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Topological Quantum Phase 
Transition and Local Topological 
Order in a Strongly Interacting 
Light-Matter System
Sujit Sarkar

An attempt is made to understand the topological quantum phase transition, emergence of relativistic 
modes and local topological order of light in a strongly interacting light-matter system. We study 
this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition 
occurs with massless excitation only for the finite detuning process. We present a few results based 
on the exact analytical calculations along with the physical explanations. We observe the emergence 
of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode 
during the topological quantum phase transition and Dirac fermion mode for the non-topological state. 
Finally, we study the quantized Berry phase (topological order) and its connection to the topological 
number (winding number).

To get a better understanding of quantum many-body systems, which show topological properties, one has to 
focus on the studies of non-local order parameter instead of conventional concept of symmetry breaking, i.e., the 
local order parameter description of the system. States with non-local order parameter could be called topologi-
cally ordered. The term “topological” implies the existence of a bulk invariant, which generally represented by an 
integer that differentiates between the phases of matter having the same symmetry1, 2. The generalized concept of 
topological numbers such as Chern number and winding number depends on the dimensionality of the system 
for a bulk characterization based on the concept of topological order1, 2.

The concept and existence of Majorana fermion mode is one of the most advanced research area in the quan-
tum condensed matter physics for studying the topological properties of matter. Majorana introduced a special 
kind of fermions which are their own antiparticles3–5. In the last decade, physics of topological state of matter 
through the analysis of Majorana mode, come to the focus of quantum many body condensed matter physics 
research6–29. The physics of p-wave pairing in a condensed matter many body system has been considered as the 
prototype system for investigating the physics of Majorana fermion zero mode which is localized at the both ends 
of the system1.

In the strongly correlated regime of interacting light matter physics, it is possible to generate an effective 
strong repulsion between the photons, and from this study, one can understand and quantum simulate different 
interesting physical properties of strongly correlated quantum condensed matter many body system.

In quantum simulation, one’s aim is to simulate a quantum system using a controllable laboratory system that 
underlines the same mathematical models. Therefore, it is possible to simulate a quantum system that can neither 
be efficiently simulated on a classical system nor easily be accessed experimentally30–32.

Interacting light-matter system is also a very good platform to simulate different quantum many-body physics 
phenomena. Several interesting phenomena like fermionic behavior of photons, driven dissipative Mott insula-
tor, Tonk-Girardeau gas, fractional quantum Hall like state and the physics of cavity QED lattice and quantum 
simulation of many complicated quantum many-body system have found place in the literature of interacting 
light-matter physics30–39.

The recent experimental success in engineering, a strong interaction between the photons and the atoms in 
high quality micro-cavities opens up the possibility to use the light matter system as quantum simulators for 
many body physics. Many interesting results are coming out to understand the complicated quantum many-body 
system34–39.
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The authors of ref. 40 have proposed a model for a one dimensional array of nonlinear cavities where they have 
quantum simulated p-wave pairing effectively arising from the interplay between the strong on-site interaction 
and two-photon parametric driving. Therefore, this model may have ingredient for the existence of topological 
properties. The authors have tried to quantum simulate the Majorana like modes for this one-dimensional array 
of nonlinear cavities, but the detail study of the topological properties and emergence of different relativistic 
modes have not addressed there. The authors of ref. 41 have studied the non-equilibrium steady state of the driven 
dissipative version of this model40. We will also use the same model Hamiltonian for the present study but in a 
different context.

Motivations of this study
The present study has three motivations.

First motivation.  Here we will do the detail study of the topological state and also topological quantum 
phase transition of the interacting light-matter physics in an array of nonlinear cavities through the topological 
invariant number. This motivation arises for the following reasons.

Topological quantum phase transition describes with the topologically invariant number while the quantum 
phase transition describes by order parameter42, 43. Topological number changes by an integer number during 
the topological quantum phase transition from topological state to the non-topological state, which is related to 
the appearance of Majorana zero modes localized at the edge of the system1, 5. This detailed study based on exact 
calculations too is absent in the previous literature of light-matter physics system30–41.

Second motivation.  We would like to find out the emergence of different relativistic modes (massive 
Majorana fermion mode, massless Majorana-Weyl fermion mode and massless Dirac fermion mode), for this 
interacting light-matter physics in a nonlinear cavities array, based on the exact solutions. This motivation arises 
due to the following reasons:

The fundamental constituent of condensed matter quantum many-body system is invariably the electron 
which carries charge and it has antiparticle. Therefore, to find the Majorana particle in this system, it will appear 
as a emergent particle. We will prove the emergence of Majorana and Majorana-Weyl collective modes in this 
strongly correlated light-matter system in a nonlinear cavity array.

To the best of our knowledge, this is the first study in the entire literature30–41 of interacting light-matter system 
to find the emergence of different relativistic modes.

Third motivation.  Here, we find an equivalence between the topological invariant number and the local 
topological order for this system. This motivation arises due to the following reasons:

The author of ref. 44 has used the concept of the quantized Berry phase to define a local topological order 
parameter for gapped quantum liquid system which do not require any translation symmetry. The author 
has assumed that the Hamiltonian has anti-unitary symmetry. The ground state is gapped and unique. The 
Hamiltonian of the present problem fulfils all the criteria to study the topological properties of the system in 
terms of quantized Berry phase.

But in the literature of interacting light-matter system, there are no studies so far of quantized geometric 
phase as a local topological order for characterizing the topological state of the system30–41 and its relation to the 
topological number.

Model Hamiltonian and basic physical aspects
The model Hamiltonian allows for tunable coupling and nonlinearity. This system consist of N optical cavities 
coupled through nearest-neighbor (NN) photon tunneling across the one dimensional chain. In this system, each 
cavity exhibits a large optical nonlinearity and a single mode which behave as a Wannier function localized at the 
center of each site. Photon tunneling occurs due to the finite spatial overlap between NN Wannier modes. Finally, 
the system Hamiltonian takes the following form40:
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where †b b( )i i  are annihilation (creation) operators associated with the i-th cavity of the chain with cavity frequency 
ωc, U is the strength of the on-site photon-photon repulsion due to the large optical nonlinearities and J denotes 
the photon tunneling amplitude of photon between NN site. The photon tunneling occurs owing to the 
non-vanishing overlap of Wannier modes between the NN sites. In the strong interaction regime, the energy cost 
for adding any extra photon is higher than all relevant energy scale in the system. Therefore, in each site of the 
lattice, the number of photon is either 0 or 1, i.e., the photon shows the spinless fermionic behavior.

