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Emergence of coupling-induced 
oscillations and broken symmetries 
in heterogeneously driven 
nonlinear reaction networks
Varsha Sreenivasan, Shakti N. Menon & Sitabhra Sinha

Many natural systems including the brain comprise coupled elements that are stimulated non-
uniformly. In this paper we show that heterogeneously driven networks of excitatory-inhibitory units 
exhibit a diverse range of collective phenomena, including the appearance of spontaneous oscillations 
upon coupling quiescent elements. On varying the coupling strength a previously unreported transition 
is seen wherein the symmetries of the synchronization patterns in the stimulated and unstimulated 
groups undergo mutual exchange. The system also exhibits coexisting chaotic and non-chaotic 
attractors - a result that may be of interest in connection to earlier reports of varying degrees of 
chaoticity in the brain.

Complex patterns are observed to spontaneously emerge across a wide range of spatial and temporal scales in 
nature1. Uncovering the fundamental mechanisms driving such pattern formation will contribute significantly 
towards understanding self-organization in non-equilibrium systems2. Perhaps the most influential paradigm in 
this context is the reaction-diffusion mechanism3–8, involving the interplay of self-activation and lateral inhibition 
mediated by diffusion9–12. However, not all phenomena involving activator-inhibitor interactions arise through 
diffusive coupling, one of the best-known counterexamples being populations in neighboring ecological habi-
tats coupled through intra-specific competition13, 14. Indeed, reaction-diffusion processes can be seen as a subset 
of the more general class of systems involving nonlinear interactions between spatially distributed elements. 
Thus, uncovering the diverse range of collective phenomena associated with non-diffusively coupled systems of 
activator-inhibitor units can contribute towards understanding how patterns can arise in a more general setting.

Neurobiological phenomena involving synaptically coupled neuronal populations provide some of the most 
varied and complex instances of nonlinear interactions resulting in spatiotemporal patterns15. Indeed, such coor-
dinated collective activity is seen across several spatial scales in the brain: from the network of cortical areas 
where brain regions comprising 103–106 neurons16, 17 interact with each other through fiber tracts18, to the olfac-
tory bulb, where around 103 glomerular clusters coordinate the information received from sensory neurons at 
the nasal epithelium19. Such systems can exhibit very complex collective dynamical patterns, whose origin has 
been previously investigated in the context of homogeneous networks of neuronal oscillators20. Although such 
a theoretical framework was shown to permit the occurrence of complex synchronization patterns that arise via 
spontaneous symmetry breaking, the implications of non-uniform stimulation on the global behavior of such 
systems are yet to be explored. An example of hetereogeneous driving of activator-inhibitor units is the case of 
the olfactory bulb, wherein each glomerulus, which comprises circuits of excitatory and inhibitory neurons, is 
activated by a specific odorant receptor type21, and different smells evoke responses in different combinations of 
glomerular clusters22. Processes of this nature can potentially be understood in terms of the collective dynamics 
of a network of excitatory-inhibitory units coupled nonlinearly with tunable strength23–27. As we demonstrate 
here, many of the complex activity patterns that could be associated with systems of this nature can be reproduced 
using a minimal model that eschews much of the biological complexity specific to them. Furthermore, we note 
that the generality of this conceptual framework allows it to be applied beyond the context of neurobiology to 
phenomena as diverse as ecological interactions between prey and predator populations28 in multiple connected 
habitats and interdependencies between institutions in economic systems29, 30.
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In this paper, we investigate the collective dynamics resulting from non-uniformly driven networks of iden-
tical nodes, each comprising excitatory and inhibitory subpopulations. The heterogeneous stimulation is imple-
mented through external inputs being applied only to a subset of the nodes. To describe the dynamics of the 
individual nodes, we consider the Wilson-Cowan model31 - a coarse-grained description of neuronal population 
dynamics32. Furthermore, we consider the simplest connection topology, viz., coupling within and between the 
subpopulations of all nodes20. One of the novel features that we observe in this system on heterogeneous stimu-
lation is the occurrence of coupling-induced oscillations, viz., stimuli that generate only steady-state behavior in 
isolated nodes can drive the network into oscillatory behavior. This arises through nonlinear interactions between 
the nodes, and is quite distinct from the Turing-Hopf mechanism associated with diffusively coupled systems33, 34. 
It suggests that lateral connections between nodes can allow the network to recognize weak stimuli incapable of 
initiating activity in an isolated cluster. Increasing the strength of coupling between the nodes results in a variety 
of transitions in the collective dynamics of the network, the most striking of which involves a dynamical chimera 
state. This state is characterized by the co-occurrence of qualitatively distinct dynamical behaviors in elements 
that are otherwise identical in their nodal properties and neighborhood structure. Strengthening the coupling 
results in an exchange of the broken symmetry between the stimulated and unstimulated groups of nodes. In 
addition, we observe that the network can converge to qualitatively distinct attractors for identical system param-
eters, exhibiting chaotic or non-chaotic activity depending only on the initial state. This is hence possibly the sim-
plest neuroscience-inspired model that can reproduce behavior qualitatively similar to the reported observation 
of multistable chaotic activity in the brain35, 36.

