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RNA-Seq based genome-wide 
analysis reveals loss of inter-
chromosomal regulation in breast 
cancer
Jesús Espinal-Enríquez1,2, Cristóbal Fresno1,3, Guillermo Anda-Jáuregui1,4 & Enrique 
Hernández-Lemus  1,2

Breast cancer is a complex heterogeneous disease. Common hallmark features of cancer can be found. 
Their origin may be traced back to their intricate relationships governing regulatory programs during 
the development of this disease. To unveil distinctive features of the transcriptional regulation program 
in breast cancer, a pipeline for RNA-seq analysis in 780 breast cancer and 101 healthy breast samples, 
at gene expression and network level, was implemented. Inter-chromosomal relationships between 
genes resulted strikingly scarce in a cancer network, in comparison to its healthy counterpart. We 
suggest that inter-chromosomal regulation loss may be a novel feature in breast cancer. Additional 
evidence was obtained by independent validation in microarray and Hi-C data as well as supplementary 
computational analyses. Functional analysis showed upregulation in processes related to cell cycle 
and division; while migration, adhesion and cell-to-cell communication, were downregulated. Both 
the BRCA1 DNA repairing signalling and the Estrogen-mediated G1/S phase entry pathways were 
found upregulated. In addition, a synergistic underexpression of the γ-protocadherin complex, 
located at Chr5q31 is also shown. This region has previously been reported to be hypermethylated in 
breast cancer. These findings altogether provide further evidence for the central role of transcriptional 
regulatory programs in shaping malignant phenotypes.

Breast cancer is a complex disease. This heterogeneous pathology is characterized by an intricate interplay 
between different biological aspects such as DNA genomic alterations, gene expression deregulation, hormone 
disruption, metabolic abnormalities, protein failure, signalling pathway alterations and also environmental deter-
minants. These aspects in turn influence the onset, development, outcome of breast carcinomas as well as the 
appearance of metastases1. The heterogeneity of breast cancer can be observed at the molecular, histological, and 
functional level, all of which have clinical implications2, 3. However, most breast cancer manifestations exhibit 
shared features, such as upregulation of the cell cycle, cell cycle checkpoints evasion4, 5, inflammatory responses6–8, 
immune response evasion9, 10 and deregulation of the genetic expression11, 12 among others.

Breast cancer is one of the most studied diseases. However, we still have not a complete, integrative under-
standing of the role transcriptional regulation establishes and modifies the cancer cellular landscape: particu-
larly, how the regulatory program of a “healthy” cell drifts towards a “cancerous” phenotype. In this context, 
high-throughput omic technologies have provided us unprecedented tools to study the alterations found in can-
cer at a deeper level. They have become essential instruments for both basic and clinical research, to fathom the 
multi-layered relationships between the actors that participate in this complex disease. However, relatively small 
sample sizes have not enabled the construction of a complete portrait of the disease.
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In an attempt to bring light to the understanding of the cell regulatory program during cancer, we set to 
study a comprehensive collection of breast invasive carcinoma RNA-Seq samples from The Cancer Genome Atlas 
(TCGA)13, 14. State-of-the-art computational methodologies were used for quality control and data preprocessing/
processing. Differential gene expression and diverse functional enrichment procedures were applied, to observe 
the main differences between the two phenotypes.

To unveil how the transcriptional regulatory program is composed in healthy and cancerous samples, we 
constructed gene regulatory networks (GRNs) where the nodes correspond to genes and the links that connect 
them represent a statistical dependence. In this context, these dependencies can be understood as correlations in 
transcriptional regulation processes.

GRNs may actually refer to several types of gene networks. In general, it may include the term “transcriptional 
regulatory network” (TRN) which is used to describe directed networks, that may take into account transcription 
factor/promoter affinity obtained from transcription factor binding site analyses, as well as sequence-capture 
experimental data. The term GRN may also refer to undirected networks like those obtained from probabilistic 
modeling (using either correlation or mutual information measures) that reflect co-regulation and co-expression 
patterns, and (unlike TRNs) are able to capture indirect interactions, not caused by direct physical contacts. Such 
gene regulatory networks (like the ones we calculated in this work) are, in general not causal but probabilistic.

Gene regulatory networks of the cancerous and non-cancerous mammary tissue samples were inferred, con-
structed, analysed and compared. The large number of samples of both cases and controls allowed us to construct 
whole-genome networks with high statistical significance. We found that almost every strong relationship in the 
cancerous network occurs between genes belonging to the same chromosome, with few relationships across chro-
mosomes, but more importantly, these intra-chromosomal links occur between genes located at chromosomal 
neighbouring regions. These intra-chromosomal clusters present a consistent differential expression pattern: 
either overexpressed or underexpressed. Meanwhile, the healthy network presents several relationships between 
genes from different chromosomes, as well as intra-chromosomal correlations. We argue that this is a strong 
evidence of a new feature in breast cancer: loss of long-range transcriptional regulation. This observation is con-
sistent with recent Hi-C data obtained from MCF7 and MCF10a breast cancer cell lines15, and suggests the need 
for further experimental analysis of this phenomenon. Our approach tries to capture common features of breast 
cancer, such as processes and genome-wide relationships that are altered in disease, which may help us to under-
stand the transcriptional regulation present in the development of this complex pathology.

Results
Mutual information networks reveal evident structural differences between cancer and con-
trols. To unveil how the transcriptional regulatory program is composed in healthy and cancerous samples, 
independent mutual information (MI) based gene regulatory networks were constructed, using 780 breast inva-
sive carcinoma and 101 healthy RNA-Seq samples from The Cancer Genome Atlas13 (see Material and Methods 
section and Supplementary Table S1). In the network, vertices correspond to genes and the edges that connect 
them represent the MI between genes, which can be understood as correlations in transcriptional regulation 
processes. By looking at the network’s topology for both healthy and cancerous networks (Fig. 1), it can be seen 
that the architecture is completely different, despite the fact that both networks were created using the same 
visualization algorithm, i. e., Cytoscape’s profuse force-directed layout. The healthy network (HN, Fig. 1A) con-
tains a giant connected component depicted by the color degree intensity of their vertices. On the contrary, the 
cancer network (CN, Fig. 1B) has several small disconnected components, where red/blue vertices represents 
over/underexpressed genes. Notice that each connected component in the CN is predominantly overexpressed or 
underexpressed, suggesting a common regulatory process for the whole component.

As it can be argued from Fig. 1, global network parameters also differ between HN and CN. Table 1 shows 
the principal measures for both networks. In particular, network diameter and connected components reflect the 
strong differences between HN and CN, where the giant component of the HN determines the network structure. 
Regarding gene parameters, degree of CN genes is in general smaller than HN (Table 2, see also Supplementary 
Tables S2 and S3); that is expected since the largest component in CN contains only 134 genes, meanwhile the 
giant component in HN has 4,214 out of 5,395.

