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Molecular epidemiology and azole 
resistance mechanism study of 
Candida guilliermondii from a 
Chinese surveillance system
Jing-Wei Cheng1,2,3, Kang Liao4, Timothy Kudinha5,6, Shu-Ying Yu1,2,3, Meng Xiao1,2,3, He 
Wang1,2,3, Fanrong Kong5 & Ying-Chun Xu1,2,3

We studied the molecular epidemiology and mechanism of azole resistance of 164 C. guilliermondii 
isolates from a nationwide multi-center surveillance program. The isolates were identified by ITS 
gene sequencing, and the in vitro susceptibility to fluconazole and voriconazole was determined by 
broth microdilution method. The 14-α-demethylase gene ERG11 was amplified and sequenced, and 
microsatellite analysis was performed to study the genetic relatedness of the isolates. Amongst the 
164 C. guilliermondii isolates, 15 (9.1%) and 17 (10.4%) isolates were assigned to be non-wild type 
(non-WT) to fluconazole and voriconazole, respectively. Sixteen sequence types (STs) were detected 
by comparing the amino acid sequence polymorphisms of the ERG11 gene. Fifteen isolates of STs 9, 10, 
12, 13, 14, 15 and 16, were all assigned to be non-WT to fluconazole and voriconazole. By microsatellite 
analysis, 40 different genotypes were identified. Thirty-seven isolates from one hospital (Z1) shared 
the same ERG11 sequence type (ST 2), microsatellite genotype (PU40) and drug resistance pattern. 
In conclusion, this is the first molecular epidemiology study of C. guilliermondii in China. The rate of 
non-WT isolates to azoles was high and the accurate contribution of ERG11 gene mutations to azole 
resistance need be confirmed by further studies.

Invasive candidiasis is a major threat to the health of patients in hospitals, and is widely recognized as a major 
cause of infection-related morbidity and mortality1, 2. Although Candida albicans remains the predominant agent 
responsible for fungal infections, non-albicans Candida species are increasingly encountered3–5. Among these 
fungi, the incidence of candidaemia due to Candida guilliermondii ranges from 1% to 3%, depending on the geo-
graphic region6, 7. However, despite the low incidence of candidaemia caused by this organism, C. guilliermondii 
is of particular clinical significance as it exhibits increased resistance to antifungal agents, compared to other 
Candida species6.

C. guilliermondii is usually regarded as an opportunistic pathogen that is widely distributed in the natural 
environment, and the human skin and mucosal microflora8. However, this organism has been reported to be 
an important pathogen causing a variety of deep-seated infections in immunocompromised patients8–10. As 
such, accurate identification of this organism and determination of antifungal susceptibility profiles, is impor-
tant in clinical decision making. In a previous study, we demonstrated that matrix-assisted laser desorption 
ionization-time of flight mass spectrometry (MALDI-TOF MS)-based systems performed much better than con-
ventional phenotypic method (Vitek 2 Compact) for the routine identification of clinical C. guilliermondii iso-
lates. In addition, reduced azole susceptibility and cross-resistance to azoles among C. guilliermondii isolates has 
been reported in our national surveillance system11. Thus monitoring the epidemiological changes and studying 
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the drug resistance mechanism of this organism is important for clinical therapy decision making and infection 
control strategies.

Fluconazole prevents fungal cell growth by inhibiting 14-α-demethylase, an enzyme required for the pro-
duction of an ergosterol precursor, and is encoded by the gene ERG11 in Candida spp. Several mutations of the 
ERG11 gene have been associated with fluconazole resistance in Candida albicans, Candida parapsilosis, Candida 
krusei and Candida tropicalis12–15. However, little is known about the mechanism of fluconazole resistance in 
C. guilliermondii. Thus in the current study, we investigated one azole resistance mechanism by sequencing the 
ERG11 gene of 164 C. guilliermondii isolates collected from a nationwide multi-center surveillance program called 
China Hospital Invasive Fungal Surveillance Net (CHIF-NET)4. Additionally, we performed microsatellite analy-
sis to determine whether isolates with shared mutations originated from a shared lineage.