Results
The network that we consider is a system of globally connected nodes, each of which describes the activity of 
pools of excitatory and inhibitory neurons [Fig. 1(a)] (see Methods for details). On receiving a stimulus Iu of suf-
ficient magnitude, a single node is capable of exhibiting limit-cycle oscillations around an unstable fixed point31 
[Fig. 1(b)]. This limit cycle emerges via the collision of stable and saddle branches [Fig. 1(c)], and the amplitude 
of oscillation depends on the value of Iu [Fig. 1(d)]. As shown in Fig. 1(e) (for the case N = 2) and discussed else-
where in detail20, connecting identically stimulated nodes with different coupling strengths w yields a rich variety 
of synchronization patterns including exact synchronization (ES), quasiperiodicity (QP), anti-phase synchroni-
zation (APS) and inhomogeneous in-phase synchronization (IIS) at different w and Iu.

In this work, we consider heterogeneously driven networks wherein the number of nodes receiving external 
stimulus Nstim < N. We denote the synchronization state in such systems through the notation (Pstim, Punstim), where 
the first and second terms correspond to the collective pattern observed in the stimulated and unstimulated 
nodes, respectively. For example, we denote a pattern in which the group of stimulated nodes are in IIS and the 

Figure 1. (a) Schematic representation of a dynamical element (node) of the network, showing the interactions 
between subpopulations of excitatory and inhibitory units (neurons). The lightning bolt symbols shown below 
each subpopulation represent the external stimuli applied to them. (b) Nullclines governing the dynamics of a 
node receiving stimulus Iu = 1.25 along with the resulting limit cycle attractor. (c) Bifurcation diagram for the 
inhibitory component v of an isolated node shown as a function of the stimulus Iu. The broken lines indicate the 
unstable branch (black), as well as the peaks (vmax, pink) and troughs (vmin, violet) in the oscillatory regime. The 
solid black and thick red curves indicate the stable and saddle branches, respectively. (d) The v time-series of 
an isolated node receiving stimuli Iu = 1.25 (green) and Iu = 1.8 (red). (e) Representative phase-plane portraits 
for a pair of identically stimulated coupled nodes (i.e., Nstim = N = 2) in the states [L-R]: exact synchronization 
(ES), quasiperiodicity (QP), anti-phase synchronization (APS) and inhomogeneous in-phase synchronization 
(IIS). The positions of the oscillators are denoted by black filled circles. The values of the parameter set (Iu,w) 
corresponding to the figures shown are [L-R]: (1.25, 1), (1.25, 4), (1.4, 4) and (1.8, 20).
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group of unstimulated ones are in ES by (IIS, ES). Note that if a group consists of only one oscillator, then by our 
convention it is marked as ES. Furthermore, in the pattern marked (ES, ES), while the nodes will all be exactly 
synchronized with members of their own group (stimulated or unstimulated), they need not be synchronized 
with nodes belonging to the other group.