Cancerous networks show loss of inter-chromosomal regulation. Given the aforementioned result on the predom-
inance of overexpressed or underexpressed clusters in CN, we inspected the chromosomal location of all genes 
in the both networks, to observe whether the distribution of chromosomal location of genes in CN is compart-
mentalised. If this statement holds, it would indicate that possibly the transcriptional regulation in cancer occurs 
preferentially in neighbouring regions. The results can be observed in Fig. 2, where the genes of both networks 
presented in Fig. 1 are now coloured by the chromosome to which they belong to. Surprisingly, the majority 
of the genes for each component present in the CN belongs to the same chromosome (Fig. 2B). This is not the 
case of the giant component in the HN (Fig. 2A), where genes are connected to other genes located on different 
chromosomes.

To further assure that this finding is not an artefact of the MI cut-off value used, as the networks presented in 
Figs 1 and 2 have been constructed using only the top 0.01% (11,675 edges), networks with a less astringent MI 
cut-off value (0.1%) were constructed. This new cut-off value created networks with 116,503 edges and reaffirmed 
the consistency of the obtained results (see Supplementary Figure S1), i. e., the transcriptional regulation takes 
place in the same chromosome in the CN, while in the HN, genes regulate other genes from different chromo-
somes. In parallel, we constructed other two networks using the top 0.001% MI values (1,168 edges), in order to 
observe whether or not the HN giant component is still connecting groups of genes from different chromosomes. 
The results showed a pattern of neighbours that behave alike Fig. 2 (Supplementary Figure S2): in the HN, genes 
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are connected to other genes of different chromosomes, while the CN components only have connected genes 
that belong to the same chromosome.

To further explore gene relationships circos plots were constructed using gene chromosomal locations for the 
HN (Fig. 3A) and the CN (Fig. 3B). Clearly, the majority of edges present in the HN connects genes from one 

Figure 1. Healthy and cancerous mutual information inferred networks. This figure shows the architectural 
features of each network. (A) Healthy network (HN) where the higher color intensity, the higher the vertex 
degree is. (B) Cancerous network (CN) where red/blue vertices represent over/underexpressed genes. Notice 
the presence of a large, dominant component in the HN, which is clearly not the case for the CN, where several 
small components coexist. It is also observable the predominance of overexpressed (red) or underexpressed 
(blue) clusters in CN.
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chromosome to any other. On the other hand, the majority of connections in the CN is given between genes on 
the same chromosome. Figure 3C and D show a zoom-in only for chromosome 1 and 19 of Fig. 3A and B respec-
tively, in order to give a detailed view of the distribution of the interactions. Despite the fact that the relationships 
are inside the chromosome 19, it can be observed once again that in the HN (Fig. 3C) they are distributed along 
the whole chromosome, meanwhile for the CN (Fig. 3D), the relationships occur very closely.

The γ-protocadherin cluster may be involved in several downregulated processes in breast cancer. Both HN and 
CN network’s components were ranked by its network density. This parameter gives a clear idea of how intercon-
nected a component is, because it can be thought as the number of existing edges in a network cluster divided by 
the total number of network edges. The most dense component of the CN is composed exclusively by 22 genes, 
which encode the 22 proteins in the γ-protocadherins cluster (PCDHG, Fig. 4) involved in the control of neu-
ron development16, 17. All of the genes present in this cluster are underexpressed with respect to the HN and are 
located at 5q31 chromosomal region (Fig. 4A and C). This region has been found to be hypermethylated in breast 
cancer18.

Owing to this fact, we focused our attention on previous PCDHG complex activity reports on breast cancer. As 
far as the authors know only in Shima et al. work19 somatic mutations of PCDHGB4 gene were reported. However, 
there are a large number of publications in the literature regarding the effects that knockout and knockdown 
of PCDHGs may have in mouse neuron development. Neonate mice PCDHGs complex knock-out results in 
death16, 17, probably because apoptosis is highly active in knock-out mice. On the other hand, PCDHGs complex 
knockdown results in strong defects in dendrite development, control of actin dynamics, microtubule assembly/
morphogenesis16, 17 and cell adhesion20. It has been observed that the PCDHG cluster controls the participation of 
Pyk2 (PTK2B), which in turn regulates Rac1 to promote a normal dendrite morphogenesis20 (Fig. 4B). The role 
that these processes may have in breast cancer is yet to be fully understood.

Differential expression analysis. An expression analysis was carried out yielding a total of 1,431 differ-
entially expressed genes (DEGs) between experimental conditions (see Supplementary Table S4). The top over-
expressed genes were collagen type XVIII alpha 1 chain (COL18A1) and matrix metallopeptidase 11 (MMP11) 
which are related to invasion and migration processes in several cancer types21–23 (Table 3). The bottom underex-
pressed observed genes in our analysis were the carbonic anhydrase 4 (CA4), alcohol dehydrogenase 1B (ADH1B) 
and the vascular endothelial growth factor D (FIGF). The CA4 gene participates in several biological processes24, 25,  
however, its exact biological function is still unknown. The ADH1B gene is involved mainly in the catabolism 
of ethanol26. Finally, FIGF is a c-fos-induced growth factor gene involved in angiogenesis, lymphangiogenesis 

Parameter HN CN

Connected Components 478 842

Largest Component 4,214 134

Diameter 22 14

Connected Pairs 17,757,588 162,552

Avg. Shortest Paht Length 6.727 3.428

Avg. Degree 4.319 4.64

Genes 5,395 5,022

Density 8.01 × 10−4 9.24 × 10−4

Clustering Coefficient 0.135 0.377

Table 1. Network parameters for Healthy (HN) and Cancerous (CN) phenotypes. Notice that the network 
diameter as well as the connected pairs (100×) are considerably larger in HN with respect to CN. It is opposite 
to the case for the number of connected components.

HN gene Degree CN gene Degree

ZBTB21 98 NEURL4 52

FAM160A1 92 SLC25A11 50

PLK3 82 DPH1 50

TSC22D2 72 PSMB6 48

ACVR2B 67 ANKFY1 48

FKBP2 64 TSR1 44

HOOK1 61 C1QBP 43

SPATA2L 59 RPA1 42

AP1M2 55 HSF1 41

SLC25A25 52 ZNF7 40

Table 2. Top 10 vertex degrees for Healthy (HN) and Cancerous (CN) networks. Notice that the more 
connected gene in CN (NEURL4) has the same number of neighbours than the tenth highest degree node in 
HN (SLC25A25).
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and endothelial cell growth27. The complete DEG list was used as input for the following functional analyses as 
described in the following sections.

