∈ [2, 3]. The directed scale-free network model suggested in Bollabás et 
al.31 is used to generate random networks. It implements a preferential attachment process in which nodes and 
edges are added iteratively depending on the indegree and outdegree of existing nodes. By adjusting the model 
parameters that govern the indegree and outdegree distributions we can effectively tune to what extent the edges 
of the hubs of the network are directed outwards or inwards. When comparing Nr with Nu for directed scale-free 
networks, both the number of nodes and the total number of edges are kept constant and only the indegree and 
outdegree distributions are changed. Figure 5 illustrates the results on networks with n = 1000.

While Nu varies relatively little, Nr decreases significantly when the degree exponents are shifted so that the 
hubs have larger outdegree than indegree (the right-end of the plots). This result is coherent with previous exam-
ples and Fig. 2(c): a hub with only outgoing edges is an extreme case of γout ≪ γin.

The characteristics of the null space in Fig.  5(b) can explain the changes in Nr: Networks with 
indegree-dominated hubs (left end of the plots) have a large number of roots, hence d and the bound Nr ≥ μ0 + d 
are high. As the degree exponents shift, the roots disappear but instead dilations add to the dimension of the null 
space which remains high. This shift matters little when unrestricted control inputs are used as the lower bound 
Nu ≥ μ0 is for most cases achieved either way. However, it matters when unilateral control inputs are used. The 
rightmost configuration (with γin = 2.99 and γout = 2.33) has, besides a few roots, normally only one large dilation 
that accounts for almost the whole null space. The effect is that d drops and so does η, meaning that control-
lability can be achieved with only a few more unilateral controls than unrestricted controls. The lower bound 
η ≥ (μ0 + d)/Nu is however not achieved in our simulations. This can at least partially depend on the heuristics 
used to compute Nr. The number of real eigenvalues is about the same for all configurations, see Fig. 5(d).

The observations we have done here apply to directed scale-free networks of different sizes. Corresponding 
results are presented for smaller networks (n = 100) in Fig. S3.

Analysis of real-world networks.  A number of real networks taken from broadly different contexts (see 
the SI for details and references) have been analyzed with respect to the number of unilateral or unrestricted con-
trol inputs that are required to achieve controllability. When no information is available about the edge weights, 
these have been sampled from a normal distribution. The results are summarized in Table 3 and Fig. 6.

As shown in Table 3, the values of η for these networks cover the entire range [1, 2]. This variation in η and the 
correlation between η and the number of roots and dilations in the networks is also shown in Fig. 6(b). The cor-
relation between η and d/μ0 is 0.96 for the considered networks, hinting that the ratio d/μ0 is a good explanatory 
variable for η. This can be understood by observing that both Nr and Nu tend to meet their lower bounds: from 

µN u
0 (see Fig. 6(a)) and µ +N dr

0  it follows η µ µ µ+ = + d d( )/ 1 /0 0 0.
At one end of the spectrum (η near 1) we find networks from certain categories like metabolic networks and 

food webs. Also the E. coli-transcr. gene regulatory network has a very low ratio η. This last network is very sparse 
and with low edge density. Figure S4(a) shows the graph of the network, and Fig. S4(b) its indegree and outdegree 
distributions. It requires a large number of control inputs: almost every node must be separately controlled when 
unrestricted inputs are used, see Fig. 6(c). However, it turns out that the use of unilateral controls does not make 
controllability significantly more difficult to achieve. The graph of the network consists of one (weakly) connected 
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component and has in essence a DAG-like structure. It has a few roots and hubs that each have hundreds of out-
going edges, while most of the other nodes are leaves with no outgoing edge at all. Its maximal DAG subgraph 
includes all its nodes and 97% of the edges. The depth hmax is low, hence it is a rather “flat” network, with only a 
few layers in the core DAG structure and short paths between the nodes. The relative “flatness” of the network can 
be related to the rooted directed trees studied earlier, see Table 2 and Fig. 3. There it was concluded that a flat RDT 
results in lower values of η, in contrast to networks with many layers. Furthermore, the value of η is close to the 
topologically induced lower bound (μ0 + d)/Nu, see Table 3.

At the other end of the spectrum (i.e. η near 2) we have other categories of networks, such as the power grids. 
Consider for instance the North Europe power grid. The graph of this network is shown with its unilateral con-
trols in Fig. S5. Also this network is very sparse, but in contrast to the E. coli-transcr. network, it has several long 
paths connecting distant nodes. It was observed in our earlier analysis of DAGs that when there are long paths in 
a network, then relatively few unrestricted control inputs are required for controllability. This observation holds 
also for the North Europe grid network, see Fig. 6(c). Furthermore, the network has no significant hubs but quite 
many roots. These roots typically correspond to power plants that are located in remote areas.

