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Post-Surgery Glioma Growth 
Modeling from Magnetic 
Resonance Images for Patients with 
Treatment
Ahmed Elazab  1,2,3, Hongmin Bai4, Yousry M. Abdulazeem  5, Talaat Abdelhamid6, Sijie 
Zhou4, Kelvin K. L. Wong7 & Qingmao Hu1,8

Reaction diffusion is the most common growth modelling methodology due to its simplicity and 
consistency with the biological tumor growth process. However, current extensions of the reaction 
diffusion model lack one or more of the following: efficient inclusion of treatments’ effects, taking 
into account the viscoelasticity of brain tissues, and guaranteed stability of the numerical solution. 
We propose a new model to overcome the aforementioned drawbacks. Guided by directional 
information derived from diffusion tensor imaging, our model relates tissue heterogeneity with the 
absorption of the chemotherapy, adopts the linear-quadratic term to simulate the radiotherapy effect, 
employs Maxwell-Weichert model to incorporate brain viscoelasticity, and ensures the stability of the 
numerical solution. The performance is verified through experiments on synthetic and real MR images. 
Experiments on 9 MR datasets of patients with low grade gliomas undergoing surgery with different 
treatment regimens are carried out and validated using Jaccard score and Dice coefficient. The growth 
simulation accuracies of the proposed model are in ranges of [0.673 0.822] and [0.805 0.902] for Jaccard 
scores and Dice coefficients, respectively. The accuracies decrease up to 4% and 2.4% when ignoring 
treatment effects and the tensor information, while brain viscoelasticity has no significant impact on 
the accuracies.

Gliomas are a primary brain tumors that arise from the glial cells due to disruption of the normal brain cell 
growth. Gliomas make up approximately 30% of tumors of brain and central nervous system and 80% of all 
malignant brain tumors1. World Health Organization (WHO) divides glioma according to the degree of malig-
nancy and other factors to four grades from I to IV2. Grades I and II (known as low grade glioma, LGG) tend to 
be less malignant and slow-growing. These tumors account for about 25% of all glioma patients who may survive 
for many years (3–8) and have a high quality of life during that period3. On the other hand, grades III and IV, 
known as high grade glioma (HGG), are highly malignant tumors that quickly lead to death. HGG, particularly 
glioblastoma multiforme, grows very fast and invades surrounding tissue. Unlike LGG, the prognosis of HGG is 
poor and, most likely, subject to recur after treatment with average survival time of 1 year4. However, LGG are 
vulnerable to transformation to grades III and IV after variable period of time. In a study on the transformation 
of LGG5, it was observed that 60% of the patients with LGG progressed to HGG.

Generally, glioma treatment comes in a form of surgery, radiotherapy, chemotherapy, or, most likely, a com-
bination of them with the guidance of medical imaging techniques such as magnetic resonance imaging (MRI), 
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computed tomography (CT) and diffusion tensor imaging (DTI). MRI is one of the most commonly used imaging 
modalities in diagnosis and treatment planning of gliomas. It can open a window to navigate the brain tissues and 
visualize the pathology that helps in identifying and tracking evolution of tumors. On the other hand, DTI can 
provide directional information of the fiber tracts that glioma cells preferentially migrate through.

Using magnetic resonance (MR) images, one can study the tumor growth over time from different time points 
using mathematical models. Such modeling can provide a better understanding of the physiology of the tumor 
growth, help to quantify the tumor aggressiveness, and improve therapy planning by better defining the invasion 
margins based on estimation of local tumor cell density6. However, this is not a straightforward task since tumors 
have different infiltration levels, complex shapes, anisotropic diffusions, and different properties of brain tissues. 
In addition, the high cost and the stability problems of the numerical solutions of such modeling make the oper-
ability very difficult. The growth modeling becomes even harder in presence of treatment.

Basically, tumor growth models can be divided into two categories7: microscopic and macroscopic mod-
els. The macroscopic models use couples of partial differential equations (PDEs) to describe the tumor growth 
through tumor cell proliferation and the invasion of tumor cells to the surrounding tissues. The earliest math-
ematical model was proposed by Tracqui8 using reaction diffusion (RD) model to isotropically simulate the 
spatio-temporal change of tumor cell concentration in two-dimensional CT images. Tumor cells diffuse with 
different rates according to the surrounding tissues9, i.e., white matter (WM), gray matter (GM), and cerebro-
spinal fluid (CSF). The diffusion in WM is faster than that in GM while it stops by CSF10. Swanson et al.11–13 used 
a spatial function to represent the heterogeneity of the diffusion coefficients in WM and GM guided by tissue 
segmentation of an anatomical atlas. Yuan et al.14 modified the RD equation by introducing a weighted parameter 
to balance the diffusion coefficient of the WM and GM, and local region similarity measure using normalized 
Bhattacharyya distance was estimated to determine the weighted parameter guided by level set function. Recently, 
the model was extended to include the viscous stress tensor15. Similarly, we previously proposed content based 
modified RD model using a weighted parameter that measures the WM proportion in a small window16.

