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Chaotic Resonance in Typical 
Routes to Chaos in the Izhikevich 
Neuron Model
Sou Nobukawa  1, Haruhiko Nishimura2 & Teruya Yamanishi3

Chaotic resonance (CR), in which a system responds to a weak signal through the effects of chaotic 
activities, is a known function of chaos in neural systems. The current belief suggests that chaotic states 
are induced by different routes to chaos in spiking neural systems. However, few studies have compared 
the efficiency of signal responses in CR across the different chaotic states in spiking neural systems. We 
focused herein on the Izhikevich neuron model, comparing the characteristics of CR in the chaotic states 
arising through the period-doubling or tangent bifurcation routes. We found that the signal response in 
CR had a unimodal maximum with respect to the stability of chaotic orbits in the tested chaotic states. 
Furthermore, the efficiency of signal responses at the edge of chaos became especially high as a result 
of synchronization between the input signal and the periodic component in chaotic spiking activity.

Stochastic resonance (SR) is a phenomenon in which the presence of noise helps a non-linear system amplify a 
weak (under-barrier) signal1, 2. In the past few decades, a considerable number of studies about SR in biological 
systems has been conducted3–6. More recently, studies of SR have been conducted using neural systems which 
possess various kinds of spiking patterns and complex physiological network structures. For example, Perc and 
Marhl examined frequency locking due to additive noise in the resting state near the bifurcation point leading to 
the chaotic-burst spiking state7. Nobukawa and Nishimura demonstrated that spike-timing-dependent plasticity 
may be made efficient through the effect of SR in neural systems composed of three types of spiking patterns: 
regular spiking (RS), intrinsically bursting (IB) and chattering (CH)8. Wang et al. showed that multiple SRs, in 
which coherence measures of signal responses are maximized at multiple levels of noise strength, was observed in 
scale-free spiking neural networks with synaptic delay and pacemaker neurons9. Yilmaz et al. demonstrated that 
the presence of electrical synapses can enhance the efficiency of signal transmission in SR in the scale-free spiking 
neural network when including electrical and chemical synapses10. Teramae et al.11 showed that the spontaneous 
activity widely observed in actual cortical neural networks can be reproduced when incorporating SR. They noted 
this in the spiking neural network in which the strength of excitatory synaptic weights obeys a non-Gaussian, 
long-tailed, typically log-normal distribution. Also, many kinds of synchronization phenomena which are not 
restricted to SR, such as synchronization transition and chimera states, have been widely found in scale-free com-
plex and physiological spiking neural networks with both delay and multiple structures12–17.

Furthermore, several studies have analyzed synchronization phenomena typified by chaos synchronization 
and phase synchronization among neurons, and with external input signals, in spiking neural networks with 
chaotic spiking activity18–21. Among these synchronization phenomena, it has been known that fluctuating activ-
ities in deterministic chaos cause a phenomenon that is similar to SR. In the corresponding phenomenon, called 
chaotic resonance (CR), the system responds to the weak input signal through engaging the effects of intrinsic 
chaotic activities under conditions in which no additive noise exists2, 22. Initially, CR was investigated using a 
one-dimensional cubic map and Chua’s circuit23–27, though more recently neural systems have been utilized28–33. 
In a previous study, we discovered that the signal response of CR in a spiking neural system has a unimodal 
maximum with respect to the degree of stability for chaotic orbits, as quantified by the maximum Lyapunov expo-
nent34. That is, the appropriate chaotic behavior leads to the generation of spikes (i.e., exceeds the threshold) not 
at specific times, but at varying scattered times for each trial, as input signals. This frequency distribution of these 
spike timings against the input signal becomes congruent with the shape of the input signal.
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A considerable number of studies have been conducted on chaos and bifurcation in spiking neural systems, 
generating model systems that include the Hodgkin-Huxley, FitzHugh-Nagumo, and Hindmarsh-Rose models35. 
In particular, the Izhikevich neuron model, as a hybrid spiking neuron model, combines a continuous spike gen-
eration mechanism and a discontinuous after-spike resetting process; thus, the model can induce many kinds of 
bifurcations, and reproduce almost all spiking activities observed in actual neural systems simply by tuning a few 
parameters36. In addition, the variety of reproduced spiking patterns is high in comparison with other spiking 
neuron models37.