Functional analysis. Functional pathway topology analysis. Causal networks were constructed using 
QIAGEN’s Ingenuity Pathway Analysis (IPA), in order to identify the main relationships involving the previously 
found DEGs. All the consistent-with-experiments relationships involved in cancer, according to IPA knowledge 
base (IKB), were chosen for the analysis. Results are depicted in Fig. 5 where green/blue elements represent 
underexpressed molecules, whereas red/orange represent its overexpressed counterpart. It can be observed 
that the outer elements are underexpressed in their majority, meanwhile, the inner components are mainly 

Figure 2. Inter-chromosomal regulation loss in cancerous network. (A) Healthy network (HN). (B) Cancerous 
network (CN). This figure shows the architectural features of each network. Both networks are depicted with the 
same layout as in Fig. 1. The color code is according to the chromosome location in which each gene is placed. 
Notice the presence of a single giant component in the HN, which is not the case for CN, where several small 
components coexist. Furthermore, in the HN of panel (A) all genes in the giant component belong to different 
chromosomes, meanwhile in the CN of panel (B), almost all components are composed of genes which belong 
to the same chromosome.
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overexpressed. This configuration is a symptom of a high transcriptional activity. In addition, molecules outside 
the plasma membrane are related to extracellular matrix remodelling.

Our expression data were compared with IKB set of categories and biological functions. In this context, mol-
ecule expression levels present in any category were used to generate a significance activation Z-score for each 
process. Tables 4 and 5 presents the top and bottom five Diseases and Functions. It can be seen that the most 
increased functions (top of the table) were related to cell cycle, whereas blood vessel-related processes, growth, 
migration and differentiation were decreased. Complete results, including the molecules present in each category, 
are provided as Supplementary Table S5.

IPA also provides a tool to predict the regulatory role that a molecule may have with respect to its known 
targets: the Upstream Regulator analysis. With this tool is possible to observe the biological functions that the 
regulatory targets have, giving an insight on the overall effect that such upstream regulator could exert. This task 
is performed by calculating a consistency score, which takes into account the expression levels of the regulator 
and their targets. In this work, we focused on collagenases since they have a crucial role in cell migration and 

Figure 3. Inter-chromosomal regulation loss. The circos plots show the dramatic difference in the connectivity 
of healthy network (HN) and cancerous network (CN). (A) The HN using the top 0.01% mutual information 
(MI) values. The blue lines represent gene intra-chromosomal relationships. Orange lines join inter-
chromosomal genes. The next outer circle (grey) represents the degree of each gene (number of neighbours 
of each gene) as red peaks height proportional to its degree. The external circle indicates the chromosomal 
location where regions are separated by squares. Notice in panel (A) the high density of the inter-chromosomal 
relationships (around 11,000 edges). On the contrary, in panel (B) the CN has a high density of intra-
chromosome relationships, meanwhile, the inter-chromosome links are almost absent. It is worth to mention 
that both networks contain the same number of links. In panel (B) it is also depicted in a dark-grey circle, the 
differential expression of its genes: blue/red histograms indicate under/overexpression respectively. The size of 
the line is proportional to the differential expression value. Panels (C and D) are a zoom-in for HN (panel C) 
and CN (panel D) of chromosomes 1 and 19, which shows a remarkable difference in the chromosomal distance 
between edges. In panel (C) genes are linked to Chr19 but are not close between them, meanwhile, for panel (D) 
the majority gene relationships takes place within its neighbourhood.
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extracellular matrix remodelling28, 29. Interestingly, COL18A1 gene had the highest consistency score, which was 
overexpressed in our cancerous samples. However, the regulatory role that this molecule has is mainly inhibi-
tory. In addition, COL18A1 also decreases cell adhesion, chemotaxis, tubulation and cell cycle-related processes 
through some transcription factors as well as membrane proteins (Fig. 6).

There is similarity in the downregulated biological processes identified by the two independent analyses, i. e., 
the COL18A1 dependant decreased functions in Fig. 6, are similar to those found in the bottom five Diseases and 
Functions categories of Table 4. Given the fact that COL18A1 is not involved in any other enriched categories in 
this analysis, we can argue that these processes might be downregulated by more than one mechanism.

Canonical pathways analysis in breast cancer reveal cell cycle upregulation. The Canonical Pathways curated in 
the IKB provided another analysis instance of our dataset, in which the molecules could participate in specific 
cellular events, i. e., sets of molecules interacting in a given pathway to perform a specific function according 
to their expression levels. The two most significant upregulated Canonical Pathways were the role of BRCA1 in 
DNA damage and the estrogen-mediated S-phase entry, which are related to cell cycle regulation processes. These 
pathways were overexpressed, since their molecules presented an expression value which is consistent with the 
expected values that the pathway would have, if said pathways were activated (Fig. 7A and B). It is worth men-
tioning that these upregulated pathways depend on two of the most studied molecules involved in breast cancer: 
BRCA1 and estrogen. This is very consistent with the phenomenon being a well-known hallmark of cancer30, 31.

Figure 4. γ-Protocadherin complex (PCDHG) and its putative role in breast cancer. (A) Chromosomal 
localization of the 22 γ-protocadherins. (B) Signalling pathway involving G-proteins, protocadherins and their 
targets in the cell trafficking, contraction and cell adhesion processes. Molecule expression values are presented 
in colors and the expected activation state given by those expression values: under/overexpressed genes in 
green/red-orange respectively. Blue events represent downregulated processes. Red-green vertex represent 
molecule complexes that include overexpressed and underexpressed molecules together. (C) The PCDHG 
cluster obtained in the cancer network. Notice that all genes are underexpressed (blue color). Transparency and 
color edges intensity are according to the mutual information values obtained.
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Validation. Comparison with TCGA previous analyses. As our work builds on the efforts made in TCGA 
project, we compared our results regarding differentially expressed genes, enriched processes and network topol-
ogies with those obtained from the original papers where the samples were obtained and analysed13, 14.

In the seminal TCGA paper13, the authors analysed in an integrative fashion, mutations, mRNA and miRNA 
expression, methylation profiles and copy number of 825 patients, finding specific features depending on the 
analysed PAM50 subtype. Among the most important results reported by the TCGA consortium, we can mention 
the enriched processes, including the BRCA1 and BRCA2 deregulation in RB1 pathway, apoptosis evasion and 
proliferation, as well as, S phase and S/G2/M checkpoints. Those processes were also found enriched and corrob-
orated by our functional analyses as depicted in Fig. 7A,B and Table 4. The original TCGA breast cancer paper 
also reported important mutations (amplifications, deletion and indels) in genes such as PIK3CA, PTEN, AKT1, 
TP53, GATA3, RUNX1 and PIK3R1. However, in our analysis PIK3R1 is the only gene that resulted differentially 
expressed from the genes listed above. Perhaps, this apparent discrepancy could be due to the fact that in the 
original TCGA paper, there was no contrast between healthy and cancerous expression levels. Nevertheless, the 
biological redundancy in the model under consideration is also captured in our analysis, at a functional level, by 
the overlap presented in the enriched processes reported, despite the discrepancy found in the DEGs and muta-
tions. Regarding the analysis made by Ciriello et al.14, invasive lobular carcinoma (ILC) was studied by means of a 