DTI was employed to guide the simulation of the anisotropic nature of glioma cell diffusion6, 7, 17–21. Jbabdi et al.17  
proposed one of the earliest models of anisotropic growth using DTI and showed that it could better predict 
the spiky nature of tumor shapes. Clatz et al.6 used DTI to assign anisotropic diffusion in WM. Because of high 
anisotropy in most parts of WM, the previous two approaches led to diffusivities that are much lower than gray 
diffusion in the directions orthogonal to the fibers. Moreover, the high ratios of anisotropy encountered in those 
two models are computationally expensive. Therefore, Rekik et al.18 proposed WM tumor diffusion tensor that 
can handle these drawbacks using an anisotropic Eikonal equation introduced by Konukoglu et al.7 to describe 
the time at which the evolving tumor front passes through a specific location. Similar to Konukoglu et al.7,  
Mosayebi et al.20 computed tumor invasion based on the geodesic distance obtained from DTI information. 
Painter and Hillen21 developed a mesoscopic model for glioma invasion based on the individual migration path-
ways of invading cells along the WM tracts.

To consider the tumor mass effect, Clatz et al.6 used biomechanics in the RD model to simulate the deforma-
tion of brain structures caused by tumor development. Hogea et al.22 introduced an advection term to simulate 
the elastic deformation of brain tissues. In our previous work23 we used an enhanced Voigt model to study mid-
line shift induced by tumor growth.

The aforementioned models did not include the effect of treatment in the form of chemotherapy and/or radi-
otherapy. Radiotherapy is a common therapy used to control tumor cells either by killing or damaging their pro-
liferation and is carried out after surgery in different fractionation regimen according to many factors24. Linear 
quadratic (LQ)25 model is the most widely used methodology to determine the effect of radiotherapy doses by 
estimating the probability of cell surviving due to dose of radiation. The LQ model has been used with tumor 
growth model26–31. Rockne et al.26, 31 embedded the LQ model into RD model to predict and quantify the efficacy 
of radiotherapy with response to various therapy schedules and dose distributions. Later, Corwin et al.28 extended 
this work and investigated generating patient-specific and biologically-guided radiotherapy dose plans. Roniotis 
et al.27 included the radiotherapy effect in the RD equation using LQ model guided by DTI information extracted 
from atlas.

The other treatment regimen is to use chemotherapy. Chemotherapy acts on rapidly proliferating cells by 
interfering with the cell-cycle and other cell-cycle specific targets. Swanson et al.11 introduced a simple technique 
to incorporate homogenous and heterogeneous drug delivery of chemotherapy into tumor growth model. The 
loss term due to chemotherapy can be embedded into the RD model as a proportion of tumor growth rate32. 
Powathil et al.33 used a log-kill model to represent the cell death caused by the chemotherapy in the RD model.

Although progresses have been made in tumor growth modeling, most of the current models focus on 
pre-surgery MR images6, 7, 12, 14–17, 26–28, 30, 31, 33. Because most glioma patients likely undergo surgery, studying 
tumor growth modeling after surgery is of great importance. In addition, majority of current models focus only 
on one treatment regimen11, 27, 28, 31 which make these models, clinically, less effective. Even though some models 
included the effect of different treatment regimens, they did not efficiently consider the heterogeneity of brain 
tissue11, 33 and viscoelasticity of the brain. Furthermore, the stability of these models are not guaranteed in real 
application and may be costly due to long time simulation.

