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Exploring functions of long 
noncoding RNAs across multiple 
cancers through co-expression 
network
Suqing Li1, Bin Li2, Yuanting Zheng2,3, Menglong Li1, Leming Shi2,3 & Xuemei Pu1

In contrast to protein-coding genes, long-noncoding RNAs (lncRNAs) are much less well understood, 
despite increasing evidence indicating a wide range of their biological functions, and possible roles in 
various cancers. Based on public RNA-seq datasets of four solid cancer types, we here utilize Weighted 
Correlation Network Analysis (WGCNA) to propose a strategy for exploring the functions of lncRNAs 
altered in more than two cancer types, which we call onco-lncRNAs. Results indicate that cancer-
expressed lncRNAs show high tissue specificity and are weakly expressed, more so than protein-coding 
genes. Most of the 236 onco-lncRNAs we identified have not been reported to have associations with 
cancers before. Our analysis exploits co-expression network to reveal that onco-lncRNAs likely play key 
roles in the multistep development of human cancers, covering a wide range of functions in genome 
stability maintenance, signaling, cell adhesion and motility, morphogenesis, cell cycle, immune and 
inflammatory response. These observations contribute to a more comprehensive understanding 
of cancer-associated lncRNAs, while demonstrating a novel and efficient strategy for subsequent 
functional studies of lncRNAs.

Long noncoding RNA (lncRNA) belongs to a class of noncoding RNAs longer than 200 nucleotides1, 2. With the 
development of RNA sequencing, epigenomic technologies and computational techniques, an increasing number 
of lncRNAs have been discovered3. Although lncRNAs were previously regarded as “noise” in the genome owing 
to lack of protein-encoding capacity, more and more emerging evidences have indicated that the lncRNAs play a 
wide range of roles, covering biological functions like cell proliferation, survival, differentiation, and chromatin 
remodeling4–7. Consequently, it is not surprising that the dysregulation of lncRNA genes was implicated in tumor 
biology8.

However, compared to well-studied protein-coding genes, the functions of most lncRNAs have not been elu-
cidated despite of their large proportions in genomes. In the lncRNAdb v2.09, less than 1% of lncRNAs have 
been individually characterized among nearly 16,000 annotated lncRNA genes in GENCODE. Thus, it remains a 
great challenge in understanding the functional characteristics of lncRNAs. In general, loss- and gain-of function 
biological experiments through gene knockdown, overexpression or editing are considered to be golden stand-
ards to define the functions of lncRNAs10. However, the characterization through the experimental approaches 
is still limited due to their low throughput and demand for prior knowledge about potential mechanisms of the 
candidates11.

Alternatively, computational analysis provides another way to explore the functions of the lncRNAs. Some 
computational work predicted lncRNA structures based on their sequences12, 13. However, the structures pre-
dicted by the computational methods still remain a high false-positive rate, and the distinct structure–function 
relationships for many lncRNAs are still unknown14. In addition, some computational studies explored the poten-
tial functions of lncRNAs through identifying molecules interacting with them15, 16. But, the lack of molecular 
interaction data for many lncRNAs also hampers their functional annotation.
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It is well accepted that co-expressed genes are more likely to be co-regulated and functionally related17. 
Therefore, identifying co-expressed protein-coding genes can help assign the functions of lncRNAs11. Weighted 
correlation network analysis (WGCNA), a powerful guilt-by-association (GBA) method for constructing 
co-expression network based on expression data, can reconstruct gene co-expression modules and summarize 
such modules using module eigengenes and intramodular hub genes18. It has been successfully applied to study 
protein-coding genes, like distinguishing dysfunctional regulatory subnetworks and finding candidate bio-
markers19. However, few studies used it to investigate cancer-associated lncRNAs20. Cogill et al.21 used known 
cancer-associated coding genes from COSMIC to find co-expressed lncRNAs only from microarray expression 
data of normal tissues rather than cancer tissues, and constructed a co-expression network using WGCNA to 
explore their potential functions.

In recent years, the Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/) project has generated com-
prehensive, multi-dimensional maps of the key genomic changes in 33 types of cancers, which help us under-
standing how such changes interact to drive diseases. From this project, researchers found that cancers from 
different tissues could share some common features like mutations, methylation, and transcriptomic changes, 
and the cross-cancer aberrations are more likely to act as oncogenic contributors and can provide an opportunity 
to find new therapeutic biomarkers in clinics22, 23. In fact, some previous work showed that a few lncRNAs are 
altered in multiple cancers. For example, MALAT1 was first identified as a prognostic biomaker for lung cancer 
survival24. Later, its expression dysregulation was also observed in other types of tumors, including malignancy 
in liver25, breast26 and colon27. In addition, other lncRNAs like HOTAIR, PTENP1, MEG3 and CONCR were 
reported to be dysregulated in several cancer types28, 29. Yan et al.30 also observed that some lncRNAs are abnor-
mally expressed in several cancers. However, most works focused on cancer-associated lncRNAs only in inde-
pendent cancer type31 while studies on the lncRNAs across multiple cancers have been absent. In fact, this kind 
of lncRNAs may be proved as potential oncogenes or tumor suppressors across multiple cancers and extend our 
understanding of the common events across tumor types. Thus, it is highly desired to study these poorly under-
stood but crucial regulators across multiple cancers.