Gene 
Symbol Log2FC p-value

False 
Discovery 
Rate

References 
In Breast 
Cancer

COL11A1 5.069 1.77 × 10−212 4.59 × 10−210 21–23

MMP11 4.147 1.14 × 10−223 4.59 × 10−231 67–69

KIF4A 3.905 0 0 70–72

GRM8 3.559 3.36 × 10−133 2.52 × 10−131 73

TPX2 3.284 1.07 × 10−313 5.45 × 10−310 74, 75

    

PI16 −4.651 3.86 × 10−117 2.31 × 10−115

CPA1 −4.868 5.19 × 10−122 3.35 × 10−120 76

FIGF −5.165 2.24 × 10−198 4.51 × 10−196 27

ADH1B −5.697 5.58 × 10−144 4.74 × 10−142

CA4 −6.431 2.3 × 10−192 4.4 × 10−190

Table 3. Top and bottom five differentially expressed genes. Linear model raw p-values results were corrected 
for multiple comparisons using the False Discovery Rate method. Gene expression differences between 
cancerous and healthy samples are presented in log2 scale (log2FC).

Figure 5. Ingenuity Pathway Analysis cancer network from RNA-Seq breast cancer samples. The molecules 
color represents the expression levels: green/red stands for under/overexpressed in cancer samples respectively. 
Blue/orange color indicates a predicted inhibition/activation of the molecule respectively. Blue and orange 
lines are depicted with the same color code. Molecules color intensity is presented in log2 FC scale. Notice that 
molecules in the extracellular space are underexpressed, whereas the inner components, in particular those that 
belong to the nucleus are overexpressed.
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multidimensional approach using 817 breast tumours classified by their histological features. Despite E-cadherin 
loss, significant mutations in the key regulator of the estrogen receptor, FOXA1 gene, were reported. Although, 
FOXA1 has been reported overexpressed in prostate cancer32, in our analysis it presented a log2FC = 1.215. But, 
this value was not statistically significant, according to our criteria (FDR < 1 × 10−5 and a |log2FC|>1).

Finally, it is worth to mention that both previous analyses used different subclassification strategies. On the 
one hand, the classification used by the TCGA consortium13 included estrogen receptor status, PAM50 subtypes2 
and unsupervised clustering. On the other hand, Ciriello et al.14 grouped samples according to their histological 
features. Conversely, the main objective of our work was to discover the most common transcriptional features in 
breast cancer. Hence, cancerous samples were not divided into molecular subtypes, but used as a whole and con-
trasted against healthy samples. After this first approach, steps towards the understanding of the unique features 
present in transcriptional networks for different molecular subtypes will be explored.

Functional analyses validation. We analysed a complementary collection of breast cancer microarray data in 
order to observe whether our results could be found in other data sets. For this analysis, five different experiments 
were used to build our comparison dataset (GSE5400233, GSE5056734, GSE4256835, GSE2943136 and GSE1081037), 
yielding a total of 641 breast cancer and 78 healthy samples. Differential expression analysis was performed using 
the same parameters than the TCGA dataset (FDR < 1 × 10−5 and a |log2(fold change)|>1), obtaining 1,546 can-
didate genes, with 44% of them also found in the RNA-Seq analysis (Supplementary Table S6). We also comple-
mented our functional studies with a GeneSet Enrichment Analysis (GSEA38), performed to both our original 
RNA-Seq breast cancer data, as well as the secondary microarray dataset, to corroborate the enrichment of previ-
ous reported categories. The most enriched GSEA categories are involved in cell cycle and chromosome-related 
processes (Supplementary Table S7).

Annotated 
Functions p-value

Activation 
Z-score # Molecules

G2 phase 6.66 × 10−05 2.19 30

G2/M phase 1.31 × 10−03 2.186 23

Inflammation of 
organ 3.39 × 10−04 1.951 49

Synthesis of 
progesterone 1.47 × 10−02 1.399 7

Binding of 
endothelial cells 2.92 × 10−03 1.35 20

   

Vasculogenesis 1.74 × 10−09 −3.115 101

Angiogenesis 7.38 × 10−10 −3.176 103

Growth of 
epithelial tissue 4.12 × 10−10 −3.347 106

Migration of cells 1.08 × 10−14 −3.361 239

Differentiation 
of cells 2.40 × 10−05 −3.738 163

Table 4. Top five increased and decreased functions. Note that the annotated functions are ordered using the 
activation Z-score. Companion p-values and the number (#) of molecules present in each function are also 
included.

Phenotype Chr Symbol GeneStart Chr Symbol GeneStart

Network MI Hi-C

Healthy Cancerous MCF10a MCF7

Healthy

3 NR1D2 23986751 1 PRE3 7844380 0.4491 0.2441 1.112 0.5389

22 TEF 41763337 1 PER3 7844380 0.4416 0.2576 0.8829 0.445

8 ESRP1 95653302 1 RAB25 156030951 0.4381 0.058* 0.7815 0.9124

21 ZBTB21 43406940 1 PLK3 45265897 0.4334 0.0154* 0.7083 0.6709

3 NR1D2 23986751 1 UTS2 7903143 0.4252 0.1402* 1.112 0.5389

Cancerous

20 CSNK2A1 459116 11 CSNK2A3 11373489 0.150155* 0.601748 0.9135 1.214

9 CBWD1 121041 2 CBWD2 114195268 0.247417 0.438327 0.9979 1.37

18 KIAA1328 34409069 9 PGM5P2 69080240 0.127655* 0.436005 0.5589 0.8362

3 ESRG 54666149 8 HHLA1 133073733 0.160935* 0.405771 0.8386 0.9733

11 CSNK2A3 11373489 20 TBC1D20 416124 0.0338788* 0.30643 0.9135 1.214

Table 5. Top 5 comparison between inter-chromosomal network interactions and Hi-C experiments for 
healthy and cancerous data. *Not present at 0.01% MI cutoff.
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Network size effects, overfitting and results’ generality. In this work the large number of samples used, has 
allowed us to perform astringent cut-off analyses. However, two delicate issues could arise with a systems biology 
approach such as the one presented here for the transcriptional networks: i) the size effect difference between the 
samples used for HN and CN construction, and ii) a topology artefact in the CN due to data over-fitting.

Mutual information calculations for almost a thousand of samples is a computationally expensive task. Hence, 
bootstrap of smaller networks (100 samples) could take much time to have statistical significance. To overcome 
this challenge, we choose to divide our cancer network in parts of 110 randomly chosen samples, i.e., the same 
size than the healthy network, and observe whether or not the topology of those smaller networks maintained 
the original structure (Supplementary Figure S3). Additionally, we constructed networks with 220, 440, 550 and 
660 samples, expecting to obtain the same general topology: small disconnected components which belong to the 
same chromosome. As we expected, the smaller networks have all the same pattern of small connected compo-
nents, but more importantly, belong to the same chromosome (Supplementary Figure S4). With this calculation 
we show that for our work, the number of samples does not affect the results of the network. This is of the utmost 
importance, since the results on topology, chromosomal arrangements and functional processes involved in this 
analysis are neither dependent on the technology nor the sample sizes but on biological processes underlying 
breast cancer.