The authors of ref. 40 have mapped such a system to a spin model. They have proposed the configuration 
which allows the interactions between the spins and the transverse field. One of the most important ingredients 
of this model Hamiltonian is the emergence of p-wave pairing and optical version of the Kitaev chain, which we 
will discuss in the next sections.

The emergence of effective p-wave pairing for this system.  The detail derivation of the emergence 
of effective p-wave pairing has presented in ref. 40. Here, we mention it very briefly for the completeness of the 
study. The authors of ref. 40 have introduced parametric pumps which inject pairs of photons into the system 
through nonlinear optical process where these pumps drive the system locally through the inter-cavity field. This 
cavity field, consists of a superposition of two neighboring Wannier modes.
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In the strongly correlated regime, the photons are likely to be emitted from the NN cavity. The effective drive 
Hamiltonian40 is

∑= − ∆ + .ω φ
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where ∆ = ∆ φei , where Δ and φ are the amplitude and phase of the parametric pump and ωp is the frequency. 
Physically, the above Hamiltonian describes the coherent exchange of p-wave paired photons between the system 
and pump field. The effective p-wave pairing arises from the interplay between the parametric pumping and 
strong on-site photon-photon repulsion. In the strong interaction regime, where the parametric pumps are much 
weaker than the on-site photon-photon repulsion, the second process is strongly favored and the p-wave is effec-
tively obtained. The authors have determined the amplitude of |Δ| by the overlap of the Wannier modes in a 
similar way as the tunneling amplitude, J40. Therefore, one can expect that one reaches a regime where the magni-
tude of |Δ| and J are of the same order. We will explore this limit explicitly in the study of topological quantum 
phase transition and also to find the exact solution for winding number.

Optical version of Kitaev chain.  Here we derive the optical version of Kitaev’s chain starting from the 
Hamiltonian H(=H0 + Hdrive) for the strongly correlated regime of the system ∆U J( , ).

In the hard core photon limit, one can write the photonic operators as =b Pb Pi i  and = 

† †b b( )i i , where P is the 
projection operator for the single photon occupancy. For this case the drive Hamiltonian reduce to
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One can consider this hard-core photon as spin-1/2 particles and express the photon operators as a Pauli 
matrix, σ =−

b2i i and σ σ= −† †( )i i  and their fermionic nature can be unveiled by mapping the spin-1/2 particle to 
the spinless fermions through the Jordan-Wigner transformations. The analytical relation between the spinless 
fermion operator and Pauli spin matrices in Jordan-Wigner transformation is σ σ= Π −=

− −( )a ( )i j
i

j
z

i
1
2 1

1 . One can 
omit the explicit time dependence by a transformation to a rotating frame of frequency ωp

40, 41. The total 
Hamiltonian, H = H0 + Hdrive, reduce to following form:

∑ ∑ ∑µ= − + . + ∆ + . − .φ

=

−

=

−

+
=

† †H J a a h c e a a h c a a( ) ( )
(3)i

N

i i
i

N
i

i i
i

N

i i1
1

1

1

1

1
1

This is the optical version of the Kitaev’s chain for this model Hamiltonian. Here, †a a( )i i  is the annihilation(cre-
ation) spinless fermion operators, which represent the physics of fermionized photon. Here, cavity frequency, ωc 
playing the role of Fermi energy and the detuning plays the role of chemical potential (μ = ωp − ωc, where ωp is the 
frequency of external two photon drive). We show explicitly that the phase of this model Hamiltonian has no 
effect on the topological properties, we mention it explicitly in the “Method” section. In the next section, we 
derive the topological invariant number based on this optical Kitaev’s Hamiltonian (H1), where there is no further 
φ term in H1.

Results
Topological number: A winding number study.  Here, we explicitly show that the topological quantum 
phase transition of the system occurs through a change of topological invariant quantity, i.e., the winding number.

One can write the model Hamiltonian H1 (Eq. 3), in the momentum space, in the following form
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where  µ= − −J k2 cosk , ∆ = ∆k k( ) 2 sin . ψ = −
†a a( , )k k k

T . This Hamiltonian satisfies the condition of 
anti-unitary particle-hole symmetry, = −−Ch k C h k( ) ( )1 , where C is the anti-unitary operator. One can also write 
σ σ = − −Kh k K h k( ) ( )x x , where K is the complex conjugation operator17. This model Hamiltonian has also another 
symmetry σ σ = −h k h k( ) ( )x x . This model Hamiltonian is the one dimensional, Z type topological, BdG system. 
The Bogoliubov quasi-particle operator diagonalize the Hamiltonian. Finally, the Hamiltonian reduces to 

β β= ∑ †H k E( ) k k k k, where βk is the Bogoliubov quasi-particle operator. The detail presentation of this 
quasi-particle operator and the excitation spectrum are relegated to the “Method” section.

One can also write the Hamiltonian as,

χ τ= .���h k k( ) ( ) , (5)

where τ  are Pauli matrices which act in the particle-hole basis, and χ =k( ) 0x , χ = ∆k k( ) 2 siny  and 
χ µ= − −k J k( ) 2 cosz . It is convenient to define this topological invariant quantity using the Anderson 
pseudo-spin approach45.
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χ µ= ∆ + − .��� ��k k y z( ) ( ) ( ) (6)k

It is very clear from the analytical expression that the pseudo spin defined in the y − z plane,
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Here the momentum states with periodic boundary condition for a ring T(1) and the unit value χ̂ k( ) exists on a 
unit circle S(1) in the y–z plane. Therefore, θ(k) is a mapping. ⇒S T(1) (1) and the topological invariant is simply 
the fundamental group of the mapping which is just the integer winding number. It is only an integer number 
and,therefore, can not vary with smooth deformation of the Hamiltonian as long as the quasi-particle gap remains 
finite. At the point of topological phase transition the winding number changes discontinuously.