The simplest case of non-uniform stimulation is when a single node receiving input Iu is coupled to an unstim-
ulated node (i.e., N = 2, Nstim = 1) with strength w. At sufficiently large w, oscillations can be observed even when 
Iu lies below the range that permits limit cycle oscillations [Fig. 2(a)]. Indeed, as shown in the Iu − w parameter 
space diagram diagram in Fig. 2(b), at high w periodic activity can be observed over a much larger range of Iu than 
that capable of inducing oscillations in an isolated node. Furthermore, for lower (higher) w the unstimulated 
node has lower (higher) amplitude oscillations than the stimulated one, denoted as OSC1 (OSC2). Such 
coupling-induced periodic activity is seen even when =N N 1stim  (see Supporting Information) and suggests 
that a node is capable of detecting weak, subthreshold inputs when it is coupled to one or more unstimulated 
nodes. Such an increase in the sensitivity to stimuli beyond the capability of a single element is an emergent col-
lective property of the network and may be understood as an effective renormalization of the parameters govern-
ing the nodal dynamics. The observation of oscillations at larger values of Iu, where an isolated node exhibits a 
stable state, may also be connected to the appearance of periodic activity in bistable systems, e.g., excitable ele-
ments subjected to a sufficiently strong stimulus, upon appropriate coupling37. On increasing w beyond a critical 
value that depends on the stimulus intensity Iu, the activity of all nodes ceases, which corresponds to a state of 
amplitude death (AD).

A new feature, indicative of spontaneous symmetry breaking, appears on minimally increasing the size of the 
network to N = 3 keeping Nstim = 1. This dynamical chimera state is manifested as IIS in the unstimulated nodes 
[Fig. 2(c)], neither of which directly receive any external stimuli but are activated only by coupling with a com-
mon stimulated node. Nevertheless these identical nodes exhibit distinct oscillation patterns over a range of 
coupling strengths [Fig. 2(d)]. Note that this is different from the previously reported instance of IIS in globally 
coupled systems20, as here symmetry breaking occurs only within the group of (un)stimulated nodes. On stimu-
lating a second node (i.e., N = 3, Nstim = 2), another intriguing phenomenon emerges, viz., the coexistence of cha-
otic and non-chaotic attractors. The existence of chaotic behavior [Fig. 2(e)], which arises via a period doubling 
route [Fig. 2(f)] is confirmed by verifying the existence of positive Lyapunov exponents38. For example, at 
w = 35.6, we obtain a value of maximum Lyapunov exponent λ ∼ .0 016max  for appropriate initial conditions, 
indicating that the attractor is chaotic. Note that if we use a smaller Iu, chaos can be seen in the even simpler stim-
ulation configuration Nstim = 1, N = 3. For the case Nstim = 2, depending on initial conditions, it is possible to see 
either of two possible collective dynamical states corresponding to (ES, ES) or (IIS, ES), the latter being a chaotic 
attractor. As both the (IIS, ES) and (ES, ES) states have non-zero basin sizes [Fig. 2(g)] we can see either chaotic 
or non-chaotic behavior for identical system parameters over a range of w [Fig. 2(h)]. While the coexistence of 
multiple chaotic and non-chaotic attractors has been observed in other dynamical systems39, 40, to the best of our 
knowledge this is the simplest neuroscience-inspired model that can exhibit such behavior. Our results lend sup-
port to the hypothesis, based on experimental recordings from the rabbit olfactory system, that attractors with 
varying degrees of chaoticity can coexist in the brain41, 42.

The existence of numerous synchronization regimes in the w − Nstim parameter space becomes apparent as 
we increase the complexity of the system by incorporating more nodes [Fig. 3(a)]. These regimes are typically 
demarcated by sharp changes in the sizes of the basin of attraction of individual patterns indicated in Fig. 3(b,c). 
Apart from the states corresponding to ES, QP, IIS and AD described earlier, new collective dynamical patterns 
for the stimulated and unstimulated groups emerge. These include oscillator death (OD) which is a homogene-
ous non-zero steady state, and gradient synchronization (GS), a generalization of APS for systems with N > 220. 
Figure 3(d) shows several of the possible collective patterns, including those corresponding to symmetry breaking 
(IIS) in one or both groups of stimulated and unstimulated nodes. Note that the chimera nature of the state is 
amplified further on making the network sparse [Fig. 3(e)], using the technique described in our earlier study of 
this model20, viz., by arranging the nodes in a circle and systematically removing links between nodes situated 
furthest from each other. A particularly surprising feature that we investigate in detail below is the existence of 
a novel transition in which the (broken) symmetry of the patterns in the stimulated and unstimulated groups 
undergo a mutual exchange on varying the coupling strength. This symmetry exchange manifests as a transition 
from the (IIS, ES) to the (ES, IIS) state [Fig. 3(a)].