The hybrid spiking neuron model is one of the piecewise-smooth dynamical systems, in which dynamics 
are switched according to the state of the system38. Saito and colleagues have conducted chaos/bifurcation anal-
ysis and circuit implementation against piecewise-constant dynamical systems, and piecewise-linear dynami-
cal systems, as simplified versions of the piecewise-smooth dynamical system39–41. In particular, Tsubone et al. 
proposed a systematic method to predict parameter regions for chaotic states using an analytical approach in 
the piecewise-constant dynamical system41. While in general, piecewise-smooth dynamical systems include 
non-linear terms similar to those seen in the Izhikevich neuron model, an approach for evaluating Lyapunov 
exponents and characteristic multipliers that considers the saltation matrix38 through simulations against exhaus-
tive parameter sets is needed. On considering this approach, it is clear that this model has various kinds of bifur-
cations and routes to chaos when under the effect of the state-dependent jump in the resetting process34, 42–44. 
However, the signal responses of CR have not been evaluated in chaotic states produced through different routes.

In our preliminary work, we confirmed the presence of CR in chaotic states induced by different routes (i.e., 
the periodic-doubling bifurcation route and intermittency route to chaos) in the Izhikevich neuron model45. In 
this paper, we build on our previous work and evaluate the signal responses in CR, and compare the character-
istics across these chaotic states through two methods. We first examine the dependence of the signal response 
on the maximum Lyapunov exponent; then we identify the resonant zone in the parameter space of the applied 
signal frequency/amplitude.

Materials and Methods
Izhikevich neuron model. The Izhikevich neuron model36, 37 is a two-dimensional ordinary differential 
equation of the form

= . + + − +v v v u I0 04 5 140 , (1)2

= −u a bv u( ), (2)

and with auxiliary after-spike resetting

≥
←
← + .{v v c

u u dif 30[mV], then (3)

Here, v and u represent the membrane potential of a neuron and the membrane recovery variable, respectively.
We extended Eq. (1) using a weak periodic signal Iext(t) as follows:

= . + + − + +v v v u I I t0 04 5 140 ( ), (4)2
ext

in which we adopted Iext(t) = Asin(2πf0t). Note that the sinusoidal signal was utilized merely as a typical example 
of a signal in a neural system.

Evaluation indices. Indices for evaluation of chaos and bifurcation. To quantify the chaotic activity in the 
Izhikevich neuron model, the Lyapunov exponent with a saltation matrix is utilized. On a system with a contin-
uous trajectory between the i-th and the (i + 1)-th spiking times, (ti ≤ t ≤ ti+1), the variational equations (1) and 
(2) are defined as follows:

Φ = Φ+ +
 t t J v u t t t( , ) ( , , ) ( , ), (5)i i i i1 1

Φ =+ t t E( , ) , (6)i i i1

where Φ, J, and E indicate the state transition matrix, the Jacobian matrix, and a unit matrix, respectively. At t = ti, 
the saltation matrix is given by
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In the above, (v−, u−) and (v+, u+) represent the values of (v, u) before and after spiking, respectively. In case 
spikes arise in the range [Tk:Tk+1] [ms], Φk(Tk+1, Tk) (k = 0, 1, …, N − 1)43 can be expressed as
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Based on the eigenvalues lj
k (j = 1, 2) of Φk(Tk+1, Tk), the Lyapunov spectrum λj is calculated by
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In our simulation, we set Tk+1 − Tk as the time required for 20 spikes (i = 20). We set 1000 [ms] as the maxi-
mum value in case Tk+1 − Tk lasts for 1000 [ms] before 20 spikes occur.

In order to conduct bifurcation analysis in the system with a state-dependent jump, we set a Poincaré section 
Ψ(v = 30). The dynamics of system behavior on Ψ are indicated by the Poincaré map ui+1 = ψ(ui) where ui is the 
value of u on Ψ. In the literature42, the stability of a fixed point u0 = ψ(ul−1)ψ(u1)ψ(u0) ≡ ψl(u0) (l = 1, 2, 
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Here, u0 = (v0, u0) indicates the initial value of orbit u = (v, u) at t = t0. |μl < 1|, μl = −1, and μl = 1 represent the 
stable condition, period-doubling bifurcation, and tangent bifurcation, respectively.