Discussion
In an effort to render more realistic the problem of controlling complex networks, in this paper we have taken 
inspiration from classical control literature in order to formulate a control problem in which the inputs are con-
strained in sign, i.e. they can only “push” or “pull”. This is motivated by the fact that unilateral controls are more 
common than bidirectional controls in many contexts, such as for instance biological networks (drugs act as 
inhibitors or activators, not both), food webs (a species can be added by stocking/feeding or selectively reduced 
by hunting/fishing), traffic (cross-lights and speed limits can reduce traffic), power grids (generators can inject 
power, loads can consume power), trade (subsidies of domestic production, import restrictions and tolls), see 
Table 1 for more details. The use of classical conditions, such as Brammer’s controllability condition, passes 
through their reformulation in a more computationally-oriented form. The development of an algorithm that 
identifies a near-minimal set of unilateral control inputs for a given network has enabled us to study in a system-
atic way various categories of random networks, as well as real-world networks.

The conditions for unilateral controllability are formulated algebraically in terms of eigenspaces of the system 
matrix A and positively spanning sets. With random edge-weight assignments, the unilateral controllability prob-
lem is to a high degree structural, since non-zero eigenvalues are simple and the null space is determined by the 
topology of the network. What is not structural is whether the non-zero eigenvalues are real or complex conju-
gate. This property is irrelevant for structural controllability, but it matters for unilateral controllability. For ran-
dom matrices and n → ∞, the number of real eigenvalues can be estimated30. For other network topologies an 
analytic estimation of the number of real non-zero eigenvalues is missing. Our numerical calculations (Figs 4(d) 
and 5(d)) suggest that even for size n ~ 103 such number is stable across numerical realizations. Also the Nr that 
follows is very stable for all topologies (in Figs 4 and 5 variations are never shown because they are always very 
small). Throughout this study we notice that the topology of a network is much more crucial than the numerical 
values of the edges, in order to understand what unilateral control inputs should be selected. The topology enters 
in the unilateral controllability conditions through the left null space 



A( ). What determines Nr is not only the 
dimension of the null space μ0 but also in what extent 



A( )  is generated by roots or dilations, i.e. the parameter 
d. The results we achieved with our algorithm often meet the lower bound Nr ≥ μ0 + d, and the relative cost of 
unilateral controllability, η, is well explained by the ratio d/μ0, see Fig. 6(b,d).

As a by-product, we obtain a valid topological interpretation also for (unrestricted) controllability. In struc-
tural controllability it is known that roots and dilations of the network can be directly mapped to the choice of 
certain nodes as driver nodes. Algebraically these properties relate to the dimension of the null space, μ0, and 
μ0 almost completely determines Nu (see Fig. 6(a) for the real-world networks and Fig. S6 for Erdős–Rényi and 
directed scale free networks). Since, as already mentioned, the dimension of the null space does not depend 
on the numerical entries of A, the same Nu obtained through structural controllability is obtained generically 
through random edge weights assignments7. Notice that the specific continuous probability distribution from 
which the edge weights are drawn is irrelevant for our conclusion (i.e. non-zero eigenvalues remain simple also 
if we change distribution model29). This implies that if for instance we replace the normal distributions used here 
with uniform distributions, we can obtain networks with nonnegative edge weights, a more realistic network 
model for some applicative contexts. Our results apply unchanged also in this case.

An intrinsic limitation of the conditions developed in this paper (as well as of other approaches like structural 
controllability) is that the dynamics of the network is assumed to be linear. Even when the linear dynamics is the 
result of a linearization around an equilibrium point xo, in order to preserve the unidirectionality of our controls 
we have to assume that the nominal value of the input at the equilibrium point is uo = 0. In other words, extended 
linearizations around a pair (xo, uo) in which uo ≠ 0 lead to loss of unilaterality of the inputs when computed 
around uo. It is worth pointing out, however, that for complex networks considering an equilibrium point which 
is a function of a continuously applied input is an unlikely situation for most of the classes of networks considered 
in this study (a biological network can function also without a drug, traffic can flow also without cross lights or 
tolls, etc.).

The binary (yes/no) question of controllability has several shortcomings. On the one hand it can be argued 
that controllability is an unnecessarily ambitious goal32. In many applications it is enough to control a subset of 
the nodes, i.e. achieve controllability in a subspace of n. On the other hand, a network that is controllable accord-
ing to the mathematical definition is not necessarily controllable in practice. It could for instance be the case that 
almost infinite levels of energy are required to reach certain states33–36. Different metrics for the control effort are 
suggested in the literature. When control inputs are unrestricted, these are often based on the controllability 
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gramian. However, with constrained inputs the problem becomes significantly more difficult as the least energy 
path may violate unilaterality. Even for small-scale control systems systematic solutions are almost impossible to 
compute37, 38.
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