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Entanglement distribution in multi-
particle systems in terms of unified 
entropy
Yu Luo1, Fu-Gang Zhang2 & Yongming Li1,2

We investigate the entanglement distribution in multi-particle systems in terms of unified (q, s)-
entropy. We find that for any tripartite mixed state, the unified (q, s)-entropy entanglement of 
assistance follows a polygamy relation. This polygamy relation also holds in multi-particle systems. 
Furthermore, a generalized monogamy relation is provided for unified (q, s)-entropy entanglement in 
the multi-qubit system.

Quantum entanglement is an important resource in quantum information theory. Different from classical cor-
relations, this restricted shareability of entanglement in multi-particle systems is known as monogamy prop-
erty. The more entanglement shared between two parties implies the less entanglement shared with the rest of 
the system. Monogamy property plays a crucial role in quantum cryptography: which restricts the quantity of 
information captured by an eavesdropper about the secret key to be extracted1–3. Monogamy property has also 
been discussed in the device-independent quantum information processing4, condensed matter physics5 and 
black-hole physics6, 7.

The study of monogamy property has a long history. The first monogamy relation was found by Coffman et 
al., who considered a three-qubit system ABC8, and showed that the amount of entanglement (which is quantified 
by the squared concurrence) between A and B, plus the amount of entanglement between A and C, cannot be 
greater than the amount of entanglement between A and the pair BC. Further, Osborne et al. proved the squared 
concurrence follows a general monogamy inequality for the N-qubit system1. Monogamy inequalities for different 
entanglement measures have been noted, such as concurrence9–12, entanglement of formation13, 14, negativity15–19, 
Rényi entropy entanglement20, 21, and Tsallis entropy entanglement22–24. For the other physical resources, such as 
discord and steering, the monogamy property of them has also been discussed25–28.

As dual to monogamy property, polygamy property in multi-particle systems has arised many interests by 
researchers15, 19, 22, 29, 30. Polygamy property was first provided by using the concurrence of assistance to quantify 
the distributed bipartite entanglement in multi-qubit systems29, 30. Polygamy property has also considered in 
many entanglement measures, such as Rényi entropy20, Tsallis entropy22, 31 and convex-roof extended negativity19.

Unified (q, s)-entropy is an important entropic measure, which can be used in many areas of quantum infor-
mation theory. In this paper, we investigate the entanglement distribution in multi-particle systems in terms 
of unified (q, s)-entropy. We find that for any tripartite mixed state, the unified (q, s)-entropy entanglement of 
assistance follows a polygamy relation. This polygamy relation also holds in multi-particle systems. Furthermore, 
a generalized monogamy relation is provided for unified (q, s)-entropy entanglement in the multi-qubit system.

Results
This paper is organized as follows. In the first subsection, we recall the definition of unified (q, s)-entropy and 
discuss the properties of unified (q, s)-entropy entanglement. In the second subsection, we give our main results. 
We summarize our results in the third subsection.

Unified (q, s)-entropy entanglement and unified (q, s)-entropy entanglement of assis-
tance. Given a quantum state ρ in the Hilbert space . The unified (q, s)-entropy is defined as32

ρ ρ=
−

−S
q s

Tr( ) 1
(1 )

[ ( ) 1]
(1)q s

q s
,
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for any q, s ≥ 0 such that ≠q 1 and ≠s 0.
When s tends to 1, the unified (q, s)-entropy converges to Tsallis entropy Tq(ρ)33

ρ ρ=
−

− .
→

S
q

Trlim ( ) 1
1

[ ( ) 1]
(2)s

q s
q

1
,

When s tends to 0, the unified (q, s)-entropy converges to Rényi entropy Rq(ρ)34

ρ ρ=
−

.
→

S
q

Trlim ( ) 1
1

ln ( )
(3)s

q s
q

0
,

When q tends to 1, the unified (q, s)-entropy converges to von Neumann entropy S(ρ)35

ρ ρ ρ= − .
→

S Trlim ( ) ln
(4)q

q s
1

,

Because the limits exist in the case of q → 1 and s → 0, we will use q = 1 and s = 1 to represent the limits in this 
paper. Now, let’s consider the entanglement in terms of the unified (q, s)-entropy. For any pure state ψ AB in the 
Hilbert space H HA B⊗  (it’s does not matter for the sizes of subsystem A and B), the unified (q, s)-entropy entan-
glement is defined as36