Hi-C validation in breast cancer cell lines. As a complementary validation strategy, we compared the interac-
tions observed in the Healthy Network and Cancerous Network with data coming from Hi-C experiments39. 
With this technology, it is possible to perform unbiased genome-wide analysis of chromatin interactions. We 
compared the inter-chromosomal interactions in available data from experiments in breast cancer cell lines 
(MCF7) as well as non-cancer breast cell lines (MCF10a)15. Our data are shown in Table 5 where we compared the 
top 5 inter-chromosomal interactions in the healthy and cancerous networks respectively, with data from Hi-C 
experiments on MCF10a and MCF7 cells. Table 5 shows a strong correlation between the interactions obtained 
by the network approach and those obtained by experimental three-dimensional localisation of gene interac-
tions. Furthermore, in that same paper15, a significant increase of inter-chromosomal associations between chr16 
through chr22 in the MCF-10A genome with respect to the breast cancer MCF7 cell line is reported, in agree-
ment with our results of loss of inter-chromosomal regulation in breast cancer. Those authors also suggest that 
the relative (MCF-10A/MCF-7) interaction frequency of chr18 with other small chromosomes was significantly 
increased in the MCF-10A cells. As it can be observed in our Fig. 3A of this paper, it is possible to observe several 
interactions between chromosome 18 and the rest of the genome, meanwhile in the cancerous network (Fig. 3B) 
these relationships disappear.

Discussion
In this work, using 881 breast cancer whole-genome RNA-Seq samples from TCGA (780 cases and 101 controls), 
we analysed the structural and functional differences between these two phenotypes. We found 1,431 differen-
tially expressed genes, from which the top overexpressed subset was associated with cell cycle, cell division and 
DNA repair, whereas the bottom underexpressed genes were related to motility, migration, angiogenesis and 
cell adhesion processes. By means of an informational theory-based network approach, we inferred and ana-
lysed transcriptional regulatory networks for RNA-Seq genome-wide breast cancer samples (CN) and compared 

Figure 6. Upstream regulator analysis for COL18A1. COL18A1 overexpression (orange) decreases the 
expression of all molecules present in the figure (green), which accounts for the inhibition (dashed blue lines) of 
the biological processes indicated here.
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them with non-cancer networks (HN). We observed a dramatic difference between the network topology of 
HN compared to the CN, mostly in the number and size of connected components at three different MI cut-off 
values. The HN with the middle cut-off value (0.01%), formed a giant component corresponding to the 80% of 
the total of genes of the network (4,214 out of 5,395), while on the contrary, the CN’s largest component only 
contained 134 genes. Here, for the first time, strong differences in the inter and intra-chromosomal regulation 
for both phenotypes are presented. Moreover, the intra-chromosomal interactions observed in the CN occur 
between neighbouring genes; these neighbouring regions present a consistent expression pattern: either predom-
inantly overexpressed or predominantly underexpressed. Differences in gene expression levels between cancer 
and non-cancer samples, as well as between the HN and CN, were consistent with the already known hallmarks 
of cancer, in particular for breast cancer, such as the activity via estrogen or BRCA1 signalling pathways (Fig. 7). 

Figure 7. Top 2 activated canonical pathways. (A) Role of BRCA1 in DNA damage pathway. (B) Estrogen-
mediated S-phase entry pathway. The molecules are depicted according to the standard color code of this 
manuscript. Notice that both pathways are consistent with cell cycle progression, a typical hallmark of cancer.
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On the other hand, some mechanisms apparently counteract the effect of the aforementioned deregulation: the 
inhibition of processes related to migration or cell adhesion (Table 4, and Figs 4(A,D), 5 and 6). This approach 
remarks the interplay between progression and slowdown of cell communication during the development of 
breast cancer. In what follows, we will give a set of hypotheses partially derived from the results observed here.

Transcription networks inference and communication loss between processes in breast can-
cer. A relevant matter of intense research in cancer biology is whether communication between processes is 
lost during cancer. Here, we built the CN and HN based on mutual information to provide a quantitative index 
of dependency between pairs of genes. A simple visual inspection of Fig. 1 revealed a dramatic difference in 
the size and number of connected components between CN and HN, i.e., a giant connected component was 
present in the HN meanwhile, the CN had several small components. As far as the authors know, this is the first 
instance of a putative loss of communication in the CN reported. Secondly, the distribution of MI values was 
different (See Supplementary Figure S5), even for non-differentially expressed genes. Such is the case of the most 
connected genes in the CN: ANKFY1 (LFC = −0.208), DPH1 (LFC = −0.1), NEURL4 (LFC = −0.274), PSMB6 
(LFC = 0.094) and SLC25A11 (LFC = −0.102). Supplementary Figure S6 shows histograms of the MI values for 
those 5 genes in CN and HN, evidencing the same effect that is observed in Supplementary Figure S5: MI values 
tend to be higher in HN genes with respect to CN. This is an indicative that independently of the differential 
expression, the statistical dependency between healthy samples is larger than the observed between the cancerous 
ones. The generality of this result seems to give account to an intrinsic process of the phenomenon of cancer, more 
than an effect of the methodology to obtain the correlation values. We took the top 0.01% MI values to build both 
networks, yielding a MI cut-off value of 0.159 and 0.1745 for the CN and HN respectively. Moreover, the differ-
ence in the MI cut-off values increased by choosing larger networks. Using the strongest 0.1% MI values, i.e., one 
order of magnitude greater, the cut-off values would be changed to 0.068 and 0.1263 for the CN and HN respec-
tively. Since MI provides a measure of the statistical dependence of pairs of variables which can be understood 
in this context as correlations in the transcriptional processes, lower levels of these values in the CN may reveal 
a weak co-regulation in the whole transcriptional program during cancer. At the same time, the highest outlier 
values of MI in the CN are close to 1 (0.986, between CKMT1A and CKMT1B), meanwhile in the HN, the highest 
MI value is obtained between HBA1 and HBA2 (0.687). This fact could be related to the acquirement of stronger 
specific relationships relevant to cancer.

In the CN it is possible to observe that all components are constituted mostly by underexpressed or overex-
pressed genes (Fig. 1B). Furthermore, almost all the components in the CN have at least one transcription factor 
(bold border of nodes), which could indicate that the regulation of those sets of genes could be governed by the 
interaction of that gene with the other members of the component.