The analytical expression for winding number (W) is
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This winding number describes the total number of that unit vector χ→ k( ) travels counter-clockwise around the 
origin in the y–z plane. There are some other representation29 for the calculation of winding number but that too 
finally gives the same result as the Anderson pseudo-spin approach45. We will present the other representation 
and the equivalence between them in the “Method” section.

Topological quantum phase transition.  The topological quantum phase transition is characterized by 
the following observations: A discontinuity in the topological number (winding number) and massless excitation 
at the point of topological quantum phase transition, which implies that system has diverging length scale. We 
calculate the topological number based on the study of winding number (Eq. 9).

In Fig. 1, we present the results of the variation of winding number (W) with J. It is clear from our study that 
there is topological quantum phase transition from non-topological quantum state (W = 0) to topological state 
(W = 1). We study for different values of chemical potentials, and we observe that topological quantum phase 

Figure 1.  The variation of winding number (W) with J for different values of μ. Different figures are for 
different values of μ, red (μ = 0), blue (μ = 1.0), magenta (μ = 1.5) and black (μ = 1.8), Δ = 1.
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transition occurs at J = μ/2 for a fixed value of Δ (here Δ = 1). But at μ = 0, the system is always in the topolog-
ical state, and there is no topological quantum phase transition. We also observe that the change of the winding 
number is unity during the topological quantum phase transition and that there is no further change of winding 
number. For such a situation only one Majorana zero mode appears at both the ends of this optical Kitaev chain. 
In the previous study40, the authors of this proposed model only predict appearance of Majorana fermions at the 
edge of the chain for Δ = J > 0 and μ = 0.

In Fig. 2, we study the variation of W with μ. These figures are for the different values of J but for Δ = 1. We 
observe that topological quantum phase transition occurs for μ = 2J. It is also consistent with the result of Fig. 1, 
which is a check for the consistency of the study of topological number. The behaviour of topological phase tran-
sition is the same for narrow and wide band, and it always obey the same relation between the μ and J, i.e., μ = 2J.

Figure 3 shows the variation of θd
dk

k  with k for two values of chemical potentials (μ = 0, 1). It is clear from our 
study for μ = 0 (W = 1, magenta curve), there is no variation of θd

dk
k  with k and it merges in a single line with the 

value unity. Therefore, the system is always in the topological state for equal values of Δ = J with no topological 
quantum phase transition. But for the finite values of the chemical potential (µ ≠ 0), θd

dk
k , shows the variation with 

k. The behavior for different values of Δ = J are different. Therefore for this limit, system is not always in the top-
ological state but it also shows the topological quantum phase transition. For this situation, the pseudo-spin 
vector rotates once in the y–z plane around the origin.

We would like to explain this result more physically: The model Hamiltonian parameters Δ and J are equal, 
and also µ ≠ 0, i.e., the finite detuning between the cavity frequency and the parametric pumping leads the top-
ological quantum phase transition. But in the resonance condition, i.e., when ωp = ωc, the system is always in the 
topological state. This limit of the parameter space is physically feasible as discussed in ref. 40. Therefore depend-
ing on the difference of the values of ωp and ωc, the system is either in a topological state or in a non-topological 
state. We will also discuss this point again during the study of exact solutions.

The authors of ref. 28 have studied the topological quantum phase transition for an extended Kitaev’s model 
and Su-Schrieffer and Higger model based on the topological invariant quantity. They have found a few interest-
ing results. But in the present study, we find the topological state and the topological quantum phase transition of 
the interacting light-matter physics for nonlinear cavity arrays through the study of topological invariant quantity 
of optical Kitaev’s chain.

Our study and results, present a new and significant advance in the study of topological state and the topolog-
ical quantum phase transition for strongly interacting light-matter system in a nonlinear cavities array, which is 
absent in the literature of light-matter physics30–41.

Figure 2.  The variation of winding number (W) with μ for different values of J. Different figures are for the 
different values of J, red (J = 0.5), blue (J = 1), magenta (J = 1.5) and black (J = 1.8), Δ = 1.
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Results based on exact solutions and physical explanation.  The analytical expressions of winding 
number is not solvable exactly for the whole range of parameter space. But one can find the exact solution for 
a few regime of the parameter space. We use those exact solutions explicitly during the further analysis of this 
study. From this exact solution, we show that the excitations at the topological quantum phase transition is mass-
less Majorana-Weyl fermion mode and,therefore, the system is in the quantum critical state at this topological 
quantum phase transition point.

A few exact calculations based results for winding number study.  We find a few exact solutions for 
our model Hamiltonian in different regime of parameter space and also discuss the related physics.

First, we consider the situation, when Δ = μ = J. In this case, the analytical expression for topological number 
become, ∫= =

π π

π

−
+
+

W dk 1k
k

1 2 cos
5 4cos

. For this case, the system is in the topological state and the result is also con-
sistent with the study of Figs 1 and 2, where we predict that topological quantum phase transition occurs when 
μ = 2J. Therefore, for μ = J, the system is in the topological state without any topological quantum phase 
transition.

Secondly, we consider the case when μ = 0, but Δ and J are finite. The analytical expression for winding num-
ber become ∫=

π π

π

−
W dk1

2
. If Δ = J then the winding number become unity. For this case, system is always in the 

topological state. This exact result is consistent with the study of Fig. 3 for μ = 0 curve.
Thirdly, we consider the situation when Δ is very small but finite and J is also finite, i.e, = ∼∆c 0

J
. If we 

expand the  integrand up to  the  order  c 5 then the  express ion for  winding number  is , 
∫= + − + − +

π π

π

−
W ck c c k c c c k dk[ (1/3)( ) (1/15)(2 5 3 ) ]1

2
3 3 3 5 5 . This integral is odd function of k as a result 

of which the winding number is zero and the system is in the non-topological state. This exact result is also con-
sistent with physically.