Results
Geographic distribution for C. guilliermondii isolates.  Most of the studied isolates originated from the 
northeastern (36%, 59 isolates) and eastern (36%, 59 isolates) parts of China. About 11% of the isolates (18 of 164) 
were collected from southwest China, and only a small number from each of the other regions (Fig. 1). Of the 59 
isolates from northeast of China, the majority (62.7%; 37/59) originated from one hospital (Z1; The first hospital 
of China medical university), which is a large teaching university hospital with more than two thousand hospital 
beds. The remaining isolates were distributed sporadically amongst 36 hospitals (1 to 11 isolates per hospital).

Antifungal susceptibility of C. guilliermondii isolates.  For the 164 C. guilliermondii isolates studied, 
the mean MICs for fluconazole and voriconazole were 4.18 μg/ml and 0.14 μg/mL, the MIC50 for fluconazole and 
voriconazole were 4 μg/mL and 0.12 μg/mL, and the MIC90 for fluconazole and voriconazole were 8 μg/mL and 
0.25 μg/mL, respectively. Fifteen (9.1%) and 17 (10.4%) isolates were assigned to be non-wild type (non-WT) to 
fluconazole and voriconazole, respectively. Only 2 isolates were assigned to be non-WT to voriconazole but wild 
type (WT) to fluconazole. The non-WT strains to fluconazole were isolated from south (12.5%, 1/8), east (15.3%, 
9/59), middle (10.0%, 1/10), and northeast (6.8%, 4/59) parts of the country (Fig. 1).

Sequencing of ERG11.  The ERG11 gene was amplified and sequenced in each of the 164 isolates. The C. 
guilliermondii isolates were classified into 16 sequence types (STs) which were designated ST 1-ST 16 as per the 
amino acid sequence polymorphisms of the ERG11 gene (Supplementary Fig. 1). The amino acid mutations were 
identified by comparing with the most frequent genotype, ST 1. The relationship among STs, drug resistance rates, 
and ERG11 mutations are shown in Table 1. STs 1, 2, 3, 4 and 5 were present in 39.6% (65 isolates), 27.4% (45 
isolates), 15.2% (25 isolates), 3.7% (6 isolates) and 1.8 (3 isolates) of the 164 isolates, respectively. The remaining 
20 isolates were distributed sporadically and classified into the other 11 STs (Table 1).

Only one isolate of the 65 ST 1 C. guilliermondii isolates was assigned to be non-WT to fluconazole and 
voriconazole. ST 2, 3, 4, 5, 6, 7, 11 isolates (n = 83) were assigned to be WT to fluconazole and voriconazole. ST 
9, 10, 12, 13, 14, 15, 16 isolates (n = 15) were all assigned to be non-WT to both azoles. Among the three ST 8 
isolates, all were non-WT to voriconazole but only one isolate was non-WT to fluconazole.

Nineteen point mutations of the amino acid sequence of ERG11 gene were identified by comparing with the 
sequence of ST 1. ST 2, 3, 4, 13, 15, and 16, were characterized by single point mutations W37C, P518R, P430Q, 
Y132F, Q469K and I303V, respectively. STs 5, 6 and 14 had double mutations, D492N, P518R; W37C, P518R; and 
K143R, P518R. The remaining STs had multi-site mutations. Isolates with Y132F (STs 9, 10 and 13) mutation were 
all non-WT to both azoles.

Figure 1.  Geographical distribution of 164 C. guilliermondii and non-WT to fluconazole and voriconazole 
isolates. Different colors represent different regions of China. Green, Northeast; Orange, North; Blue, 
Northwest; Red, East; Grey, Middle; SkyBlue, Southwest; Yellow, South. The map was generated by GNU Image 
Manipulation Program (version 2.8.14, the GIMP Team, USA). The copyright holder grants anyone the right to 
use this work for any purpose, without any conditions, unless such conditions are required by law. Please refer 
the website below to see detailed information. https://commons.wikimedia.org/wiki/File:China_blank_map.svg.
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Microsatellite analysis.  Using three loci for microsatellite analysis, namely sc15, sc32 and sc72, we identi-
fied 9, 6 and 21 different alleles, amongst 164 isolates, respectively. By combination analysis of the three loci, 40 
different genotypes were identified, designated PU01-PU40, of which 23 were observed only once (Fig. 2). The 
most prevalent genotype was PU18 (n = 46, 28%), followed by PU40 (n = 37, 22.6%), PU19 (n = 10, 6.1%), and 
PU17 (n = 9, 5.5%). The 37 isolates from hospital Z1 (Northeast of China) shared the same genotype (PU40), 