ψ ρ=E S( ) ( ) (5)q s AB q s A, ,

for any q, s ≥ 0.
For a mixed state ρAB, the unified (q, s)-entropy entanglement can be defined via the convex-roof extension

∑ρ ψ= ( )E p E( ) min ,
(6)q s AB

i
i q s

i
AB, ,

where the minimum is taken over all possible ensembles ψ{ }p ,i
i

AB
 of ρAB with ∑ =p 1i i  and pi ≥ 0. It is straight-

forward to verify that ρ =E ( ) 0q s AB,  if and only if ρAB is a separable state for ≥q s, 0.
When s tends to 1, the unified q s( , )-entropy entanglement becomes Tsallis entanglement31. When s tends to 0, 

the unified q s( , )-entropy entanglement becomes Rényi entanglement20. Especially, The unified q s( , )-entropy 
entanglement becomes the entanglement of formation when q tends to 1. The entanglement of formation is 
defined as37, 38

∑ρ ψ= ( )E p E( ) min ,
(7)f AB

i
i f

i
AB

where ψ ρ ρ ρ ρ= − = −E Tr Tr( ) ln lnf AB
i

A
i

A
i

B
i

B
i is the von Neumann entropy, the minimum is taken over all pos-

sible ensembles ψ{ }p ,i
i

AB
 of ρAB with ∑ =p 1i i  and pi ≥ 0.

As a dual quantity to the unified (q, s)-entropy entanglement, the unified (q, s)-entropy entanglement of assis-
tance ((q, s)-EOA) can be defined as

∑ρ ψ= ( )E p E( ) max ,
(8)q s

a
AB

i
i q s

i
AB, ,

where the maximum is taken over all possible ensembles ψ{ }p ,i
i

AB
 of ρAB with ∑ =p 1i i  and pi ≥ 0. To under-

stand (q, s)-EOA better, consider a tripartite pure state ψ ABC shared among three parties referred to as Alice, 
Bob, and Charlie39. The entanglement supplier, Charlie, performs a measurement on his share of the tripartite 
state, which yields a known bipartite entangled state for Alice and Bob. Tracing over Charlie’s system yields the 
bipartite mixed state ρ ψ ψ= Tr ( )AB C ABC  shared by Alice and Bob. Charlie’s aim is to maximize entanglement 
for Alice and Bob, and the maximum average entanglement he can create is the (q, s)-EOA.

Concurrence and concurrence of assistance. For any pure state ψ AB in the Hilbert space H HA B⊗ , the 
concurrence is defined as40

ρ ρ= − Tr( ) 2(1 ) , (9)AB A
2

where ρ ρ= Tr ( )A B AB .
For a mixed state ρAB, the concurrence can be defined via the convex-roof extension

 ∑ρ ψ= ( )p( ) min ,
(10)AB

i
i

i
AB

where the minimum is taken over all possible ensembles ψ{ }p ,i
i

AB
 of ρAB with ∑ =p 1i i  and pi ≥ 0.

As a dual quantity to concurrence, the concurrence of assistance (COA) can be defined as

 ∑ρ ψ= ( )p( ) max ,
(11)

a
AB

i
i

i
AB

where the maximum is taken over all possible ensembles ψ{ }p ,i
i

AB
 of ρAB with ∑ =p 1i i  and pi ≥ 0.
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Analytical formula for two-qubit states. For a two-qubit mixed state ρAB, concurrence and COA are 
known to have analytic formula30, 40

 ρ λ λ λ λ= − − −( ) max {0, }, (12)AB 1 2 3 4

 ρ λ λ λ λ= + + +( ) , (13)
a

AB 1 2 3 4

where λi being the eigenvalues, in decreasing order, of matrix ρ σ σ ρ σ σ⊗ ⊗⁎( ) ( )AB y y AB y y .
In ref. 40, Wootters derived an analytical formula of entanglement of formation for a two-qubit mixed state 

ρAB


ρ

ρ
=
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+ − 
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2
,