Finally, we consider the case when Δ is finite, μ = Δ/2 and J = Δ/2. The analytical expression for winding 
number become ∫= =

π π

π

−
+ .

. + +
W dk 1k

k k
1 1 0 5cos

(0 5 cos ) 4sin2 2 . This exact result implies that the system is in the topolog-
ical state and consistent with the result of Figs 1 and 2. The main message of this exact solution is that the condi-
tion for the topological state (μ = J) remains for any values of Δ s as far as Δ is finite. We use these exact solutions 
based results in the next section to study the emergence of different relativistic modes of the system.

This exact solution based calculations and results for the topological properties of light are absent in the entire 
literature of interacting light matter system30–41.

Dirac equation for massive Majorana fermion mode and massless Majorana-Weyl mode.  The 
topological properties of the system motivates us for the searching of different kind of relativistic modes as an 
emergent property of the Hamiltonian. Here, we present the results and the physical explanation of Dirac equa-
tion for Majorana fermion mode for the system. At first we present the effective Hamiltonian of the system in the 
strongly correlated regime ( ωU J, c).

We can write the Hamiltonian as

∑= − + . + .†H J b b h c h( )
(10)j

j j j

The on-site Hamiltonian hj,

ω= +† † †h b b Ub b b b , (11)j c j j j j j j

Figure 3.  The variation of θd
dk

k  with k. The curve for the magenta color (W = 1) is for μ = 0 and the other curves 
are for μ = 1. Here we consider Δ = J. Different curves are for the different values of (Δ = J). Red (0.5), blue (1), 
yellow (1.5) and black (1.8).
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where ωc is the cavity frequency and U is the on-site photon-photon repulsion.
As we have already mentioned in the previous paragraphs that near to the resonance condition (ωp ~ ωc) under 

the presence of two photon drive Δ cos (2ωpt) and also in large U. For this conditions the two photon pump is 
only resonant for the creation of pairs of photons on NN cavities. In the limit of fermionized photonic mode, one 
can consider each cavity mode as a spin-1/2 particle as we have done in the previous section during the derivation 
of Kitaev’s model. Finally following the ref. 41, we write the Hamiltonian in Pauli spin operators as,
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We observe the explicit time dependence in the above Hamiltonian. One can omit that explicit time dependence 
by a transformation to a rotating frame,
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p c . After a few steps of calculations, we can write the above Hamiltonian in the form of Ising 
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The above Hamiltonian reduced to the transverse Ising model when Δ = J, which is physical limit ref. 40. We 
obtain from the exact solutions that the system is in the topological state for the situation Δ = J and μ = 0 and also 
from the study of winding number that the system is in the topological state as far as μ < 2J for finite Δ. Therefore, 
the Hamiltonian H2 in this limit corresponds to the topological state.

∑ σ σ σ= − 
 + 

.+H J g
(15)j

x
j
z

j
z

2 1

Now we would like to quantum simulate Majorana fermion mode for this system through the derivation for 
Dirac equation of Majorana fermion mode. For that purpose, we introduce the order and disorder operators 
(please see the “Method” section for explicit relations). These operators are defining the sites of the lattice (we 
define the operator between the NN site of the original lattice). Our calculations are as exact as possible.

Here, we define the Dirac spinor, χ σ µ= +n n n( ) ( ) ( 1/2)z z1  and χ σ µ= −n n n( ) ( ) ( 1/2)z z2 , where σs and μs are 
the order and disorder respectively. These two fields, χ n( )1  and χ n( )2  satisfy, the following relations, 
χ χ δ=n n{ ( 1), ( 2)} 2 n n1 2 1, 2, and χ χ=†

1,2 1,2.
One can write down the final equation in the following form,

γ γ χ
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The detailed derivation is relegated to the “Method” section.
One can also write the above Majorana equation in a compact form:

γ χ∂ − =µ
µ

i m x( ) ( ) 0, (17)

where γ =
 ( )i

i
0

0
0 , γ =

−
 ( )i

i
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0
3 , m = 1 − g.

Therefore, we prove that the spinor field satisfies the Majorana condition of Majorana fermion mode and also 
the γ


 matrices are imaginary. The massless Dirac equation for this system is

γ φ∂ = .µ
µ

i x( ) ( ) 0 (18)

φ(x), we term this massless mode as Majorana-Weyl fermion mode. This massless mode appears for μ = 2J. At 
this point where system shows the topological quantum phase transition through a change of unity of topological 
number, which corresponds to the appearance Majorana zero modes at both the ends of the array1, 5. These gapless 
edge mode has interesting properties that they are not the same chiral fermion mode that propagate on the edge 
of integer Hall quantum Hall effect15. These are very special because the fermion are chiral and they are also 
Majorana modes1. It can be shown using the Clifford algebra representation, that the condition for the appearance 
of Majorana-Weyl fermion mode appears for only in the space-time dimension (8k + 2), = ….k 0, 1, 2 1. Our 
present problem is (1 + 1) dimension and Majorana-Weyl fermion mode satisfice the condition for (k = 0) the 
appearance in this system. As the Majorana-Weyl fermion mode appears, the system shows the transition from 
the non-topological state (W = 0) to the topological state (W = 1).

The massive Majorana fermion mode (χ x( )) and the massless Majorana-Weyl fermion mode (φ(x)) are differ-
ent. The different wave functions for the topological and non-topological states of the system also satisfy the basic 
criteria that the topological properties of the system are hidden in the properties of ground state wave function2.
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Our study shows that the excitations at the topological quantum phase transition is massless and, therefore the 
system is in the quantum critical state. Hence, the present study reveals that the quantum criticality also exists for 
the topological quantum phase transition with the emergence of massless Majorana-Weyl fermion mode.

Now we interpret the results from the perspective of interacting light-matter physics. It is clear from our 
study that mass of the fermionic collective modes is positive for the topological state and negative for the 
non-topological state. This positive and negative mass of the collective fermionic excitations depend on the dif-
ference of ωp and ωc. When this difference is positive and greater than 2J, the collective excitation is like to the 
Dirac fermion mode, i.e., the system is in non-topological state, otherwise the mass of the collective mode of the 
system is always positive and the system is in topological state. When the difference between the two frequencies 
is 2J at that point, the collective excitation of the system is the Majorana-Weyl fermion mode.