Indices for evaluation of signal response. We calculated the timing of the spikes against signal Iext(t) by using a 
cycle histogram ˜F t( )33. ˜F t( ) was a histogram of firing counts at tk mod (T0) (k = 1, 2, …) against signal ˜I t( )ext  with 
period T0 = (1/f0), ≤ ≤t̃ T0 0. For example, for T0 = 10, if the spike times were tk = 2, 6, 12, 16, 26, the values of tk 
mod (T0) were 2, 6, 2, 6, 6. The cycle histogram then became F(2) = 2 and F(6) = 3.

To quantify the signal response, we used the following index of Eqs (11) and (14). The mutual correlation C(τ) 
between the cycle histogram ˜F t( ) of the neuron spikes and the signal ˜I t( )ext  is given by

τ
τ

=C C
C C

( ) ( )

(11)
IF

II FF

Figure 1. Dependence of maximum Lyapunov exponent λ1 on parameters c and d. (a) Region around the 
parameter sets for regular spiking (RS), intrinsically bursting (IB), and chattering (CH). The symbols of (+) 
indicate the parameter sets for RS and IB, CH (a = 0.02, b = 0.2, I = 10). The chaotic states (λ1 > 0) exist in 
−59 ≲ c ≲ −40, d ≈ 1.0. (b) Region around the parameter set proposed by Izhikevich for chaotic spiking. The 
symbols of (+) indicate the parameter set for chaotic spiking (a = 0.2, b = 2, I = −99). The chaotic states (λ1 > 0) 
exist in d ≲ −13.



www.nature.com/scientificreports/

4Scientific RepoRts | 7: 1331  | DOI:10.1038/s41598-017-01511-y

τ τ= + − −˜ ˜ ˜ ˜C I t I t F t F t( ) ( ( ) ( ) )( ( ) ( ) ) (12)IF ext ext

= −˜ ˜C I t I t( ( ) ( ) ) (13)II ext ext
2

= −˜ ˜C F t F t( ( ) ( ) ) (14)FF
2

For the time delay factor τ, we checked maxτC(τ), i.e., the largest C(τ) between 0 ≤ τ ≤ T0.

Results
Parameter region for evaluating signal responses. Initially, we determined the parameter regions 
where the chaotic state is produced. The left panels of Fig. 1(a) and (b) show the dependences of the maximum 
Lyapunov exponent λ1 on parameters c and d in the region around parameter sets for the spiking patterns of RS, 
IB, and CH (see the right part of Fig. 1(a)) and the region around the parameter set proposed by Izhikevich for 
chaotic spiking (see the right part of Fig. 1(b)), respectively. The chaotic states (λ1 > 0) exist in −59 ≲ c ≲ −40, 
d ≈ 1.0 in the former case, and d ≲ −13 in the latter case. As the parameter regions for evaluating CR, we chose 
0.82 ≤ d ≤ 0.92 in the former region (called region #1 below), and −15.5 ≤ d ≤ −11 in the latter region (called 
region #2 below). Figure 2 depicts the bifurcation diagram of ui on Poincaré section Ψ (black dot) and Lyapunov 
exponents (red dotted (j = 1) and green dashed (j = 2) lines) as a function of parameter d in region #1 case (a) 
and region #2 case (b). In Fig. 2(a), the period-doubling bifurcation (μl = −1) arises at d ≈ 0.8348, 0.8828, 0.8916, 
0.894, and the chaotic state (λ1 > 0, λ2 = 0) appears d ≳ 0.894. Hence, the period-doubling bifurcation route to 