Sequence 
type No. %

No. (%) of non-WT isolates Non-synonymous mutations 
of ERG11Fluconazole Voriconazole

1 65 39.6 1 (1.5) 1 (1.5) Reference sequence

2 45 27.4 0 (0) 0 (0) W37C

3 25 15.2 0 (0) 0 (0) P518R

4 6 3.7 0 (0) 0 (0) P430Q

5 3 1.8 0 (0) 0 (0) D492N, P518R

6 1 0.6 0 (0) 0 (0) W37C, P518R

7 1 0.6 0 (0) 0 (0) Y41F, L328T, S346T, V410M, 
S420T, N485K

8 3 1.8 1 (33.3) 3 (100) Y41F, L328T, S346T, V410M, 
S420T

9 4 2.4 4 (100) 4 (100) Y41F, Y132F, L328T, S346T, 
V410M, S420T

10 1 0.6 1 (100) 1 (100) G16S, Y41F, Y132F, M332I, 
S346T, S420T

11 2 1.2 0 (0) 0 (0) G16S, F39L, R247K, L328I, 
S346T, S420T

12 2 1.2 2 (100) 2 (100) Y41F, L328T, S346T, V410M, 
S420T, G459S

13 2 1.2 2 (100) 2 (100) Y132F

14 2 1.2 2 (100) 2 (100) K143R, P518R

15 1 0.6 1 (100) 1 (100) Q469K

16 1 0.6 1 (100) 1 (100) I303V

Total 164 100 15 (9.1) 17 (10.4)

Table 1.  Results of in vitro azole susceptibility testing and 16 ERG11 sequence type analysis for 164 clinical 
isolates of Candida guilliermondii.

Figure 2.  Geographical distribution of the different microsatellite genotypes in China. Minimum spanning 
tree analysis based on the three loci of microsatellite data. Each circle corresponds to a microsatellite genotype. 
Different colors represent different regions of China. Green, Northeast; Orange, North; Blue, Northwest; Red, 
East; Grey, Middle; SkyBlue, Southwest; Yellow, South. The lines between circles indicate the similarity between 
profiles: bold line, 2 of 3 microsatellite loci in common; normal line, 1 locus in common.
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which may be a clonal transmission or outbreak within the hospital (Fig. 2). The other genotypes were dispersedly 
distributed among different hospitals and regions.

The minimum spanning tree generated by microsatellite analysis also showed the relationship between the 
microsatellite genotype and drug resistance pattern. As can be seen clearly in Fig. 3, isolates of genotypes PU03, 
PU06, PU09, PU29, PU36 and PU38, were all non-WT to fluconazole. Furthermore, one of the 3 PU05 isolates, 
one of the 9 PU17 isolates, and one of the 46 PU18 isolates, were all non-WT to fluconazole. The relationship 
between microsatellite genotype and ERG11 sequence type are shown in Fig. 4. STs 1, 2, and 3 were divided by dif-
ferent microsatellite genotypes, but some genotypes were associated with some STs, such as PU03/ST 10, PU05/
ST 8, PU09/ST 15, PU10/ST 6, and PU39/ST 7.

Discussion
Candida guilliermondii is an uncommon organism throughout most of the world8. In our study, C. guilliermondii 
isolates represented 1.7% (164/9673) of all the yeasts isolated during a five year surveillance study (CHIF-NET 
2010–2014). In the present study, the majority (64.5%; 106 of 164) of the C. guilliermondii isolates was acquired 
from blood cultures, which is similar to other studies6, and may lead to unfavourable outcomes especially for 
compromised cancer hosts. The geographical distribution of the isolates varied widely, with the majority of the 
isolates derived from the east (36%, 59 isolates) and northeast (36%, 59 isolates) of China (Fig. 1).