To the best of our knowledge, this is the first time in which a whole-genome network analysis in cancer reports 
that the large majority of interactions between genes is given by the ones that belong to the same chromosome. 
The strongest relationships between genes in cancer at the transcriptional level are intra-chromosomal; mean-
while, in the healthy tissue, the regulation occurs between pairs of genes of any chromosome. We want to stress 
the marked difference in the location where the relationships occur for HN and CN, which implies dramatic 
differences in chromosomal regulation during the transcriptional process. We argue that this result could be due 
to a dysfunction in the RNA polymerase machinery.

Deregulation of specific molecules triggers malfunction of cell cycle, migration and hormone 
signalling. Causal network analysis showed an important set of genes involved in cancer. Those genes are con-
sistent with their activation state and the upregulation of carcinogenic processes, as it can be observed in Fig. 5, 
where the majority molecules expression values were in agreement to the exacerbated levels of cancer-related 
pathways, e.g. overexpression of KDM5B, an important oncogene in breast cancer40, 41, IQGAP3, CCNB1, CDK1 
or CCNE2, which are highly involved in the correct function of cell cycle checkpoints and promotion of cell divi-
sion. On the other hand, we also have two underexpressed genes such as MYC and BCL6. The MYC expression 
could be related to the action of BRCA142. Interestingly, almost all the blue lines are directed to or from MYC/
BCL6. Although they are also oncogenes, they were underexpressed, which may indicate that despite the fact that 
the cell is facing a strong damage, there are some mechanisms which tend to repair said damage.

Cellular component distribution of deregulated molecules also called our attention (Fig. 5). Several overex-
pressed molecules were found inside the nucleus whereas mostly underexpressed ones were outside of it. This 
observation could mean that the transcriptional process is highly active while the cell-to-cell communication is 
downregulated. The highest Z-scores of the Diseases and Functions corroborate the upregulation of cell division 
(G2 phase) in Table 4. Concomitantly, the molecules appearing in the extracellular space indicate a decrease in 
cell-to-cell communication supported by the bottom five Z-scores, where cell-to-cell communication is downreg-
ulated. Meanwhile, the upstream regulator analysis of COL18A1 (Fig. 6) showed that, even when this molecule 
is upregulated, the processes in which is involved are downregulated. Those processes are mostly related to cell 
adhesion and migration. It is remarkable that not one of the processes involved in the Diseases and Functions 
analysis with lowest Z-scores include COL18A1 (Table S3), suggesting that the downregulation of migration and 
cell adhesion processes might be produced by different mechanisms. This finding acquires relevance since migra-
tion and the remodelling of the extracellular matrix are classic hallmarks of cancer.

Coexistence of mechanisms of cancer progression and DNA repair. In Fig. 7A we can observe 
how apparently the cell attempts to repair DNA damage, i.e., BRCA1 signalling pathway is trying to repair DNA, 
via the FANCD2-RAD51-BRCA1/2 complex43. However, E2F is also overexpressed, allowing the transcription 
of several other genes44. In the end, we may be observing, how an opposite action between a tumour suppressor 
gene (BRCA1) and an oncogene (E2F) takes place, during the development of breast cancer. The BRCA1/FANC/
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RAD51 complex is in some sense nullified and, at the same time, E2F strongly promotes G1-S progression via 
cyclins and CDKs (Fig. 7B). It is worth mentioning that cyclins and cyclin-dependent kinases in Fig. 7B are all 
overexpressed, which leads to a malfunction in the G1/S cell cycle checkpoint. In addition, there is also the inter-
action between c-MYC and CDC25A45. c-MYC is underexpressed, as we mentioned previously, possibly due to 
the inhibitory action of BRCA1 over the expression of c-Myc42. However, CDC25 manages to avoid the inhibitory 
effect of MYC. In this context, E2F also participates in the Estrogen-mediated S-phase entry. Interestingly, cyc-
lins, CDKs and E2F act independently of the expression of its regulators. From the interpretation of this figure 
we can argue that the process of DNA synthesis is exacerbated, since several transcription factors are active. The 
former gives place to BRCA1 DNA-repairing signalling pathway to participate, but, the overexpression of cyclins 
and CDKs promotes an evasion of cell cycle checkpoints. This is a typical portrait of cancer: communication loss 
between processes which are collaborative working together in healthy conditions. These results led us to study 
the interactions in the transcriptional networks in detail.

PCDHGs as a novel candidate to regulate cell adhesion in breast cancer. Our analyses led us to 
observe that PCDHGs are downregulated. Decrease in this complex inhibits cell adhesion, contraction and mor-
phogenesis (Fig. 4B). From the network analysis, the strong association between all the elements of the complex 
is evident. At the same time, the enrichment analysis shows that cell adhesion processes might be downregulated 
by the decreased function of this complex, suggesting again that the underexpression of a given process could be 
obtained by different molecular mechanisms. This zone is hypermethylated in breast cancer; to direct research 
to understand the specific mechanisms that PCDHGs have in the context of breast cancer is appealing. It is also 
remarkable that all of the aforementioned processes are downregulated in the functional analysis observed in 
Figs 5 and 6 and Table 4.

Regarding the connectivity of the cluster, the localisation of those genes on chromosome 5 and the consistent 
underexpression of them, could be the reason for which they are strongly correlated in the transcriptional net-
work. However, the mutual information approach to construct networks, is based on the expression level of the 
molecules. By observing Fig. 4C, it is clear that the expression level of all molecules is not exactly the same. This 
fact acquires relevance since is not only a conserved expression level throughout the genes, but the consistent 
expression pattern along the 872 samples of the breast cancer RNA-Seq samples which produces this tightly con-
nected structure in PCDHG cluster.

Final considerations. In this work we have performed a Systems Biology approach to unveil subtle relation-
ships at the transcriptional level in breast cancer. To achieve this we constructed and analysed networks obtained 
by a theoretical information algorithm. Results obtained by this approach (differentially expressed genes, func-
tional analysis and network topologies) were validated by independent datasets, alternative sequencing technol-
ogies and different enrichment approaches. To our knowledge this is the first time that a RNA-Seq based network 
inference in breast cancer reveals loss of inter-chromosomal interaction. Hi-C data also reinforce this last result, 
inter-chromosomal relationships are more frequent and higher in non-cancer breast cell lines (MCF10a), com-
pared to breast cancer cells (MCF7)15. Furthermore, to find consistently neighbour clusters which are predom-
inantly overexpressed or underexpressed in the cancerous network, could be indicative that the transcriptional 
regulation in breast cancer is highly dependent on the three-dimensional compartmentalisation. Further inves-
tigation to address this issue is necessary, but it is important to highlight that, with a coarse-grained approach 
it is possible to unveil geographical features that could shape the three-dimensional cellular landscape in breast 
cancer.