Tumors are subject to recur in many cases because some tumor cells can be incidentally missed or deliberately 
left if the tumor bulk resection has risky consequences. Therefore, modeling tumor growth after surgery is of 
great importance to assist the prognosis and the future treatment by providing directional and quantitative infor-
mation. To this end, we propose a new RD model that accounts for both radiotherapy and chemotherapy effects 
to model the post-surgery growth of glioma from MR images and to adopt the heterogeneity of brain tissues. In 
addition, our model considers the viscoelasticity of brain tissues using Maxwell-Weichert model and ensures the 
stability of the numerical solution as well as low computational cost.
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Material and Methods
MR datasets. In this study, 9 LGG patients were recruited who underwent surgery followed by, if any, chemo-
therapy and/or radiotherapy from Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, 
China. All patients provided informed written consent. The study was approved by the ethics committee of the 
Shenzhen Institutes of Advanced Technology (Chinese Academy of Sciences) Review Board and all experiments 
were carried out in accordance with the approved guidelines and regulations. For each subject, there are 3–7 
time-point scans available. At every time-point, MR images include T1, T1Gd, T2, FLAIR, as well as DTI, all 
with an in-plane matrix size of 512 × 512 pixels (0.468 mm × 0.4688 mm) and 20–25 slices with distance between 
slices being about 6.5 mm. The T1 Gd MR image is very important in scanning brain tumor and it is based on the 
disruption of the blood brain barrier and/or the abnormal vascularity that allows the accumulation of the agent 
within the lesion34. The MRI enhancement depends on the amount of the delivered contrast and this enhance-
ment was found to be correlated with the cell proliferation in gliomas35. Although tumor cell density cannot be 
measured from MR images, it is still a possible reason for some tumor cells being left after resection.

The standard of care for patients receiving chemotherapy is 6 cycles, each has 150–200 mg/m2 Temozolomide 
given 5 days every 28 days. On the other hand, the conformal radiotherapy delivery after surgery includes totally 
60 Gy (joule/kilogram) divided into 30 daily fractions. Summary of subjects’ information under study is given in 
Table 1.

Image preprocessing. Preprocessing is of particular importance and has to be done carefully otherwise 
the performance of the model will be inaccurate, particularly, the MR images were scanned after surgery. The 
initial step is registration to align all MR images to a common space. This is done by rigidly registering all the MR 
modalities of same time together, e.g. t1, followed by non-rigid registration for all other available time-points ti 
scans. For both rigid and non-rigid registration, we use the publically available software 3D Slicer36. Afterwards, 
tumor boundaries are manually segmented guided by an expert in this field (HB) using an in-house software. The 
next step is to peel the skull, i.e. separate the skull from the brain, to act as boundary condition that prevents the 
tumor to grow outside the brain. Generally, skull stripping can be done automatically using some commonly used 
software e.g. 3D slicer36. However, in some MR images, the cavity is close or next to the skull which makes the 
CSF undistinguishable by the skull stripping software. Therefore, we tackle this challenge by manually delineating 
the skull. Then, grayscale inhomogeneity resulted from bias field of the MRI scanner is corrected before brain 
tissue segmentation to avoid misclassification of WM, GM, and CSF. In this work, the grayscale inhomogeneity 
is corrected using the method in37 while brain tissue segmentation is performed by employing our algorithms in 
refs 37 and 38. Figure 1 shows the preprocessing steps of our model.

Mathematical background on RD model. The biological growth process of tumor can be modeled using 
a semi-linear parabolic PDE known as RD model. Basically, the RD model represents the rate of change of tumor 
cell density by two terms (Equation 1): diffusion (motility) of tumor cells and the net proliferation of tumor 
cells12. The original RD model is defined as follow:

∂
∂

= ∇ ⋅ ∇ +
u x t

t
D u x t f u x t( , ) ( ( , )) ( ( , )) (1)

where u(x, t) is the tumor cell density in position x at time t, D is the diffusion coefficient, and ∇ is the gradient 
operator. In this work we consider f(u(x, t)) to be logistic function which is defined as follow:

Patient Age Sex Diagnosis Location Treatment regimen
Time 
(days)

1 37 F Diffuse Astrocytoma 
(WHO II)

L temporal 
lobe Chemotherapy + Radiotherapy 81

2 33 M Oligodendrogliomas 
(WHO II)

R frontal 
lobe Chemotherapy only 123

3 40 M Dysembryoplastic 
neuroepithelial tumor

R frontal 
lobe — 139

4 27 M
Small cell 
Astrocytoma (WHO 
II)

L frontal 
lobe — 243

5 40 M Astrocytoma (WHO 
I-II)

L frontal 
lobe Chemotherapy only 329

6 41 M Oligodendrogliomas 
(WHO II)

R frontal 
lobe — 412

7 31 M Ganglioglioma 
(WHO I-II)

L frontal 
lobe — 686

8 50 M
Small cell 
Astrocytoma (WHO 
II)

R frontal 
lobe Chemotherapy only 252

9 22 M
Small cell 
Astrocytoma (WHO 
II)

L frontal 
lobe Chemotherapy + Radiotherapy 305

Table 1. Summary of the 9 patients’ data included in this study.
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ρ= −f u x t u x t u x t( ( , )) ( , )(1 ( , )) (2)

where ρ represents the proliferation rate.
Constant value of D yields isotropic diffusion and consequently the tumor will grow isotropically which is not 

precise to describe the glioma growth. Alternatively, D(x) can be used to represent the heterogeneity of the brain 
tissues WM, GM, and CSF. For anisotropic growth, diffusion tensor D x( ) extracted from DTI can give directional 
information of the preferred glioma growth. The RD model is completed by a no-flux boundary condition as 
barrier to stop the growth beyond the brain boundary using:

∇ ⋅ =∂ΩD x u n( ) 0 (3)

where n∂Ω is the normal vector at the domain boundary surface ∂Ω.