Dirac equation for non-topological state and physical explanation.  For the Hamiltonian H2, in the limit of Δ = 0 
and g = 0, the Hamiltonian H2 reduces to

∑ σ σ= − + . .+
−†H J h c( )

(19)j
j j3 1

After the Jordan-Wigner transformation and the Abelian Bosonization study one can write the above Hamiltonian 
as46

∫∑ π
ψ ψ ψ ψ= − .

−Λ

Λ † †H dk kv k k k k
2

( )( ( ) ( ) ( ) ( ))
(20)s

F s R s R s L s L3 , , , ,

Here we use  = kvk F near the Fermi points and ψ ψ ψ=† † †x x x( ) ( ( ), ( ))s s R s L, , . We can write the above Hamiltonian 
in the following form of Dirac equation without any mass term.

∫ ψ γ ψ= ∂H J dx i2 ( ) (21)x1

and ψ ψ ψ=† † †x( ) ( , )R L , ψ ψ ψ=† † †x( ) ( , )L R , ∫ψ ψ=
π

x k e( ) ( )s
dk

s
ikx

2
. It is customary to introduce the Dirac matrices 

for this equation.
The γ matrices are the following. γ = ( )0 1

1 0
0 , γ σ= − = −( )i 0 1

1 0y
1 , γ γ γ σ= = =

−( )1 0
0 1z

5
0 1 , where ψR(x) 

and ψL(x) are the fermionic field for the right and left movers electron. Here, ψR(x) and ψL(x) are the two chirali-
ties each of them is an independent fermionic mode. Although the Dirac equation is massless, still there is no 
Weyl fermion mode in the system for the following reasons:

The rank of a Dirac spinor depends on the dimensionality. In space-time dimensions d = 2n and d = 2n + 1 the 
Dirac fermion is a complex spinor with 2n components (i.e., the form changes every two space-time dimensions). 
In dimensions d = 4 and higher, it is possible to reduce the Dirac equation to a Weyl equation for two massless 
spinors of n components. In d = 1 + 1, this is not possible and there are no Weyl spinors in 1 + 1 dimensions14.

For non-zero values of g introduce a term like, ψ ψ ψ ψ+† †
R R L L. This term will only modify the value of kF, but 

the end result for Dirac equation will be the same. Therefore, the finite values of g do not introduce any mass term 
in the Hamiltonian in the Dirac equation.

Therefore, it reveals from the studies of above two sections that we quantum simulate different relativistic 
modes for interacting light-matter in a non-linear cavity QED arrays depending on the values of ωp and ωc.

To the best of our knowledge this is the first attempt for searching the relativistic modes with new and impor-
tant results in a strongly interacting light-matter physics in a nonlinear cavities array.

Study of quantized Berry phase with physical explanation.  Here, we present the study and results of 
quantized Berry phase of this model Hamiltonian system. At first, The author of ref. 44 has used the concept of the 
quantized Berry phase47 to define a local topological order parameter for gapped quantum liquid system which do 
not require any translation symmetry. The author has also considered the anti-unitary symmetric Hamiltonian 
with the gapped ground state.

Our model Hamiltonian fulfils all the criteria that the author of ref. 44 has proposed to study the quantized 
Berry phase. There are quite a few studes in the literature of quantum condensed matter physics for searching the 
topological state and properties of the system through the study of Zak phase48–63 but the interacting light matter 
physics has not been explored yet30–41.

To the best of our knowledge this is the first attempt with new and important results for a strongly interacting 
light-matter physics in a one-dimensional array of nonlinear cavities to study the quantized Berry phase and its 
relation to the topological quantum phase transition. Berry phase is a geometric phase of eigen state obtained 
when cyclically varying external parameters. One can write it analytically for the Hamiltonian H(R) as

∫γ = ∇ .n R i n R dR( ) ( ) (22)n
C

R

C is the closed loop, |n(R)〉 is the nth eigen vector in the parameter space of R.
The topological properties of one-dimensional solids are characterized by the so called Zak phase49. Basic defi-

nition of Zak phase is the following: The Berry’s phase picked up by a particle moving across the Brillouin zone. 
Here Brillouin zone is in the one dimension as treated by the Zak, and therefore, the natural choice for the cyclic 
parameter is the crystal momentum (k). The geometric phase in the momentum space is defined as
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∫γ = ∂
π

π

−
dk u i u , (23)n n k k n k, ,

where |un,k〉 is the Bloch states which are the eigen states of the nth band of the Hamiltonian. The ambiguity of 
the Zak phase problem has been solved by the Atala et al.55 by considering the difference of Zak phase between 
the states. This difference of Zak phase between the different states could be a proper topological number55. In 
our present study the difference of Zak phase between the topological state and the non-topological state is π and 
appears when the topological quantum phase transition occurs in the system. Therefore, in the present problem 
the quantized Zak phase correctly present the topological properties of the system.

The present system is the one dimensional Z type topological invariant system, and the system has the 
anti-unitary particle-hole symmetry to ensure that the curve C can only be in a great circle on the Bloch sphere48. 
This Zak phase expresses as γ = Ω C( )

2
, where C is the close loop that the Hamiltonian forms on the Bloch sphere 

when k varies from −π to π and Ω C( ) is the solid angle of the surface enclosed by the curve C. Therefore, the Zak 
phase is either π or 0. The analytical relation between the winding number, W, with the geometric phase is the 
following48.

γ π π= .W mod(2 ) (24)

We find the values of W either 1 or 0. Therefore, the corresponding Zak phase is π or 042, 48. The transition of γ 
from π to 0 occurs when the system shows the topological quantum phase transition from a topological state to 
non-topological state.

Figure 4 shows the variation of γ with J for different values of chemical potential. We observe that for μ = 0, 
the geometric phase of the system is always finite (π). For the other values of μ, we predict that geometric phase 
shows a sharp transition from the value π to 0 for J = μ/2. The behavior of quantized Zak phase is same for all 
finite values of Δ (here we consider Δ = 1).