We examine the nature of this transition in detail by considering the simplest system in which it can 
be observed, i.e., for N = 4, Nstim = 2. In this case, the states (IIS, ES) and (ES, IIS) co-exist over a range of w 
[Fig. 4(a)]. The transition between them occurs through a change in the relative basin sizes for the patterns in the 
two groups [Fig. 4(b)]. The mechanism of the (broken) symmetry exchange is further established by examining 
how the order parameter ψ = 〈σi

2(vi)〉 (non-zero values of which indicate IIS in this regime), where σi
2 is the 

variance across the nodes, changes upon varying w in either direction in an annealed manner. In this procedure, 
the system is allowed to evolve starting from a random initial state at low (high) w, following which the value of 
w is adiabatically increased (decreased). As seen in Fig. 4(c), a hysteresis-like behavior can be observed in the 
transition region in both groups of nodes, consistent with the mechanism of shrinking basin sizes underlying the 
symmetry exchange.

Discussion
The model used here for describing the dynamics of each node has been used extensively over several decades 
to capture a wide range of phenomena involving neuronal populations at several length scales32, 43. The lack of 
excessive biological detail lends robustness to the model, as it facilitates the investigation of general principles 
underlying the appearance of complex phenomena in large neuronal networks. The model is also sufficiently 
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Figure 2. (a,b) Coupling-induced oscillations in a pair of nodes, where only one receives a stimulus Iu (i.e., 
N = 2, Nstim = 1). (a) By switching “on” a stimulus that is too weak (Iu = 0.1) to generate activity in the uncoupled 
nodes (top), oscillations can be observed by strongly coupling the stimulated (red) and unstimulated (blue) 
nodes (bottom). In the “off ” state, the nodes receive no external input (i.e., Iu = 0). (b) The range of Iu for which 
oscillations emerge increases at higher w, with the region within the broken lines indicating the range of Iu for 
which oscillations are observed in an isolated node. The amplitude of the oscillations is larger for the stimulated 
node at low w (OSC1) and for the unstimulated node at high w (OSC2). The other dynamical regimes observed 
correspond to a non-zero steady state (SS) and a quiescent state characterizing amplitude death (AD). The 
regimes are determined via order parameters and identified as the pattern obtained from the majority (>50%) 
of random initial states (see Supporting Information). (c–h) Symmetry breaking in a system of N = 3 globally 
coupled nodes for input stimulus Iu = 1.25. The stimulated (large, red) and unstimulated (small, blue) nodes 
are indicated schematically in top-left corner of (c–f). Phase space projections of the trajectories (colored as 
per the schematic) are shown for (c) Nstim = 1, displaying (ES, IIS) state for w = 38 (note the broken symmetry 
in unstimulated nodes) and (e) Nstim = 2, exhibiting chaos for w = 35.6. In the corresponding bifurcation 
diagrams for (d) Nstim = 1 and (f) Nstim = 2, the peaks and troughs of the inhibitory component (vmax,min) are 
shown as a function of w for the stimulated (pink) and unstimulated (violet) nodes. (g) Magnified view of (f) 
showing the coexistence of qualitatively distinct dynamical attractors corresponding to (IIS, ES) [orange] and 
(ES, ES) [green]. The system can exhibit either chaotic or non-chaotic behavior depending on its initial state, as 
illustrated in the top and bottom panels of (h) for w = 35.6.
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general for the mechanisms reported here to potentially apply to other contexts involving interactions of activator 
and repressor subpopulations, such as in ecological and economic systems.