Proposed growth model. We modify the original RD model in Eq. (1) by proposing PDE to include the 
effects of viscoelasticity of brain, chemotherapy, and/or radiotherapy. The proposed RD model is:

σ∂
∂

= ∇ ⋅ ∇ + ∇ ⋅ ∇ + − −ˆDu x t
t

x u x t D f u x t R u x t C u x t( , ) ( ( ) ( , )) ( ) ( ( , )) ( ( , )) ( ( , )) (4)

where σ in the second term represents the normal stress in the brain tissue and D̂ is the stress diffusion tensors 
represented by diagonal tensor with negative values39, while R(u(x, t)) and C(u(x, t)) are, respectively, the loss 
terms due to the radiotherapy and chemotherapy. For the proliferation term, f(u(x, t)), tumor cells mitosis and 
necrosis are commonly assumed to grow exponentially7, 8, 12, 26, 31 which makes the logistic growth (Equation 2) 
more accurate on the time scale considered12. A more detailed information for the other terms of Eq. (4) are given 
below.

Viscoelastic model. The brain can be considered as a medium with viscoelastic behavior40. In literature, 
there are many models to describe such behavior41. We choose the generalized Maxwell model (hereinafter, 
Maxwell-Weichert) as it can simulate the deformation and relaxation behavior of the viscoelastic material. The 
Maxwell-Weichert model combines several Maxwell elements assembled in parallel42. Each Maxwell element 
consists of pure elastic spring and viscous dashpot connected in series. Schematic view of the Maxwell-Weichert 
model is illustrated in Fig. 2.

The relaxation modulus of the model in Fig. 2 is then represented by:

Figure 1. The processing pipeline of the proposed glioma growth model.
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the viscosity coefficient, and E∞ represents the Young’s modulus of the free spring. Using Boltzmann integral41, 42, 
the constitutive relationship between stress and strain can be defined by:

∫∑ ∑σ ε
τ

ε=









∇ +










∇τ

= =

− −
t E t E e s ds( ) ( ) ( )

(6)k

n

k
t

k

n
k

k

t s

1 0 1
k

where ε stands for the strain.

Radiotherapy effect. The LQ model25 is the most common methodology to determine the effect of radio-
therapy doses by estimating the probability of cell surviving S due to dose of radiation using:

= α β− −S e (7)d x t d x t( , ) ( , )i i
2

where di(x, t) is the radiation dose and α (units Gy−1) and β (units Gy−2) are, respectively, the linear and quadratic 
radiobiology coefficients that represent the tissue response. The tumor cell loss is then calculated by:

α β
=




 −

r x t d
no radiotherapy

S d x t during radiotherapy
( , , )

0,
1 [ , , ( , )] (8)

i
i

Using Eq. (8), the radiotherapy effect term R(u(x, t)) in Eq. (4) can be calculated using:

= ⋅ −R u x t r x t d u u( ( , )) ( , , ) (1 ) (9)i

Chemotherapy effect. Chemotherapy is used to stop or slow down tumor growth either by administrating 
it before, during, or after radiotherapy. Chemotherapy is commonly hypothesized to damage tumor cells which 
are proportional to the growth rate33. However, this is not precise since the chemotherapy is delivered to the whole 
body, unlike radiotherapy, and the absorption of drug by tissues can differ accordingly. To overcome this short-
coming, we propose to relate the heterogeneity of tissues with the absorption of the chemotherapy. Considering 
the loss due to chemotherapy in Eq. (4) is assumed to be:

=C u x t k x t u x t( ( , )) ( , ) ( , ) (10)

where (k(x, t) is the cell death rate due to chemotherapy32, 33, 43. Since tumor grows faster in WM than in GM and 
tumor cell density in GM is higher than that in WM, we propose replacing k(x, t) in Eq. (10) with the following 
formula to adopt heterogeneity of tissue absorption of the drug:

ω
=



















∈

+
∈k x t

k x t x GM
k x t

k x t
x WM

no chemotherapy

( , )

( , )
( , )

( , )
0, (11)

where ω is a parameter to be the proportion of WM tissue within a small local window16.