In Fig. 5, we also study the behavior of geometric phase with μ for different values of J. We observe a transition 
of geometric phase from π to 0 when μ = 2J. This behavior of quantized Zak phase is consistent with the topolog-
ical quantum phase transition of the system. We would like to explain this result more physically, the model 
Hamiltonian parameters Δ and J are equal, and also µ ≠ 0, i.e., the finite detuning between the cavity frequency 
and the parametric pumping leads to the topological quantum phase transition. But for the resonance condition, 
i.e., when ωp = ωc system is in the always topological state. Therefore, depending on the difference of the values of 
ωp and ωc, system is either in topological state or in non-topological state. Therefore, we conclude that the basic 

Figure 4.  The variation of Zak phase (γ) with J for different values of μ. We study for the four different values of 
chemical potentials μ = 0(red), 1(blue), 1.5(magenta), 1.8(black), Δ = 1.
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topological properties of the system also find through the study of quantized Zak phase. Hence, we prove in our 
study the equivalence between the topological number and the local topological order for this system 
Hamiltonian. This study and results are entirely new in the literature of interacting light matter system30–41.

Experimental proposal and implementation.  There are quite a few proposals to detect the Majorana 
fermion mode in the previous studies6, 64, 65. But the authors of ref. 40 have proposed a very elegant process for the 
detection of Majorana alike fermion modes in optical Kitaev’s chain. The fermionized photons are intrinsically 
spinless and the pairing occurs between nearest-neighbour cavities only as we discuss in the previous section. The 
chemical potential (μ) can be changed very easily by tuning the resonance frequency of the individual cavities 
and the driving frequency ωp. The phase and amplitude of the superconducting order parameter can be achieved 
by regulating the phase and amplitude of the two photon parametric driving. The tunneling amplitude of photons 
can be regulated by introducing intermediate control device between the cavities. This level of control on the 
parameters is the key to overcoming difficulties faced by the other solid state systems-based proposals64, 65.

This optical detection scheme is simple, versatile and physically realizable but the photon loss from the cavity 
is unavoidable in this system and this limits the time-scale of the detection; i.e., the time scale should be much 
shorter than the time scale of photon life time (~

Γ
1 , where Γ is the cavity decay), for the observation of Majorana 

fermion mode.
Now we are interested to discuss the physics of Majorana fermion mode under this dissipation, in the 

Majorana fermion physics the parity breaking process is the most important one. All the parity breaking dissi-
pation channel can be considered as a single effective parity breaking channel40. We already express our model 
Hamiltonian as an optical Kitaev chain (Eq. 3), the open nature of this chain can be expressed by introducing an 
effective single-particle loss term in the dynamics40.

We try to understand the single particle losses using the Lindblad equation.

∑ρ ρ ρ ρ∂ = − + Γ


 −



.

=

† †i H b b b b[ , ] 1
2

{ , }
(25)t

i

N

i i i i1
1

where ρ is the density matrix of the system, H1 is the Hamiltonian (Eq. 3) and Γ is the effective single particle 
decay rate associated with single cavity. †b b( )i i  is the creation (annihilation) operator of dressed photon for each 
cavities. One can study the photon losses in the cavity QED lattice from Eq. 25. It reveals from our studies in the 
previous section that the system is in the topological states for 0 < μ < 2J. It is well known that for this situation an 
exponentially localized Majorana fermion mode exists on the both sides of the array with a length scale that 
increase with μ and diverges as μ approaches to 2J5. For a finite (small) length scale, in the topological state, these 

Figure 5.  The variation of Zak phase (γ) with μ for different values of J. We study four values of J = 0.5, 1, 1.5, 
1.8 for the colour red, blue, magenta and black respectively, Δ = 1.
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Majorana zero modes are weakly coupled and the levels of Majorana qubit that they form split in energy M  
(=  −ξe

L
, ξ is the localization length of zero energy Majorana fermion mode) which is non-zero and is a small quan-

tity much lesser than the energy gap of the optical Kitaev’s chain (Eg) (please see the “Method” section for the 
detailed analysis).

Now we follow the experimental proposal of the authors of ref. 40 because the model Hamiltonian of the pres-
ent study is the same as that used in ref. 40. Now we consider two extra nonlinear cavities, one at the left end (L) 
and the other at the right end (R). Both of these cavities have set up in the driving frequency ωp and a tunneling 
coupling (JL and JR are the tunneling coupling for the left and right cavity respectively.) which couple them to the 
optical Kitaev’s Hamiltonian, H1.

The low energy effective Hamiltonian in presence of the probe cavities is the following40:

 σ σ σ σ σ= − − .H J Jeff M M
z

L L
x

M
x

R M
x

R
x

Where σ σ σ σ= = Π −=ic c ( )M
z

N j
N

j
z x

N
x

1 2 1 1  and ΓL and ΓR are respectively the decay rate of the probe cavity for 
the left end and right end. JL and JR are the photon tunneling amplitude from the left cavity to Kitaev chain and 
from the right cavity to the Kitaev’s chain respectively. The physical interpretation of the above Hamiltonian is the 
following. The non-local Majorana qubit is formed by the localized Majorana modes. Majorana modes of the 
chain mediates a nonlocal coherent exchange of photons between the probe cavities. The authors have shown that 
under the assumption of the decay rate of probe cavities, i.e., Γ ∼ JL R L R M, ,   so that the spontaneous emission 
occurs on a time scale much larger than the 


∼( )tM

1

M
 over which correlations are generated. At that point, one 

finds a direct evidence of Majorana modes in the second order photon cross correlation between the light emitted 
from the two probe cavities. In numerical simulation of full optical Kitaev’s Hamiltonian coupled to the probe 
cavities shows signature of nonlocal photon bunching for the Majorana zero mode for small decay rate 
(Γ ∼ Γ L R M/  ), and this behavior is observed for small enough system size40.