(14)
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where = − − − −h x x x x x( ) ln (1 ) ln(1 ) is the binary entropy.
In ref. 36, Kim found ρE ( )q s AB,  has an analytical formula for a two-qubit mixed state, which can be expressed 

as a function of concurrence AB  for q ≥ 1, 0 ≤ s ≤ 1 and qs ≤ 3

ρ ρ= 





E f( ) ( ) , (15)q s AB q s AB, , 

where the function fq,s(x) has the form

=
+ − + − − −

−
f x x x

q s
( ) [(1 1 ) (1 1 ) ] 2

(1 ) 2
,

(16)q s

q q s qs

qs,

2 2

where 0 ≤ x ≤ 1.

Main Results. In this section, we will provide our main results. First, we have following result:
Theorem 1. For any tripartite mixed state ρABC in the Hilbert space H H HA B C⊗ ⊗ , we have

ρ ρ ρ≤ +E E E( ) ( ) ( ), (17)q s
a

A BC q s
a

B AC q s
a

C AB, , ,

where q ≥ 1 and qs ≥ 1.
Proof: Let ρ ψ ψ= ∑ pmaxABC i i

i
A BC

i  be an optimal decomposition of ρE ( )q s
a

A BC, . That is

∑ρ ψ= .( )E p E( ) max
(18)q s

a
A BC

i
i q s

i
A BC, ,

For any bipartite pure state ψ i
A BC

, the unified (q, s)-entropy entanglement ψ ρ=( )E S ( )q s
i

A BC q s BC
i

, , . In ref. 
41, Rastegin proved that for any q ≥ 1 and qs ≥ 1, the unified (q, s)-entropy is subadditive, that is

ρ ρ ρ≤ + .S S S( ) ( ) ( ) (19)q s BC
i

q s B
i

q s C
i

, , ,

Combining Eq. (18) with Eq. (19), we have

∑

∑ ∑
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ρ ρ
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, ,

Thus, the proof is completed.
Theorem 1. Shows a simple but interesting polygamy relation of (q, s)-EOA in a tripartite quantum system. 

The upper bound of (q, s)-EOA of A|BC can’t be greater than the sum of (q, s)-EOA of B|AC and (q, s)-EOA of 
C|AB. In particular, for a tripartite pure state ψ A BC , the unified (q, s)-entropy entanglement 

ψ ψ ψ≤ +( ) ( ) ( )E E Eq s A BC q s B AC q s C AB, , , .
We also have the following corollary:
Corollary 1. For any mixed state ρ

A A An1 2
 in the Hilbert space   ⊗ ⊗ ⊗A A An1 2

, we have

∑ρ ρ≤
=
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( ) ( )E E ,

(21)q s
a

A A A
i

n

q s
a

A A A A A,
2

,n i i i n1 2 1 1 1

where q ≥ 1 and qs ≥ 1.
Corollary 1. Shows a constrained relationship of (q, s)-EOA in the multi-particle system, and gives an upper 

bound of (q, s)-EOA of 
A A An1 2 . In particular, for any pure state ψ

A A An1 2
, the unified (q, s)-entropy entan-

glement ψ ψ≤ ∑ = − +  ( ) ( )E Eq s A A A i
n

q s A A A A A, 2 ,n i i i n1 2 1 1 1
.
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Example 1: Let’s consider the general GHZ state α β= +⊗ ⊗GHZ 0 1n n, where |α|2 + |β|2 = 1 and n ≥ 3. 
It’s easy to show that ρ∑ −= − + 

( ) ( )E E GHZi
n

q s
a

A A A A A q s
a

A A A2 , ,i i i n n1 1 1 1 2
 = α β+ − ≥−

−
[( ) 1] 0n

q s
q q s2

(1 )
2 2 .

Example 2: Consider a four-qubit cluster state = + + −C ( 0000 0011 1100 1111 )4
1
2

, which is a type 
of highly entangled state of four-qubit42, 43. The reduced states of C4  are ρ ρ ρ ρ= = = =A B C D

I
2

, thus 
ρ∑ − = 


− 

= − −− + 
( )E E C( ) 1i

n
q s
a

A A A A A q s
a

q s q s2 , , 4
2

(1 )
1

( 1)i i i n1 1 1
, which is nonnegative for q ≥ 1 and qs ≥ 1.