Numerical solution. By combining the growth model components together, Eq. (4) can be rewritten using 
the following spatio-temporal integro-differential equation:

Figure 2. Schematic view of Maxwell-Weichert model of n Maxwell elements in parallel and free spring.
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where θ1 and θ2 are, respectively, defined below:

θ = ∇D x u x t( ) ( , ) (13)1

∫∑ ∑θ
τ

ε=





+




∇τ

= =

− −
E E e ds s( )

(14)k

n

k
t

k

n
k

k

t s
2

1 0 1
k

In Eq. (13), the diffusion tensor D x( ) is represented by a 3 × 3 positive symmetric matrix extracted from DTI 
to provide directional information of the preferred anisotropic tumor growth. For simplicity and computation 
speed-up, D x( ) can be constructed using18:

=D x E x diag e x D D D E x( ) ( )[ ( ( ) , , )] ( ) (15)WM GM GM
T

1

where DWM and DGM represent the diffusion coefficients for WM and GM, respectively, and E(x) is a matrix of 
sorted eigenvectors of DTI(x) while e1(x) is the normalized largest eigenvalue of DTI(x)18.

Solving Eq. (12) with the boundary condition given in Eq. (3) has to be done very carefully as the stability 
of the numerical method may affect the performance and the existence of the numerical solution. Generally, 
there are 2 common numerical techniques to solve the RD model of tumor growth: finite elements and finite 
differences. For the proposed model, we choose the finite differences method because of its easiness and con-
venience to the nature of the digital image representation. However, the numerical solution of the proposed RD 
model (Eq. 12) is complex with conditional stability, especially when DTI information is employed. To ensure the 
numerical stability of the proposed model, we follow the discretization method proposed by Weickert44 and its 
extended form by Mosayebi et al.45, which employed first order finite differences and directional discretization. In 
our case, the mesh size is set typical to the MR image size which is represented by a Cartesian coordinate system 
on a cubic grid. In addition, we consider the Neumann boundary condition by setting the tumor cell concentra-
tion on the brain boundary to zero.

Model assumptions. In our model, we assume that the effect of the treatment terms is always less than the 
proliferation term. This assumption is logically sound as the gross tumor volume is still increasing (see the Figures 
of clinical MR images experiments). In addition, we assume that effects of both radiotherapy and chemotherapy 
are independent with no interference between them. In fact, it is not clear whether the major benefit comes from 
either concomitant administration of chemotherapy with radiotherapy, or from the six cycles of adjuvant chemo-
therapy, or both30. Finally we assume that, both radiotherapy and chemotherapy have no effect on the cavity.

Experiments. We carried out experiments on both synthetic and clinical MR images to evaluate the per-
formance of the proposed method. Unless mentioned otherwise, the main parameters and the associated values 
from references are summarized in Table 2. In our experiments we set n = 1 which proved to be sufficient since 
the mass effect of the MR images for LLG subjects are less serious than that for HGG subjects. Subsequently, there 
are two Young’s moduli E1 and E∞: the first for the Maxwell element while the latter for the free spring. For the LQ 
model parameters, the radiobiological ratio (α/β) was chosen to be 10 Gy as done in refs 26, 28 and 31.

To evaluate the accuracy of the model, we compared the simulated growth (S) with the ground truth (GT) of 
the corresponding scan using two different evaluation criteria: Jaccard score (JS)46 and Dice coefficient (DC)47 
that are defined as:

Parameter Description Value

n Number of Maxwell 
elements 1

DGM
Diffusion coefficient in 
GM

0.0013 (cm2/day)11, 

12, 14, 16

DWM
Diffusion coefficient in 
WM 5DGM

11, 12, 14, 16

ρ Proliferation rate 0.012 (day−1)12, 49

E1
Young’s modulus of 
Maxwell element 3156 Pa50

E∞
Young’s modulus of the 
free spring E1 = 6E∞

50

η1
Viscosity of the Maxwell 
element 8.9×10−8 Pa. Sec50

α/β LQ radiobiological ratio 10 Gy26, 28, 31

k(x, t) Chemotherapy loss 0.0196 (day−1)32, 33, 43

D̂ Stress diffusion tensors −10−14 cells/Pa day51, 52

Table 2. The description of the model parameters used in the experiment of the MR images.
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∩
∪

=JS
S GT
S GT (16)

∩=
+

DC
S GT

S GT
2

(17)

These two criteria are used to measure the degree of overlapping between GT and S and their values are in the 
range of 0 and 1. The high values of JS and DC correspond to accurate simulated growth.