Triazole antifungals are used as front-line drugs for the treatment and prophylaxis of many Candida infec-
tions. However, with long-term treatment, azole-resistant and cross-resistance phenotypes of C. guilliermondii 
isolates have appeared. In the global ARTEMIS DISK Antifungal Surveillance Program study (from 1997 to 
2003), the resistance rates to fluconazole and voriconazole were 10.8% and 4.9%, respectively6. A study per-
formed in Taiwan indicated that the non-wild type (WT) rates of both azoles is around 4%16. In the present study, 
9.1% and 10.4% of the C. guilliermondii isolates were non-WT to fluconazole and voriconazole, respectively. 
Furthermore, some isolates showed high level minimum inhibitory concentrations (MICs) to both azoles, which 
is an important consideration for antifungal therapy.

Studies have been carried out to elucidate the mechanism of azole resistance in the common Candida species 
like C. albicans, C. parapsilosis, C. krusei and C. tropicalis12–15. One of the major mechanisms described is the 
mutation of ERG11, the gene encoding the target of azoles in the ergosterol biosynthesis pathway, which may 
reduce the target affinity to fluconazole17. To the best of our knowledge, to date, no study has been carried out to 
elucidate azole resistance mechanisms in C. guilliermondii. By comparing the polymorphism of the ERG11 gene, 
we identified 16 sequence types (STs), some of which were closely associated with antifungal susceptibility test 
results. Thus the possible contribution of the amino acid substitutions to azole resistance need further studies to 
confirm the present findings.

Microsatellite typing of C. guilliermondii was first established by Wrent et al. in 201518, by combining three 
microsatellite markers, which delivered high discrimination, accuracy and reproducibility. In the present study, 
40 genotypes were identified by microsatellite analysis, and were distributed sporadically among different regions 
of China. Interestingly, the 37 isolates from hospital Z1 shared the same ERG11 sequence type (ST), microsatellite 

Figure 3.  The association between microsatellite genotypes and antifungal susceptibility patterns of fluconazole 
of C. guilliermondii. Minimum spanning tree analysis based on the three loci of microsatellite data. Each circle 
corresponds to a microsatellite genotype. Different circle colors represent drug resistance pattern of fluconazole; 
Green, WT; Red, non-WT. The lines between circles indicate the similarity between profiles: bold line, 2 of 3 
microsatellite loci in common; normal line, 1 locus in common.
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genotype and drug resistance pattern, suggesting a common origin source. To confirm whether this was an out-
break needs further studies, combining clinical information, and other data obtained from collecting environ-
ment samples, and performing further genomic analysis. A previous study reported a large pseudo-outbreak of 
C. guilliermondii fungemia at a university hospital in Brazil due to poor techniques in drawing blood samples for 
culture19. In the present study, some microsatellite genotypes were associated with drug resistance pattern, and 
may be an effective typing tool to explore the clonal transmission and outbreak of C. guilliermondii.

There are several limitations to this study. First, we only studied one possible azole resistance mechanism; 
studying other possible mechanisms, including genes associated with up-regulation of drug efflux pumps, and 
up-regulation of ERG11 or other potential mechanisms, would have yielded more information which would have 
helped in coming up with firmer conclusions. Second, we did not perform further experiments to confirm that 
the mutations we described could confer resistance to a susceptible isolate.

In conclusion, this is the first molecular epidemiology study of C. guilliermondii in China. The rates of 
non-WT isolates to azoles were high and the contribution of ERG11 gene mutations to azole resistance need to 
be confirmed by further studies.

Methods
Ethics statement.  All methods were carried out in accordance with the guidelines of PUMCH. The study 
was approved by the Human Research Ethics Committee of PUMCH (S-263). Written informed consent was 
obtained from patients for the use of the samples in research.