Figure 3. (a–d) Collective dynamics of a system of N = 20 globally coupled nodes for Iu = 1.25. (a) Different 
synchronization states obtained by varying the number of stimulated nodes, Nstim, and coupling strength, 
w, with (Pstim, Punstim) referring to patterns in stimulated and unstimulated groups. The colors represent the 
collective pattern (indicated in the colorbar) obtained for more than 50% of random initial conditions. When 
no pattern forms a majority, the region is indicated by NM (“no majority”), and UID (“unidentified”) indicates 
that the nature of the pattern was not detected by the order parameters. (b,c) Variation of the attraction basin 
size (measured as fraction of initial states reaching the attractor) with w at Nstim = 10 for the different regimes 
in (a), shown separately for the (b) stimulated and (c) unstimulated groups. Basin sizes have been estimated 
using 102 initial conditions. (d) Phase space projections of the trajectories (red: stimulated, blue: unstimulated) 
corresponding to the different synchronization states indicated in (a). (e) Phase space projections for the pattern 
(IIS, IIS), corresponding to a dynamical chimera state, obtained for the case N = 21, Nstim = 18, w = 300, in a 
globally coupled system [k = 20, top] and in a relatively sparse network [k = 16, bottom]. The trajectories of 
the stimulated and unstimulated nodes are indicated in each case. It can be seen that as the network becomes 
increasingly sparse, individual nodes begin to trace distinct trajectories, thus amplifying the chimera nature of 
the state.
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Figure 4. Symmetry exchange transition in a system of N = 4 globally coupled oscillators with Nstim = 2. (a) 
Bifurcation diagram showing the peaks (vmax) of the inhibitory components of all nodes as w is varied. Distinct 
coexisting attractors corresponding to (IIS, ES) and (ES, IIS) are indicated by orange and light blue, respectively. 
(b,c) Variation of the (b) fractional basin size of these attractors and (c) the order parameter ψ = 〈σi

2(vi)〉 with 
w, shown separately for the (top) stimulated and (bottom) unstimulated groups. The distinct trends seen in (c) 
on increasing (red circle) or decreasing (blue dots) w indicate the occurrence of hysteresis-like behavior.
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The phenomena that we report here are robust with respect to changes in both the internal coupling param-
eters of the model for nodal dynamics, as well as the input stimulus. The symmetry exchange transition can be 
observed over a large range of values of the ratio of stimuli Iv/Iu, and the hysteresis behavior in Fig. 4(c) can still be 
observed upon halving the internal coupling parameters within each node (see Supporting Information). The fact 
that symmetry-switching could be observed even at much lower internal coupling strengths points to the intrigu-
ing possibility that complex patterns observed in large networks of such oscillators are independent of the precise 
dynamics of the individual units. Indeed, a preliminary investigation suggests that non-trivial synchronization 
phenomena can be observed even when we approach the limit of no internal coupling. Further, as the number of 
stimulated nodes are decreased the OD state no longer appears, thus effectively resulting in a continuous tran-
sition between oscillating states on changing w. This suggests a further line of investigation, potentially in the 
context of the evolution of brain states in the transition from sleep to awareness.

Our results provide a simple framework for understanding aspects of the complex patterns of spatiotemporal 
activity that the brain is observed to exhibit44. The mesoscopic approach used here, focusing on the dynamics of a 
network of neuronal clusters, can yield significant insights into the mechanisms by which such patterns emerge. 
Furthermore, the phenomena we report here occurs in a globally connected system, which may help elucidate the 
important role of long-range intracortical interactions in olfactory processing45. Among the variety of dynamical 
transitions observed upon varying the coupling strength, the most striking one involves an exchange of broken 
and restored symmetries between the groups of stimulated and unstimulated nodes on changing the coupling 
strength. This result suggests an experimentally testable hypothesis, namely that stimulated and non-stimulated 
glomeruli may show distinct collective dynamics at different levels of arousal. This could, for instance, be realized 
in a set-up involving photostimulation of interconnected oscillating neural populations46.