We note that for any n-qubit mixed state ρ
AC Cn1

, the polygamy relation holds:

∑ρ ρ≤
=


( ) ( )E E

(22)q s
a

A C C
i

n

q s
a

AC,
1

,n i1

for 1 ≤ q ≤ 2 and −q2 + 4q − 3 ≤ s ≤ 144. Combining Eq. (17) with Eq. (22), we have
Corollary 2. For any multi-qubit mixed state ρ

ABC Cn1
, the following inequality holds

∑ ∑

ρ ρ ρ
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, , ,

,
1

,
1

,

n n n

i i

1 1 1

where 1 ≤ q ≤ 2, s = 1.In this case, (q, s)-EOA becomes Tsallis entropy entanglement of assistance which has dis-
cussed in ref. 22.

Before our second main result, we have following lemma:
Lemma 1. For q = 2 and ≤ ≤s 11

2
, the function fq,s(x) in Eq. (16) satisfies

+ = + .f x y f x f y( ) ( ) ( ) (24)q s q s q s,
2 2

, ,

Proof: For q ≥ 2, 0 ≤ s ≤ 1, and qs ≤ 3, we have + ≥ +f x y f x f y( ) ( ) ( )q s q s q s,
2 2

, ,
36. On the other hand, for 

1 ≤ q ≤ 2 and 0 ≤ s ≤ 1, we have + ≤ +f x y f x f y( ) ( ) ( )q s q s q s,
2 2

, ,
44. The equality holds if and only if q = 2 and 

≤ ≤s 11
2

. This completes the proofs.
Next, the following result will provide a lower bound of unified (q, s)-entropy entanglement of ψ

AB C Cn1
, 

with respect to the bipartition between AB and C Cn1 :
Theorem 2. For any multi-qubit pure state ψ

ABC Cn1
 in the Hilbert space, we have

∑ ∑

ψ

ρ ρ ρ ρ≥
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1
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1

where q = 2 and ≤ ≤s 11
2

.
Proof: Given a multi-qubit pure state ψ

ABC Cn1
, the unified (q, s)-entropy is subadditive for any q ≥ 1 and 

qs ≥ 1. Thus, the following equality holds

ρ ρ

ρ ρ

ρ ρ

=
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
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( )
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S S

S S
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( ) ( )
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1

which implies ρ ρ ρ− ≤
 

( ) ( )S S S( )q s C C q s A q s AC C, , ,n n1 1
, and similarly, ρ ρ ρ− ≤

 
( ) ( )S S S( )q s A q s C C q s AC C, , ,n n1 1

. 
Combine with the two equalities above, one obtain

ρ ρ ρ− ≤ .
 

( ) ( )S S S( ) (27)q s A q s C C q s AC C, , ,n n1 1

From the definition of unified (q, s)-entropy entanglement of ψ
AB C Cn1

, with respect to the bipartition 
between AB and C Cn1 , we have

ψ ρ

ρ ρ
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n
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Note that for any pure state ψ ABC in a ⊗ ⊗ d2 2  system, the following equality holds45, 46

ψ ρ ρ= +( ) [ ( )] ( ), (29)ABC
a

AB AC
2 2 2  
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where ρAB and ρAC are the reduced matrices of state ψ ABC respectively.
For q = 2 and ≤ ≤s 11

2
, we have



 

 

ψ ψ

ρ ρ

ρ ρ

=

= +
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where we have used Eq. (29) in the second equality, the third equality holds is due to lemma 1. Therefore,
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Compare Eq. (30) with Eq. (31), it’s easy to see that
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We also note that
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1
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where the first equality holds is due to the monogamy of concurrence1 and fq,s(x) is an increasing function for 
q ≥ 2, 0 ≤ s ≤ 1, and qs ≤ 336.

On the other hand, we have
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Combine Eqs (32) and (33) with Eq. (34), we have

∑ψ ψ ρ ρ− ≥ 


− 

.