Figure 2. Bifurcation diagram of ui on Poincaré section Ψ and Lyapunov exponents λj as function of parameter 
d (j = 1, 2). (a) Period-doubling bifurcation case (called region #1) (a = 0.02, b = 0.2, c = −55, I = 10). The 
period-doubling bifurcation (μl = −1) arises at d ≈ 0.8348, 0.8828, 0.8916, 0.894, and the chaotic state (λ1 > 0, 
λ2 = 0) appears d ≳ 0.894 through a period-doubling bifurcation route. (b) Tangent bifurcation case (called 
region #2) (a = 0.2, b = 2, c = −56, I = −99). The tangent bifurcation (μl = 1) arises at d ≈ −11.9 and the chaotic 
state (λ1 > 0, λ2 = 0) appears d ≲ −11.9 through the intermittency route.
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Figure 3. Dependence of signal response on parameter d. The cycle histogram ˜F t( ) of neuron spikes is 
congruent with the signal ˜I t( )ext  in chaotic regions, i.e., chaotic resonance (CR) arises. (a) Cycle histogram ˜F t( ) 
in the periodic state (upper) and the chaotic state (lower) in the case of region #1. (a = 0.02, b = 0.2, c = −55, 
I = 10). (b) The case of region #2. (a = 0.2, b = 2, I = −99). (c) Mutual correlation C(τ) between the cycle 
histogram ˜F t( ) of the neuron spikes and the signal ˜I t( )ext  in the case of region #1. (d) The case of region #2. (e) 
maxτC(τ) (upper) and Lyapunov exponent λj (j = 1, 2) (lower) as a function of parameter d in the case of region 
#1. (f) The case of region #2.
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chaos exists in this region. However, as shown in Fig. 2(b), the tangent bifurcation (μl = 1) arises at d ≈ −11.9 and 
the chaotic state d ≲ −11.9 (λ1 > 0, λ2 = 0) appears. This chaotic state produced by tangent bifurcation indicates 
the alternating laminar and turbulent modes of intermittency chaos in a general way46; this dynamic was demon-
strated in our previous work34. That is, the intermittency route to chaos exists in this region.

Signal response in chaotic resonance. In the above mentioned chaotic parameter regions #1 and #2, we 
evaluated the response against a weak signal (A = 10−2, f0 = 0.1). To begin with, we compared the cycle histograms 

˜F t( ) between periodic and chaotic states. As shown in Fig. 3, in the cases of both region #1 (a) and region #2 (b), 
˜F t( ) in the periodic state (solid line) does not fit ˜I t( )ext  (dotted line) because the periodic response against ˜I t( )ext  

induces growth in its values at specific bins. On the other hand, ˜F t( ) in the chaotic state fits ˜I t( )ext  according to a 
chaotic response with scatter timing against Iext(t). This tendency can also be observed in their C(τ) as shown in 
Fig. 3(c) and (d). That is, C(τ) becomes approximately 0 in the periodic state, but C(τ) exhibits a sinusoidal shape 
in the chaotic state. In the following evaluations, we use maxτC(τ) to characterize the signal response, because the 
sinusoidal shape of C(τ) with period T0 can be identified by amplitude and lag corresponding to ττCmax ( ) and its 
τ value. Furthermore, this signal response is evaluated using ττCmax ( ) and λ1. Figure 3(e) and (f) show the 
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Figure 5. Power spectrum of the time series of v(t) in the signal-free condition (upper). Resonant frequency f0/
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signal-adapted condition (lower). The resonant zones have a tendency to distribute near the peaks for the power 
spectrum in the signal-free condition. (a) Edge of the chaotic state in region #1 (d = 0.896). (b) Edge of the 
chaotic state in region #2 (d = −12.0).
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dependence of ττCmax ( ) (upper) and λj (j = 1, 2) (lower) on parameter d in regions #1 and #2, respectively. In 
region #1 (Fig. 3(a)), the neuron exhibits the periodic spiking (λ1 ≈ 0, λ2 < 0) in 0.82 ≲ d ≲ 0.88, and the chaotic 
spiking (λ1 > 0, λ2 ≈ 0) in 0.88 ≲ d ≲ 0.92. In the periodic spiking state, the value of ττCmax ( ) is less than 0.1; 
whereas in the chaotic spiking state, the value of ττCmax ( ) is higher in comparison with the periodic spiking 
state. In particular, at the d ≈ 0.89 location around the bifurcation to chaos, called the edge of chaos47 below, 

ττCmax ( ) has a peak value (≈0.8). This can be interpreted as CR arising in the chaotic region (0.88 ≲ d ≲ 0.92). In 
region #2 (Fig. 3(b)), the chaotic spiking state (λ1 > 0, λ2 ≈ 0) arises in −15.5 ≲ d ≲ −12 and ττCmax ( ), and is a 
high value due to the effect of this chaotic spiking state. Also, the value of ττCmax ( ) indicates a similar tendency 
for region #1 (Fig. 3(a)), i.e., at the d ≈ −12.3 location around the bifurcation to chaos, ττCmax ( ) has a peak value 
(≈0.9).