Synthetic tumor growth. We first utilized the corrected MNI atlas48 to simulate the tumor growth from 
single point with and without the effect of treatment. The results shown in Fig. 3 from single point indicated by 
the arrow were simulated using = .D mm day0 02 /GM

2  and ρ = 0.02 day−1.
The second synthetic experiment simulated the growth of real LGG seeded into the MNI atlas using the same 

parameters. The simulated growth with and without treatment effects was shown in Fig. 4. The treatment in the 
synthetic experiments followed the same standards given in the Experiments Section.

Experiments on clinical MR images. Experiments on the clinical MR images were carried out on 9 LGG 
patients who underwent surgery. The 9 MR datasets were classified as follows: 2 subjects received both radio-
therapy and chemotherapy, 3 subjects received only chemotherapy, while the other 4 subjects were left without 
treatment. The experimental results for the above 3 groups and constructed three-dimensional (3D) views of the 
simulated tumor growths were shown, respectively, in Figs 5, 6 and 7. For the experiments on the clinical MR 
images, we took the manually delineated tumors from the first (red contours) and second scans (blue contours) 
as, respectively, the initial conditions and ground truths. For the detection threshold, there is no consensus in the 
published literature on an exact value. In addition, the detection threshold is dependent on the imaging modality 
and thus has to be changed accordingly. For instance, Swanson et al.13 set the detection threshold to be 0.16 for T2 

Figure 3. Simulation of the synthetic growth of tumor from single point on MNI atlas. The red, blue, and cyan 
contours represent the tumor boundaries for 1, 1.5, and 2 years, respectively, with treatment effect; while the 
green, yellow, and magenta contours represent the tumor boundaries for 1, 1.5, and 2 years, respectively, without 
treatment effect. (a) Sagittal slice, (b) coronal slice, and (c) axial slice.

Figure 4. Simulation of the synthetic growth of real LGG seeded into the MNI atlas represented in the dark 
black color. The red, blue, and cyan contours represent the tumor boundaries for 1, 1.5, and 2 years, respectively, 
with treatment effect; while the green, yellow, and magenta contours represent the tumor boundaries for 1, 1.5, 
and 2 years, respectively, without treatment effect. (a) Sagittal slice, (b) coronal slice, and (c) axial slice.
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image and 0.8 for T1 Gd image. To the best of our knowledge, there is no study investigates the optimal threshold. 
Therefore, in our case, we used u=0.4 as used by Tracqui et al.8 and Konukoglu et al.7 to identify the visible con-
tour of the simulated growths (green contours).

Figure 5. Simulation results of tumor growth from 2 LGG patients who underwent surgery followed by 
chemotherapy and radiotherapy. The red (a,e) and blue (b,f) contours represent the ground truths of tumor 
boundaries on2 serial T2 MR images while the green contours (c,g) are the simulated growths on T1 MR 
images. (d) and (h) are constructed 3D views of the simulated tumor growth.

Figure 6. Simulation results of tumor growth from 3 LGG patients who underwent surgery followed by 
chemotherapy. The red (a,e,i) and blue (b,f,j) contours represent the ground truths of tumor boundaries on2 
serial T2 MR images while the green contours (c,g,k) are the simulated growths on T1 MR images. (d), (h), and 
(l) are constructed 3D views of the simulated tumor growth.
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The accuracies of the proposed method on the 9 LGG patients using JS and DC were shown in Fig. 8.

Additional experiments. To check the effects of including therapies on the growth simulation accuracy, 
we studied variants of the proposed method. For the two patients who received radiotherapy and chemotherapy 
(Fig. 5), we evaluated the role of ignoring one or two treatments on the growth simulation accuracies (Table 3). 
Similarly, for the 3 patients who only received chemotherapy (Fig. 6), the results when chemotherapy was ignored 
are summarized in Table 4.

We also evaluated the effects of the DTI information on the growth simulation accuracies when replacing 
D x( ) by D(x). Growth simulation results of all patients without including the DTI information are summarized 

in Table 5.

Discussion
Modeling tumor growth aims to studying the evolution of tumor. Such modeling is important for tumor progno-
sis, quantifying the response to therapy, and treatment planning. In many cases, tumor is not fully resected due 
to the difficulty of defining tumor boundaries or serious consequences on patient’s life after the bulk resection 
of tumor, especially in case of LGG as there is higher expectancy of longer survival. Therefore, studying tumor 
growth becomes very challenging and complicated for patients after tumor resection particularly with treatments 
as tumor shapes will be very hard to predict.