Breast cancer commonalities should be the starting point to focus efforts to discover the mechanisms underly-
ing this disease. With this approach we have directed the research towards a global understanding of the transcrip-
tional programs in health and disease. The approach presented here revealed that those shared features in breast 
cancer may provide insights regarding the acquisition or loss of specific functions that control the finely regulated 
transcriptional program. The heterogeneity of breast cancer is without a doubt one of the major challenges for 
its clinical management, and therefore it is a necessary consideration for any study of the disease. In our recent 
work46 we compared the transcriptional architecture of the commonly studied subtypes of breast cancer: luminal 
A, luminal B, basal, and HER2-enriched, based on microarray data, and using a similar information-theoretical 
strategy. In that work, we identified differences in the networks of the different molecular subtypes; however, we 
found the differences to be much greater between any subtype against the control samples. With this in mind, for 
this work we focused on the differences between tumours and regular breast tissue as the first approach using the 
RNA-seq technology. Considering our current findings, a logical question is whether these results are common 
to all molecular subtypes. We would expect to be able to explore this when a suitable large dataset is available.

Cancer has been the most important disease in the 20th century and it will also be like that for the 21st cen-
tury. Understanding cancer at the molecular, proteomic, metabolic, organismal and even social level is manda-
tory. The inherent complexity underlying each level of description makes it virtually impossible to integrate it in 
a coherent fashion, given the enormous plethora of variables involved in the rise and progression of this disease. 
This is the principal reason to develop research focused on a specific level. Here, by inferring networks with all 
available next generation sequencing samples at TCGA, we clearly reveal a non-previously observed general 
feature in breast cancer: the loss of inter-chromosome regulation. This last addresses the problem of finding the 
most relevant differences between breast cancer and non-cancerous transcriptional regulatory programs. From 
our findings, experimental procedures to validate what we have presented here will be necessary in order to reveal 
to a fuller extent the mechanisms behind the appearance of this dismal disease.
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Materials and Methods
The present work includes four processing data blocks (acquisition, pre-processing, processing and result explo-
ration) which are described in detail below and depicted in the workflow diagram of Fig. 8. All the statistical 
analyses for this article were done using R version 3.2.247.

Data Acquisition. This whole work is based upon data generated by the TCGA Research Network48 (http://
cancergenome.nih.gov/). All available breast invasive carcinoma datasets were downloaded, restricted to level 
three data from UNC (IlluminaHiSeq_RNA-Seq) platform with matching tumour and normal samples up to July 
2015, yielding a total of 780 and 101 files respectively (Supplementary Table S3). The starting point considered in 
this work were the 20,532 raw counts obtained at the gene expression level with corresponding Entrez Gene ID49 
and symbol provided by the HUGO Gene Nomenclature Committee (HGNC)50 for each sample.

Figure 8. Material and methods workflow diagram. The workflow starts with the data acquisition block which 
gathers level three breast invasive cancer gene expression raw counts for tumour and normal datasets from The 
Cancer Genome Atlas (TCGA). Complementary annotation data are obtained from BioMart (Chromosome, 
%GC content, Entrez Gene IDs, and HUGO Gene Nomenclature Committee - HGNC - symbols). Then, the 
pre-processing block integrates both expression and annotation data necessary for quality control, such as bias 
detection (e.g. %GC content, gene length, etc.), within/between normalization and multidimensional principal 
component (PC) analysis noise reduction. After that, the processing block diverges into two complementary 
analyses: i) Differentially expressed genes (DEGs) discovery is carried out to find potential candidate genes 
between cases and controls; ii) Two whole genome-genome mutual information density distributions are built 
for each condition in order to construct similar networks and visualized with Cytoscape. Both DEGs and 
networks results are then submitted to functional analysis with Ingenuity Pathway Analysis (IPA). Finally, result 
exploration integrates PubMed literature together with functional results to obtain biological insight of the 
problem at hand.

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://S3
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Complementary annotation data were obtained from BioMart51 using Ensembl Genes 80 database for 
Homo sapiens (GRCh38.p2), in order to obtain the following fields: Chromosome name, gene start and end, 
%GC content, gene/biotype (protein coding, snoRNA, lincRNA, snRNA, etc.), Entrez Gene ID, HUGO Gene 
Nomenclature Committee (HGNC) symbol and HGNC ID(s).

Data Pre-processing. This block can be conceptually divided into two: i) Integration and ii) Quality control 
as detailed described below.

Integration. Basically, integrity check had to be carried out in raw expression files to control that all of them have 
both the same dimension and provided TCGA identifiers before complementary annotation can be incorporated. 
In this context, the following filtering criteria were applied to fulfil this task:

BioMart filter: Only records with complete Entrez Gene ID and Symbols fields, belonging to conventional 
chromosomes (1, 2… 22, X and Y) were kept.

Data merge: The Entrez Gene ID was used as a primary key to join the expression and annotation data. If 
more than one BioMart candidate records were found, both TCGA and HGNC symbols had to match. If addi-
tional records were found the one with lowest GC content was selected.

The above criteria resulted in a 19,449 × (780 + 101|10) expression matrix, where genes are in rows and sam-
ples (tumour and normal) plus 10 complementary annotation entries are in columns.

Quality control. NOISeq R library was used for global quality control in order to assess several aspects (See 
NOISeq quality control report in Supplementary Material)52, 53. First, the relative biotype abundance in the exper-
imental conditions were evaluated in order to assess if samples contained protein coding expression genes in 
their majority as confirmed by the Supplementary Material results. Second, gene counts expression boxplots 
were evaluated per biotype to confirm that the highest median expression corresponded to protein coding genes. 
Third, saturation plots were obtained, i. e., the number of detected genes (counts >0) per sample across different 
sequencing depths as simulated by NOISeq.

All samples reached saturation for the number of detected features at the corresponding sequencing depth, 
i. e., no further gene will be detected. Fourth, global expression quantification for each experimental condition 
yielded a feature sensitivity >60% for 10 count per million (CPM), which suggest an accurate library preparation. 
Fifth, different bias detection plots were tested, where bins containing the same number of corresponding ordered 
genes based on their mean gene length, %GC and RNA content were plotted against their corresponding mean 
expression of gene counts. Unfortunately, the three tested bias presented a pattern and should be removed in 
order to avoid inappropriate biological conclusions.

EDASeq R library was used for batch effect removal54. Before normalization genes with mean counts <10 were 
filtered resulting in 17,215 genes, as suggested in ref. 54. Different within/between normalization strategies were 
tested to remove bias presence (See Supplementary Table S8). The best alternative was sequentially full quantile 
GC content and gene length within normalization followed by Trimmed Mean of M values (TMM)55 between 
normalization. Within full quantile normalization consisted in matching the distribution of the gene counts to a 
reference distribution defined in terms of median counts across the artifact to be removed (%GC or gene length) 
for each sample. Between normalization using TMM assumes that the majority of the genes is not differentially 
expressed and empirically equates the overall gene expression levels between samples based on a reference sam-
ple. The TMM scaling factor value for each sample is a weighted sum of the log-fold change of each gene with 
respect to the reference sample, with weights as the inverse of its approximate asymptotic variance. However, 
this sum is trimmed in the sense that it uses only the genes that were not present in the lower and upper 30%/5% 
of log-fold change and average expression values respectively. Afterwards, NOISeq analysis confirmed artifacts 
removal (See Supplementary Figure S7).