Implementation.  Here we present the implementation of our experimental proposal to detect the Majorana 
fermion mode. The circuit QED (superconducting circuit based cavity QED) allows for the experimental reali-
zation with a sufficient control over dissipation to detect the Majorana fermion modes, i.e., the topological state 
of the system66, 67. As we have understood from our study of the topological properties of optical Kitaev’s chain 
that the presence of strong interaction between the light and matter and the weak photon loss are the two main 
ingredients to predict the evidence of topological state in circuit QED lattice. Both the criteria are satisfied in 
circuit QED. In circuit QED, fabrication and control is in the state of art66, 67 and at the same time one can do the 
quantum state engineering at the desired level.

The cavity QED system consists of a chain of capacitatively coupled identical microwave resonators which play 
the role of cavities. Each of the cavity has two superconducting transmon qubits which plays the role of artificial 
atoms66, 67. The transmon qubits are placed at an antinode of the intercavity field, the coupling strength between 
the cavity-qubit is λ ω α∼ b , where ωb is the bare-cavity resonance frequency and α is the fine structure con-
stant. The strength of the effective on-site interaction with lower polariton mode is λ= −U (2 2 ) . The second 
qubit is placed in between the NN cavities. The external microwave field with a frequency 2ωp drives the second 
qubit periodically which creates and annihilate pairs of photons of frequency ωc = ωb − λ. In the presence of large 
coupling strength between the cavity and qubit compared to the amplitude of parametric drive which only anni-
hilates and creates photon pairs in the NN cavities. Finally it creates an effective p-wave pairing.

In the circuit QED, one can estimate the parameter space as λ ω∼ . ∼ Γ0 1 10b
4 , where Γ is the decay rate of 

cavity photon mode. One can simulate this regime of parameter space through the quantum state engineering and 
also the inequality condition of parameter space λ∼ U J , ∆ Γ

. The first condition of inequality implies 
that system is in the strong coupling regime, where the photon is fermionized photon which finally leads to the 
optical version of Kitaev’s chain. If we adjust the detuning field (μ) between the cavities and the pump such that 
|μ| < 2J. At this quantum state of engineering the system is in the topological state with Majorana fermion mode 
with an energy splitting M that depends on J, |Δ|, |μ| and vanishes exponentially with system size L (please see 
the “Method” section for detail discussion). The second relation of the inequality determines the broadening of 
Majorana level. In order to exist the topological state, this broadening should be smaller than the energy levels 
splitting M  and also Eg. So that Majorana energy levels do not overlap with energy level of bulk. The system shows 
topological quantum phase transition (for |μ| < 2J) and the Majorana fermion modes collective excitation changes 
to Majorana-Weyl fermion mode excitations at the point |μ| = 2J and when |μ| > 2J the collective modes of the 
system changes to Dirac fermion mode. To do these quantum state engineering, the condition ΓM  is gener-
ally more restrictive than ΓEg . As far as the condition J, ∆ Γ

 is conserved, all these condition satisfy by 
tuning μ well inside the topological state. Therefore, this condition is the sufficient condition for the detection of 
the topological state of the system up to the tuning of μ. But when this inequality is violated, the collective excita-
tion of the system is Dirac like mode.

Discussions
We have found the topological state and topological quantum phase transition in this system for different regime 
of parameter space. The topological quantum phase transition occurs only for finite detuning process. We have 
presented a few results based on the exact solutions along with physical explanation. We have predicted the 
quantized Zak phase which corresponds to the local topological order. We also prove the equivalence between 
the topological number and the local topological order from our study. We have also presented the emergence of 
massive Majorana fermion mode, massless Majorana-Weyl fermion mode and the massless Dirac fermion mode 
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for the different quantum states of this system based on the exact solution. Finally we have presented the experi-
mental proposal and implementation.

Methods
This section consists of five parts. First, we show explicitly that the phase of the parametric pumping has no effect 
in the topological properties of the system. In the second, we present the Bogoliubov transformation and the 
excitation spectrum of the system. In the third one, we present the different representation of winding number 
calculations and their equivalence to the winding number calculation of Anderson pseudo spin approach45. In the 
fourth one, we present a detailed derivation of emergence of Dirac equation for Majorana fermion mode and 
massless Dirac equation for non-topological state. Finally, we present, the analytical expression for M and Eg with 
necessary discussions.

Phase independent behavior of Hamiltonian for the topological study.  One can also write the 
above Hamiltonian in the Majorana basis as follows:

∑

∑ γ γ

= − + +

= − .

φ φ φ φ

=

−
−

+
−

+

=

−

+

† †H J e a e a e a e a

iJ

( )( )

2
(26)

i

N
i

i
i

i
i

i
i

i

i

N

i B i A

1

1
/2 /2 /2

1
/2

1

1

1

, 1,

γ = +φ φ− †e a e a( )i B
i

i
i

i,
1
2

/2 /2 , γ = −φ φ− †e a e a( )i A i
i

i
i

i,
1
2

/2 /2 , γi,B and γi,A are the Majorana operators. Therefore, it 
is clear from the above Hamiltonian that in the basis of Majorana fermion the phase φ has no effect in the topo-
logical state of the system.

Bogoliubov transformation and quasiparticle spectrum.  One can diagonalize the Hamiltonian by 
using the Bogoliubov transformation.

The Bogoliubov quasi-particle operators is β θ θ= + −
†c i ccos( /2) sin( /2)k k k k k.

The analytical expression for cos θk and sin θk are θ = µ− −cos( )k
J k

E
2 cos

k
, and θ = ∆sin( )k

k
E

2 sin

k
 respectively, 

where µ= + + ∆E J k k( 2 cos ) 4 sink
2 2 2 . The Bogoliubov quasiparticle operator diagonalize the Hamiltonian. 

Finally, the Hamiltonian reduces to β β= ∑ †H k E( ) k k k k.

Different representation of winding number and their equivalence.  One can find the analytical 
expression for winding number calculations by the following analytical expression (Eq. 27). Finally we prove that 
this analytical expression is the same as that of winding number calculation of Anderson pseudo-spin approach45.

The effective Hamiltonian of the system is χ τ= .���H k k( ) ( ) . The other representation of topological invariant 
for χ k( ) is then expressed by ref. 29.