=
  ( ) ( )( ) ( )E E E E

(35)q s A BC C q s B AC C
i

n

q s AC q s
a

BC, ,
1

, ,n n i i1 1

Putting Eq. (35) into Eq. (32), we obtain our result. Similarly, we have

∑ψ ρ ρ≥ 


− 
=

 ( ) ( )( )E E E
(36)q s AB C C

i

n

q s BC q s
a

AC,
1

, ,n i i1

Thus, the proof is completed.
Theorem 2 shows a monogamy relation for a multi-qubit pure state ψ

ABC Cn1
. The lower bound of the unified 

(q, s)-entropy entanglement for 
AB C Cn1  can’t be less than the sum of the two-qubit entanglement between 

bipartitions of the system. In particular, if ψ ψ ψ= ⊗
 ABC C AC C Bn n1 1

, the entanglement of 
AB C Cn1  is 

equal to the entanglement of 
A C Cn1 . In this case, ρ =( )E 0q s BC, i

 for = …i n1, 2, , . Theorem 2 becomes 

ψ ρ≥ ∑ = ( )( )E Eq s A C C i
n

q s
a

AC, 1 ,n i1
, which is a CKW-type monogamy relation1, 8.

Example 3: Consider a pure state φ = +( 0000 1001 )ABC C
1
21 2

 in the four-qubit system. for the range 
q  =  2  and ≤ ≤s 11

2
,  we have ρ ρ= =( ) ( )E E 0q s AC q s

a
AC, ,1 1

,  and ρ ρ= = −( ) ( ) ( )E E 1q s AC q s
a

AC s, ,
1 1

2s
2 2

. 
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ρ ρ= =( ) ( )E E 0q s BC q s
a

BC, ,i i
 where i = 1, 2 and φ = −( )( )E 1q s ABC C s,

1 1
2s1 2

. Therefore, we can see φ ABC C1 2
 satu-

rates the inequality Eq. (25).
Example 4: Finally, let’s consider a general W state = + + +...    W a a a00 01 00 10 10 00A A A n1 2n1 2

 
in the n-qubit system, where ∑ =a 1i

n
i

2 . The reduced state of subsystem A1A2 is

ρ =




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−

− −

−

⁎

⁎

a a

a a a

a a a

1 0 0 0

0 0
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0 0 0 0

,

(37)

A A

n n

n n n

n n n

1
2 2

1
2

1

1
21 2

which implies ≥...( )E W 0q s A A A A, n1 2 3
. It’s also easy to show that the reduced state ρA Ai j

 is separable, where 

= …i j n, {1, 2, , }. Thus ρ ρ ρ ρ= = = =( ) ( ) ( ) ( )E E E E 0q s A A q s
a

A A q s A A q s
a

A A, , , ,i i i i1 2 2 1
. We find that the right side of 

the inequality Eq. (25) is ρ ρ ρ ρ∑ 


− 


∑ 


− 
= ={ }( ) ( ) ( ) ( )E E E Emax ,i

n
q s A A q s

a
A A i

n
q s A A q s

a
A A2 , , 2 , ,i i i i1 2 2 1

 = 0. Which 

mean the inequality Eq. (25) holds for the general W state.

Conclusion
Unified (q, s)-entropy is an important generalized entropy in quantum information theory. Many entropies such 
as Tsallis entropy, Rényi entropy, and von Neumann entropy can be seen as a special case for unified (q, s)-entropy. 
In this paper, we have investigated the entanglement distribution in multi-particle systems in terms of unified (q, 
s)-entropy. We find that for any tripartite mixed state, the (q, s)-EOA follows a polygamy relation for q ≥ 1 and 
qs ≥ 1. This polygamy relation provides an upper bound for the bipartition A|BC, which also holds in 
multi-particle systems. Furthermore, for q = 2 and ≤ ≤s 11

2
, a generalized monogamy relation is provided for 

unified (q, s)-entropy entanglement. This monogamy relation provides a lower bound for the bipartition 
AB C Cn1  in the multi-qubit system. In particular, if ψ ψ ψ= ⊗

 ABC C AC C Bn n1 1
, the generalized monog-

amy relation becomes a CKW-type monogamy relation.
Both monogamy property and polygamy property are fundamental properties of multipartite entangled states. 

We have studied the properties above in detail, and provided a two-parameters entropy function to study the 
entanglement distribution. We believe our result provides a useful methodology to understand the entanglement 
distribution of multi-particle entanglement.
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