Figure 7. Simulation results of tumor growth from 4 LGG patients who underwent surgery without further 
treatment. The red (a,e,i,m) and blue (b,f,j,n) contours represent the ground truths of tumor boundaries on2 
serial T2 MR images while the green contours (c,g,k,o) are the simulated growths on T1 MR images. (d), (h), (l), 
and (p) are constructed 3D views of the simulated tumor growth.
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In this paper, we proposed a new RD model that included the effects of treatments (both radiotherapy and/or 
chemotherapy) and brain tissue viscoelasticity. We validated the proposed method on both synthetic and clinical 
brain MR images with different treatment regimens. The results of 9 LGG patients show promising performances 
and high accuracies.

Preprocessing challenges. Preprocessing the MR images is of particular interest and has great influence on 
the performance. Because these MR images were acquired after surgery, registration becomes very difficult due to 
the expected brain shift and the cavity. We tackle this problem by choosing the most visibly accurate registration 
from different nonlinear registration methods. In addition, skull stripping is also difficult because of the open 
skull (Figs 5e and 7a,i) which makes skull stripping fail for some MR images, as shown in Figs 5e and 7a,i. We 
handled this issue by manually delineating the skull mask.

Model parameters. The proposed method has some parameters that have important impact on the growth 
simulation, especially D and ρ. These two parameters are highly recommended to be patient-specific for HGG. 
However, in our case, the 9 datasets available are all LGG where the cell invasion and proliferation are relatively 
small. In addition, for LGG, there is almost consensus in literature on the D and ρ values11, 12, 14, 15, 17, 33, 49. On the 
other hand, the parameters α and β in Eqs (7) and (8) control the relative contribution of each term of the LQ 

Figure 8. Evaluation results of the proposed method on the 9 LGG patients under study using JS and DC.

Patient

Chemotherapy 
only

Radiotherapy 
only No treatment

JS DC JS DC JS DC

1 0.702 0.825 0.683 0.812 0.664 0.798

9 0.713 0.832 0.694 0.819 0.658 0.794

Table 3. Evaluation results of the proposed method on the 2 patients with both treatments by ignoring one or 
two treatments.

Patient 2 5 8

JS 0.791 0.735 0.741

DC 0.883 0.847 0.851

Table 4. Evaluation results of the proposed method on the 3 patients with chemotherapy without considering 
the treatment.

Patient 1 2 3 4 5 6 7 8 9

JS 0.719 0.807 0.661 0.785 0.76 0.722 0.754 0.761 0.73

DC 0.837 0.893 0.796 0.880 0.864 0.839 0.860 0.864 0.844

Table 5. Evaluation results of the proposed method on the 9 LGG patients under study using JS and DC 
without including DTI.
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model. The value of α/β = 10 Gy was used by many researchers26, 27, 31, 33 and showed to achieve good perfor-
mance. In our case, α was chosen to be 0.027 Gy as suggested in33 for the two patients in Fig. 5.

Growth simulation accuracy. Experiments on synthetic images in Figs 3 and 4 show good agreement 
of tumor invasions to be faster in WM, slower in GM, and zero in CSF. In addition, the effects of treatments by 
killing tumor cells are clear with distinguishable contours (red, blue, and cyan) from those without treatments 
(green, magenta, and yellow). Furthermore, the experiments prove that the tumor growth stops by ventricles and 
cannot cross the other hemisphere except through the corpus callosum (yellow, cyan, and magenta contours in 
Fig. 3c and the yellow contour in Fig. 4c).

The proposed method on the clinical MR images achieves high simulation accuracies (Fig. 8) and is able to 
work on both multifocal tumors (Fig. 6a and e) and monofocal ones (rest of clinical MR images). For the two 
patients receiving radiotherapy and chemotherapy (Fig. 5), the simulated growth accuracies were 0.727, 0.746 
and 0.842, 0.854 for JS and DC, respectively. The accuracies of the three patients receiving only chemotherapy 
(Fig. 6) were 0.791, 0.735, 0.741 and 0.883, 0.847, 0.851 for JS and DC, respectively. Finally, the accuracies of 
the four patients without treatment were 0.673, 0.802, 0.740, 0.778 and 0.805, 0.890, 0.851, 0.875 for JS and DC, 
respectively. These results are due to directional information derived from the DTI and the inclusion of tissue 
heterogeneity with the absorption of the chemotherapy. However, the accuracy of the patient in Fig. 7a is low, 
which may be due to the artifacts of skull clamp that distorted the MR image and hence the further processing.