Furthermore, Fig. 4(a) and (b) show the scatter plots between ττCmax ( ) and λ1 obtained in Fig. 3 in the cases 
of region #1 and region #2, respectively. The red dotted line indicates the mean value of ττCmax ( ) in bin λ1 with 
window Δλ1 = 0.001. From these results, in both regions, ττCmax ( ) peaks at the appropriate value of maxτC(τ) 
( τ ≈ .τCmax ( ) 0 7 at λ1 ≈ 0.03 in region #1 and τ ≈ .τCmax ( ) 0 9 at λ1 ≈ 0.04 in region #2). The points for this 
appropriate value for λ1 correspond to the points representing the edge of chaos in Fig. 3. That is, the signal 
response in CR has a unimodal maximum with respect to the stability for chaotic orbits represented by λ1, and 
this peak is localized at the edge of chaos.

Signal sensitivity in the edge of chaos region. In the edge of chaos, i.e., the chaotic state near the 
bifurcation point, the power spectrum for the time series of system behavior has several peaks. In the periodic 
bifurcation route to chaos, the trajectory is restricted to the narrow space around the multiple-periodic trajectory 
before the points at the bifurcation to chaos. Therefore, the power spectrum of the chaotic state inherits the peaks 
from the power spectrum of the multiple-periodic state, while in the intermittency route to chaos, the laminar 
state dominates in the time series of system behavior. Hence, the power spectrum has peaks near the frequency 
components of the laminar state. The upper panels of Fig. 5 show the power spectrum of v(t) under the signal-free 
condition in the edge of chaos in region #1 (a) (d = 0.896) and #2 (b) (d = −12.0). For the reasons described 
above, the power spectrum has several peaks. Furthermore, as shown in the lower panels of Fig. 5, resonant 
frequency/amplitude zones and points (maxτC(τ) > 0.5) indicated by the red line and black points, respectively, 
in the signal-adapted condition. Here, its frequency f0 corresponds to the horizontal line of the upper panels of 
Fig. 5. From this result, the resonant zones have a tendency to distribute near the peaks for the power spectrum in 
the signal-free condition. This is especially significant with the weaker signal amplitude regions.

Discussion and Conclusions
We showed herein two distinct routes to chaos, the period-doubling bifurcation route and the intermittency 
route, by using the Lyapunov exponent with a saltation matrix and index for stability of a fixed point on the 
Poincaré section. Furthermore, under the condition of receiving input from a weak periodic signal, the enhance-
ment of the signal response by the effect of chaotic spikes (chaotic resonance) was confirmed in the chaotic 
regions induced by the above routes to chaos. Specifically, in both chaotic regions, the signal response in CR had 
a unimodal maximum with respect to the stability for chaotic orbits represented by λ1. Thus, it can be interpreted 
that the instability of the chaotic orbit in CR plays a role of the noise strength in SR.

Furthermore, we have confirmed that the peak of the signal response was located in the edge of chaos. There, 
we identified the periodic components in chaotic spiking activity as shown in Fig. 5. In the case of a relatively 
large signal strength, we found broadening of the signal frequency region in which the efficient signal response 
was high. On the other hand, in the case of a small signal strength, the region of high efficiency was restricted to 
the immediate neighborhoods of frequencies for the periodic components in chaotic spiking. This characteris-
tic of signal response in relation to signal strength and frequency, called Arnold’s tongue, is widely observed in 
synchronization phenomena48. Therefore, the high efficiency of signal responses in the edge of chaos could be 
interpreted as synchronization between the input signal and the periodic component in chaotic spiking activity.

In future work, we intend to evaluate the signal response in CR in large-sized spiking neural networks.
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