To conclude, we have shown that non-uniformly driven networks of identical nodes, each comprising excit-
atory and inhibitory subpopulations, are capable of exhibiting surprisingly rich collective phenomena. We find 
that this is the simplest neuroscience-inspired system that can exhibit the coexistence of qualitatively distinct 
attractors (chaotic and non-chaotic) for identical system parameters. This is intriguing in light of experimental 
observations of chaotic dynamics of varying complexity, particularly in the olfactory system35, 36, 41, 42, 47, and also 
during transitions between interictal and ictal activity in the context of epilepsy48, reported over several decades 
and which are yet to be fully understood. Furthermore, nodes that are quiescent in isolation can spontaneously 
oscillate for sufficiently strong coupling, thus enabling the system to be activated even by stimuli that are inca-
pable of generating dynamical activity in isolated nodes. These coupling-induced oscillations suggest that the 
spontaneous oscillations seen in networks of naturally quiescent stochastic spiking neurons49 can be understood 
as part of a larger class of phenomena characterized by the emergence of activity in quiescent systems upon cou-
pling50–52. While there have been earlier reports of emergent oscillations in systems of coupled Wilson-Cowan 
elements53–55, these studies typically incorporated one or more of the following features: presence of communi-
cation delay between nodes, noise and complex connection topology obtained from structural brain data56. The 
resulting complexity of such models makes it difficult to ascertain the exact mechanism by which oscillations can 
arise in them. For example, it could be a consequence of the communication delay, as delay-induced oscillations 
are well-known even in simple systems having feedback57. Similarly, noise in excitable systems is known to give 
rise to temporal oscillations, as well as spatial patterns (such as waves) through stochastic resonance58. A com-
plex connection topology introduces a further complicating factor into the investigation of the origin of such 
oscillatory behavior. Therefore, by choosing a system having the simplest connection topology possible (viz., a 
pair of coupled elements) and by not including noise and delay, we have ensured that the emergent oscillation 
observed in our system is exclusively coupling-induced, thereby establishing its generality and robustness. Finally, 
our results suggest that transitions between symmetry broken and restored symmetry states in heterogeneously 
driven system of coupled neural oscillators may underlie the sequence of complex activity patterns seen in the 
brain44.

Methods
We consider a network of N nodes, with each node i comprising excitatory (u) and inhibitory (v) components that 
are subject to heterogeneous driving. Following the analysis in our earlier paper20, which was in the context 
of uniform stimulation, we consider interactions within, and between, all subpopulations of the nodes in our 
networks, as shown in the schematic in Fig. 1(a). We use one of the most appealing models for describing the 
behavior of interacting excitatory and inhibitory neuronal clusters proposed by Wilson and Cowan31 which was 
obtained by temporal coarse-graining of the neuronal population dynamics. The dynamical activity of each node 
evolves as31:

τ κ= − + −
du
dt

u r u u( ) ( ), (1)u
i

i u u i u i
in

τ κ= − + −
dv
dt

v r v v( ) ( ), (2)v
i

i v v i v i
in

where τμ are time constants (μ = u, v), ui
in and vi

in are the inputs received by the respective components, 
 κ θ= − + + − −µ µ µ µ

−x exp a x( ) 1 [1 { ( )}] 1 is a sigmoidal response function with maximum value 
κμ = 1 − [1 + exp{aμθμ}]−1, and rμ, aμ and θμ are system parameters. As mentioned earlier, the network is globally 
coupled (i.e., every node has k = N − 1 links) with each link having the same weight w/k. This normalization 
allows our results to be system-size independent. The total inputs to each component of node i are 
ui

in = cuuui − cuvvi + w
k

∑j (uj − vj) + Iui and vi
in = cvuui − cvvvi + w

k
∑j (uj − vj) + Ivi, where j = 1, …, N (j ≠ i). To imple-
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ment heterogeneous stimulation, different external inputs (Iui, Ivi) are applied to different nodes. For the results 
shown here we have used the following set of parameter values: cuu = 16, cvu = 15, cuv = 12, cvv = 3, au = 1.3, av = 2, 
θu = 4, θv = 3.7, ru,v = 1, τu,v = 8 and, unless specified otherwise, Iv = 0. We have verified that our results are robust 
with respect to changes in these parameter values.
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