Treatments proved to have a significant effects on the growth simulation accuracies. For the two patients who 
received radiotherapy and chemotherapy (Fig. 5 and Table 3), it was found that if only the chemotherapy was con-
sidered, the JS and DC were decreased by (2.5%, 3.3%) and (1.7%, 2.21%), respectively. If only the radiotherapy 
was considered, the JS and DC were decreased by (4.4%, 5.2%) and (3.03%, 3.52%), respectively. Finally, if both 
chemotherapy and radiotherapy were ignored, the JS and DC were decreased by (6.3% and 8.8%) and (4.38%, 
6.08%), respectively. Similarly, when ignoring the chemotherapy effects for the three patients who received only 
chemotherapy (Fig. 6 and Table 4), the growth simulation accuracies were decreased by (3.1%, 4.4%, 3.6%) and 
(1.9%, 2.85%, 2.33%), respectively for JS and DC. These additional experiments may imply that (1) both the 
chemotherapy and radiotherapy have a role in tumor growth, and (2) ignoring either treatments could result in a 
decrease of up to 4% in JS and DC.

When the tensor information in Eq. (15) was ignored, it was found that JS and DC were decreased by ranges 
of [0.8%, 2.4%] and [0.55%, 1.53%], respectively (Table 5). Apparently, the inclusion of DTI did not significantly 
increase the accuracy as the MR images used in our experiments were for LGG patients where the tumor cell 
diffusion is slow. In addition, those patients underwent surgery to include only the left tumor portion as the 
ground truth after the major tumor bulks were resected. However, we believe that this could be useful clinically 
for patients who are subject to undergo multiple surgeries. More importantly, we intend to use our model for 
HGG where DTI has to be included.

Finally, the role of viscoelasticity was noticed to be the least significant factor on the accuracies for LGG 
patients to have JS and DC decreased by ranges of [0.07%, 0.27%] and [0.1%, 0.4%], respectively. This is mainly 
because the growth of LGG is relatively slow and edema is often negligible. However, we included the viscoelas-
ticity so that the proposed model in Eq. (12) could be used for both LGG and HGG.

Relation with other models. The formulation of the proposed model is very flexible and can be considered 
as a general framework that can be easily configured to produce the other modified versions of the RD model. 
This is mainly because of the formulation of the last term in Eq. (12). For instance, excluding the viscoelasticity of 
brain tissues, if the r (x, t, di) and k x t( , ) are set to 0 with D(x) replacing D x( ), our model will reproduce the model 
of Swanson et al.12. With the same previous configuration and slight modification to the chemotherapy effect in 
Eq. (11), our model will behave as the other model of Swanson et al.11. On the contrary, if the DTI information is 
used without the effects of the treatment and viscoelasticity of brain tissues, our model will reproduce the model 
of Jbabdi et al.17.

On the other hand, when including the efficacy of radiotherapy only, our model will be similar to those in refs. 
27, 28 and 31. Our model can be identical to33 for simulating the efficacy of both chemotherapy and radiotherapy 
if we exclude brain tissue heterogeneity and viscoelasticity from our model (Eq. 11).

Generally, our model can be widely applied to different treatment regimens through modifications of some 
parameters. In addition, we believe it can be applied to other HGG, e.g. glioblastoma multiforme, after modifying 
the DTI information to capture their anisotropic growth and customizing the D and ρ parameters.

Limitations. Although the proposed method has some advantages, the current study is not without limi-
tations. On one hand, comprehensive and precise comparisons were not performed. In fact, one of the biggest 
challenges in studying tumor growth modeling is comparing the results with recent publications. However, this is 
very difficult as, to the best of our knowledge, there is no public dataset that researchers can use for benchmark-
ing. Nevertheless, rough comparison of the proposed method with most recently published study in ref. 15 shows 
that, the average JS achieved by the proposed method is 0.76 which is 2.2% higher than that reported in ref. 15 
(JS = 0.738).

One more limitation is that, the proposed method was only tested on MR images of LGG patients. To be more 
effective, the performance on other MR images of HGG patients where there will be mass effect has to be inves-
tigated but, unfortunately, such MR images are rare and currently unavailable. In addition, customization of the 
growth model parameters (D and ρ) will be required. Therefore, we plan to handle the aforementioned limitations 
in our future work when such datasets are available.
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Conclusion
We propose a new RD model for tumor growth of post-surgery LGGs. Our model includes the efficacies of both 
chemotherapy and radiotherapy as well as the viscoelasticity of brain tissues. Our model accuracy is investigated 
using different experiments on both synthetic and clinical MR images of 9 LGG patients who underwent surgery 
and different treatment regimens with ranges of [0.673 0.822] for JS and [0.805 0.902] for DC, respectively. To the 
best of our knowledge, this is the first study that includes treatment effects with brain tissues heterogeneity and 
viscoelasticity while ensuring the stability of the numerical solution of the model.

The proposed model aims to be clinically beneficial by providing directional and quantitative information for 
those patients who undergo multiple surgeries and tailor therapy for them. However, this is a preliminary work 
and we hope by further investigations on more datasets to be applicable in the near future.
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