Yeast isolates.  A total of 164 non-duplicate C. guilliermondii isolates collected from 37 hospitals distributed 
in 18 provinces across China during the period 2010–2014, were included in the study, which were stored at 
ultra-low temperature freezer before use. All the isolates were obtained from blood, ascitic fluid, peritoneal fluid, 
catheter, pus or other sterile body fluids. Strains were reactivated by inoculating onto Sabouraud dextrose agar 
for 48 h at 35 °C.

DNA extraction and identification.  DNA extraction and amplification of the ITS region was performed 
with primer pairs ITS1/ITS4, as previously described20. The PCR products were sequenced in both directions 
using the DNA analyzer ABI 3730XL system (Applied Biosystems, Foster City, CA). Identification was carried 
out by querying the sequences against GenBank database with nucleotide Basic Local Alignment Search Tool 
(BLASTn, http://blast.ncbi.nlm.nih.gov).

Antifungal susceptibility testing.  The in vitro susceptibility to fluconazole and voriconazole was deter-
mined by the broth microdilution method according to Clinical and Laboratory Standards Institute (CLSI) guide-
lines (document M27-A4)21. Minimum inhibitory concentration (MIC) values for C. guilliermondii isolates were 
interpreted according to the epidemiological cut-off values (ECVs) previously published by Pfaller et al.22 as 
follows: wild-type (WT), MIC of ≤8 μg/ml (fluconazole) and ≤0.25 μg/ml (voriconazole); non-WT, MIC >8 μg/

Figure 4.  The association between microsatellite genotypes and ERG11 STs of C. guilliermondii. Minimum 
spanning tree analysis based on the three loci of microsatellite data. Each circle corresponds to a microsatellite 
genotype. Different circle colors represent ERG11 sequence types. The lines between circles indicate the 
similarity between profiles: bold line, 2 of 3 microsatellite loci in common; normal line, 1 locus in common.

http://blast.ncbi.nlm.nih.gov
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ml (fluconazole) and >0.25 μg/ml (voriconazole). C. parapsilosis ATCC 22019 and C. krusei ATCC 6258 were 
used as quality control strains.

Sequencing of ERG11.  The ERG11 gene was amplified by PCR using the following primers: ERGF with 
ERGR, and sequencing was performed by three primers, ERGF, ERGR and ERGA (Table 2), which were designed 
by Primer Premier 5.0 software (Premier, Canada). PCR conditions were as follows: 95 °C for 5 min; 95 °C for 40 s, 
50 °C for 40 s, and 72 °C for 90 s, 35 times; followed by an extension step at 72 °C for 5 min. The PCR products were 
sequenced using an ABI 3730 sequencer (Applied Biosystems, Foster City, CA). After this, the sequences of the 
1569 bp length ERG11 gene for each isolate were determined.

Microsatellite amplification and analysis.  A panel of three short tandem repeat (STR) markers (sc15, 
sc32 and sc72) was used for genotyping the C. guilliermondii isolates as previously described by Wrent et al.18. 
Each specific forward primer was 5′-tailed with the M13 universal sequence and the universal M13 primer was 
labeled with the fluorescent dye FAM-6. The program included 1 cycle of 1 min at 94 °C, 10 cycles of 30 s at 
94 °C, 30 s at 60 °C (after each cycle the annealing temperature was decreased by 1 °C), and 30 s at 72 °C; then 
20 cycles of 30 s at 94 °C, 30 s at 50 °C, and 30 s at 72 °C; and a final extension step of 2 min at 72 °C. The micro-
satellite PCR product was measured on an ABI 3730 DNA analyzer (Applied Biosystems, Foster City, CA,USA) 
using the GeneScan™ 500 LIZ® Size Standard marker 30–600 bp (Life Technologies). The results were analyzed 
by GeneMarker software (Version 2.2.0, Soft Genetics, State College, PA, USA). Repeat numbers of the three 
loci were analyzed using BioNumerics software v6.5 (Applied Maths, Texas, USA) for cluster analysis. A mini-
mum spanning tree was constructed using the unweighted-pair group method with arithmetic mean clustering 
(UPGMA), treating the data as categorical information.
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