∫π χ

χ
=

∂

∂
.αβ

α

β

ˆ

ˆ
W

k
dk1

4
1

(27)
2

Here α and β are y and z two components and αβ is the antisymmetric tensor. For the present problem, χ =k( ) 0x , 
χ θ= = ∆k k( ) sin 2 siny k , χ θ µ= = − −k J k( ) cos 2 cosz k .

One can write, Eq. 26, in the following from: = −W W WA B
2 2 2 . ∫=







π

π

π χ

δχ

δ−
WA dk

k2 4
1

y

z , ∫=






π

π

π χ

δχ

δ−
WB dk

k2 4
1

z

y . 

Finally we get,

∫π
µ

µ
= − =

∆ +
+ + ∆π

π

−
W W J k

J k k
dk1

4
2 (2 cos )

( 2 cos ) 4 sin (28)
A B

2 2 2 2 2

∫π
µ

µ
= − =

∆ +
+ + ∆π

π

−
W W W J k

J k k
dk1

2
2 (2 cos )

( 2 cos ) 4 sin (29)
A B

2 2 2 2 2 2

This analytical expression for W2 is the same as W (Eq. 9). One can also prove the equivalence in the following 
way: We use the analytical expression χ k( )y  and χ k( )z  and use Eq. 26, and we then finally end up with the Eq. 9.

∫ ∫π θ
θ

θ
θ

θ
π

θ
=


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+



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
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
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2 (30)k

k
k

k
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2

The above equation of W2 is the same as W. Therefore, we prove this equivalence between the different representa-
tion of winding number.

Derivation Dirac equation for massive Majorana fermion mode.  Our starting Hamiltonian is H2 
(Eq. 14). We have found from the exact solution that for Δ = J > 0 and μ = 0, system is in the topological state, and 
we have also found from the study of winding number, that this topological state continue for μ < 2J.

In the limit of topological state Δ = J and g = 0. The Hamiltonian H2 reduces to in a rotated spin basis as,
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∑ σ σ σ= − 
 + 

.+H J g
(31)j

x
j
z

j
z

2 1

Here we define the Dirac spinor, χ σ µ= +n n n( ) ( ) ( 1/2)z z1  and χ σ µ= −n n n( ) ( ) ( 1/2)z z2 .
These two fields, χ n( )1  and χ n( )2  satisfy the following relations, χ χ δ=n n{ ( 1), ( 2)} 2 n n1 2 1, 2. At the same time, 

χ χ=† n n( ) ( )1,2 1,2  which can be shown very easily by using the relation between order and disorder operator which 
are given below.

The equation of motion for the σz(n) is the following:

σ
τ

σ σ σ
∂

∂
= =

n
H n n n

( )
[ , ( )] ( ) ( ) (32)

z
z x z2

The equation of motion for μz(n + 1/2) is the following:
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Now we use the properties of the σ and μ operators to derive the equation of motion for the Majorana fields 
χ n( )1  and χ n( )2 .
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Similarly the equations of motion for χ n( )2  are
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After a little bit of calculations and using the relation between the disorder operators, we finally arrive the equa-
tion of motion of χ n( )2  as,
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χ χ
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( ) ( 1) (37)
2

1 1

Now we restore the lattice for that purpose, by doing the following transformation: α± → ±r r( 1) ( ). Finally 
one can write the eqs (34) and (36) as
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Finally, we write it in a compact form, γ γ χ+ + =∂
∂

∂
∂( )m x( ) 0

t r
0 3 . where χ χ χ=† ( , )1 2  and =

α
−m g1 , 

γ = ( )0 1
1 0

0 , γ =
−( )1 0

0 1
3 .

We use the following relation between the order (σ operators) and disorder (μ operators) during the deriva-
tion of Dirac equation of massive Majorana fermion mode68.

µ µ= =1z x
2 2 ,  µ µ σ− + =n n n( 1/2) ( 1/2) ( )z z x .  µ σ σ+ = +n n n( 1/2) ( ) ( 1)x z z ,  µ σ+ = Π =n j( 1/2) ( )z j

n
x1 . 

σ µ= Π +=
−n j( ) ( 1/2)z j

n
x0

1 ,  µ µ δ+ ′ + =
′

n n[ ( 1/2), ( 1/2)] 2x z n n,  µ µ+ ′ + =n n[ ( 1/2), ( 1/2)] 0z z , µ +n[ ( 1/2),z  
σ ′ =n( )] 0x . It is clear from the above analytical expression of μz(n + 1/2) that it is a kink operator, and it intro-
duces the disorder in the system.

Now, we present the massless Majorana-Weyl equation as

γ γ φ




∂
∂

+
∂
∂



 =

t r
x( ) 0,

(40)
0 3

where φ(x) is the solution for massless Majorana-Weyl fermion. The important point to be noted that Weyl fer-
mion occurs at m = 0 = 1 − g that implies the μ = 2J, where the topological quantum phase transition occurs.
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Analytical expression for M and Eg and necessary discussions.  Here we follow the seminal paper of Kitaev’s5. The 

energy splitting of the Majorana qubit is  ∼ ξ
−

eM

L
, where L is the length of the system and ξ is the localization 

length of the Majorana zero modes. The analytical relation of ξ−1 with the parameters of optical Kitaev’s chain 
Hamiltonian is

ξ =−
+ −min ln x ln x{ , }, (41)1

where =
µ µ

±
− ± − + ∆

+ ∆
x

J

J

4 4

2( )

2 2 2

. It is very clear from the analytical expression of M  that it vanishes for large val-
ues of L, i.e., there is no finite overlap between the zero energy nonlocal Majorana fermion modes as a conse-
quences the system is in topological state. But M  is finite when ξ → ∞ and L is finite and small.

From the analysis of ξ−1 and from x+ and x−, we obtain the following relations in our study.

	(1)	 Eg = 2J − μ if Δ ≥ J or if Δ < J and µ− < ∆J2
J

2 2
. Eg is the energy gap of the optical Kitaev’s chain.

	(2)	 µ= ∆ − − ∆E J(4 )/g
2 2 2  otherwise.
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