Sample log2(normalized count) expression densities exploration showed a consistent bi-modal pattern, cor-
responding to noisy lower expressed genes and global sample behaviour. Filtering out features with low counts 
(CPM <10 cut-off) retained 15,281 genes removing the undesired lower density peak (See Supplementary 
Figure S8). Multidimensional sample exploration based on Principal Component Analysis (PCA) scatter scores 
plots, showed that experimental group overlap exists and each condition presented different variance. ARSyN R 
library was used for multidimensional noise reduction using default parameters (See Supplementary Figure S9)56. 
This strategy is useful to remove systematic noise and/or batch effects. Basically, it decomposes the expression 
matrix into a sum of matrices according to an analysis of variance (ANOVA) using the experimental design plus 
the random error term. Then, each matrix can be analysed by PCA and reconstructed using only the first eigen-
values that explain more that 75% of the data, plus its appropriate error. The filtered expression matrix would 
result from subtracting to the original expression matrix, the error of each factor matrix reconstruction plus the 
signal of the random error term.

Data processing. This block diverges into two complementary analysis: i) Genome-wide interaction net-
work analysis for each experimental condition and ii) Differential expressed genes (DEGs) between normal and 
tumour conditions. Then, both DEGs and networks results were submitted for functional analysis.

Network construction. Several correlation measures have been used to develop transcriptional interaction net-
works based on the inference of statistical dependency57–60. It has long been proven that the best estimator of sta-
tistical dependency is mutual information (MI)60–62. The Algorithm for the Reconstruction of Accurate Cellular 
Networks (ARACNE)61, 62 is a well-known information-theoretic algorithm that correlates pairs of genes by MI 
values62. In order to make comparable both networks, we kept only the top 0.01% MI values for healthy networks 
(HN) and cancerous networks (CN), yielding 11,675 interactions. The lowest MI values were 0.174 and 0.159 for 
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the HN and CN respectively. Interestingly, tumour density shifted to a lower narrow MI compared to the normal 
case (see Supplementary Figure S3). To study the networks’ topological properties, we use the network analyzer 
plug-in of Cytoscape (v.3.2.1). For this work we focused on degree centrality measures, number of connected 
components, i.e. groups of nodes connected between them, but not connected to the rest of the network and size 
of these components.

To further explore that the generality of the network’s results and connectivity characteristics are not caused 
either by overfitting nor by different sample sizes (110 and 780 for healthy and cancerous respectively), a 7-fold 
validation strategy over the cancerous samples was carried out using the same MI cut-off value. In addition, can-
cerous networks with healthy sample size x {2, 3, …, 6} were also tested. No difference in topological characteris-
tics nor overfitting bias effect was present in both cases, i.e., results were similar for every tested complementary 
cancerous trained network.

Differentially Expressed Genes. Independent gene-based linear models were adjusted using limma R package47 
to find DEGs in tumour samples compared to the healthy samples using (1):

µ α ε= ++y (1)ij i j

where yij, is the log2(normalizedgeneexpression); μ, is the global mean; αi is the i-th experimental condition (nor-
mal or tumour) and εjN (0, σ) is the random error term of the j-th sample. Hypothesis tests based on empiri-
cal Bayes moderation of the standard errors towards a common value, were used to obtain the corresponding 
p-values which were adjusted to control multiple comparisons using the False Discovery Rate (FDR)63. Due to 
the fact that each experimental condition has a large number of samples, model (1) had a strong statistical power. 
Thus, the DEGs were defined as the 1,431 (9.36%) genes that had a FDR < 1 × 10−5 and a |log2(fold change)| > 1 
in order to find those differentially expressed genes with statistical significance, where the random number of 
expected genes is 0.15281. Visual inspection confirmed that these DEGs could accurately separate the experi-
mental conditions in a heatmap and represent a manageable number for further functional analysis and com-
plementary biological validation. Complete model results of the differential expression analysis can be found in 
Supplementary Table S2.

Complementary microarray dataset. For comparison purposes, data from breast cancer samples analysed on the 
Affymetrix HGU133plus2 platform (GPL570) were collected from the Gene Expression Omnibus (GSE5400233, 
GSE5056734, GSE4256835, GSE2943136 and GSE1081037). Microarray data were processed following a pipeline 
using the Robust Multi-array Average64, with batch effects controlled with the ComBat algorithm65.

Functional analysis. Gene expression analysis often falls short in our attempts to gain biological insight about 
complex, heterogeneous phenotypes such as cancer, due to the very large number of differentially expressed genes 
commonly displaying inconsistent behavior among samples. In order to increase the predictive capacities derived 
from high-throughput omic experiments, a number of methods commonly termed Pathway Analysis have been 
developed recently. One important approach to pathway analysis of biomolecular data is the application of statis-
tical data mining techniques in highly curated databases. One of such databases, perhaps the more comprehensive 
to date, is QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity), 
which has been developed, compiled and continually curated by scientists at Qiagen.

Our DEGs were then submitted to functional analysis with IPA. We generated causal networks through this 
platform. This uses a highly curated knowledge-based source: the Ingenuity Knowledge Base (IKB). It contains 
more than 40,000 nodes representing mammalian genes and their products (transcripts, proteins, miRNAs) 
as well as 1,480,000 interactions between them. The aforementioned links represent experimentally observed 
cause-effect relationships relating to transcription, expression, activation, molecular modification, etc. Based on 
this information, IPA contains several Canonical Pathways constructed according to molecules which participate 
in specific processes in the cell. Diseases and function and Upstream regulator categories are another kind of mol-
ecule sets which are available with this tool. For further methodological details please see ref. 66. Causal network 
analysis is a valuable tool to find the common pathways in specific categories of interest such as cell signalling 
processes in cancer. IPA allows for us to find directed relationships between our DEGs and those whose relation-
ships are over-represented in a given canonical process.

Enrichment scores of gene expression experimental data within the IKB framework are determined by hyper-
geometric tests or Fisher exact tests –depending on the statistical dependency conditions on the variables under 
consideration– that measure the overlap between observed and predicted gene sets. Z-score analyses are used to 
assess the match between observed and predicted up/down regulation patterns allowing for Bayesian scoring of 
the results.

As a secondary analysis, Gene Set Enrichment Analysis38 was performed. For this analysis, the complete col-
lection of Canonical Pathways available from the Molecular Signature Database was used, considering all genes 
measured in the RNASeq experiments, as well as the microarray data.
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