In this work, we utilized a computational strategy to perform a systematic study on lncRNAs significantly 
altered in more than 2 cancer types, based on public RNA-seq datasets of four common solid cancer types (pros-
tate cancer, bladder cancer, lung adenocarcinoma and breast cancer). RNA-seq is a revolutionary technology 
based on next-generation sequencing, and is considered as the most comprehensive way for studying complete 
transcriptome in more details and with more accurate measurements than other techniques of lncRNAs expres-
sion profiling like microarray and serial analysis of gene expression (SAGE)4. Finally, 236 onco-lncRNAs were 
identified in our work, and most of them have not been reported to be related with cancers. WGCNA combined 
with DAVID (the database for annotation, visualization and integrated discovery)32 were used to explore their 
functions. We revealed that the onco-lncRNAs likely take key roles in the multistep development of human can-
cers, covering a wide range of functions in genome stability maintenance, signaling, cell adhesion and motil-
ity, morphogenesis, cell cycle, immune and inflammatory response. Our study contributes to a comprehensive 
understanding of the onco-lncRNAs with the aid of the co-expression network, which may guide subsequently 
experimental studies on the altered lncRNAs in cancers.

Results
Expression profiles of lncRNAs across cancers. We downloaded public RNA-seq datasets contain-
ing four cancer types for our analysis: bladder cancer (BLC)33, prostate cancer (PRC)34, lung adenocarcinoma 
(ADC)35 and estrogen receptor positive (ER+) breast cancer (EBC)36 (Supplementary Table S1). GENCODE v23 
gtf file, containing 19,797 protein-coding genes and 15,931 lncRNA genes, was used for annotation.

After mapping and quantification, we defined expressed genes based on a threshold of FPKM ≥ 1 in more 
than 80% of normal samples or 80% of tumor samples for each cancer type. Consequently, there are total 14,470 
expressed protein-coding genes (PCGs) (73.1% of all annotated protein-coding genes in the GENCODE) and 
2,902 expressed lncRNA genes (18.2% of all annotated lncRNA genes in the GENCODE) in the four cancer types. 
For all the expressed lncRNAs and PCGs, we calculated the number and proportion of expressed genes appearing 
in different number of cancers (Fig. 1a–c). We found that the majority (77.0%) of the expressed PCGs are detected 
in all the four cancers compared with 30.1% of the lncRNAs. Meanwhile, a minority (9.2%) of the PCGs show 
expression in only one cancer in contrast with a bigger proportion (34.6%) of the lncRNAs. We also computed 
distributions of FPKM values for the expressed lncRNAs and PCGs in each cancer type. As shown in Fig. 1d, the 
lncRNAs have a lower expression level than the PCGs in all the cancer types. The observation provides further 
support for previous observations that the expression of lncRNA genes displays much more tissue-specific and 
lower expression than PCGs37.

Differentially expressed lncRNA genes. We defined differentially expressed genes between the tumor 
samples and matched normal samples based on the following criteria: fold change ≥2 or ≤0.5 and FDR ≤ 0.01. 
And we got 357, 321, 267 and 375 differentially expressed lncRNAs (DELs) in BLC, PRC, ADC and EBC, respec-
tively. The total number of DELs for the four cancer types is 1,010. To obtain an overview of the expression profile 
for DELs in each cancer, we performed hierarchical cluster analysis (Fig. 2). It can be seen that all heatmaps show 
a distinct regulating direction and a clear separation between the normal samples and the tumor ones for the 
DELs. In addition, we also identified 5,595 differential expressed protein-coding genes (DEPs) in all.

Among all the DELs, there are 774 (76.6% of the 1,010 DELs) lncRNAs which are differentially expressed only 
in one cancer type (Supplementary Table S2). Only few DELs here were indicated by earlier works to be associated 
with cancers (Supplementary Table S3). For instance, UCA1 was reported to play a regulatory role in promot-
ing human bladder cancer proliferation38. In our analysis, it is up-regulated (log2FC = 3.3, FDR = 4.5 × 10−4) 
in BLC. AATBC is also differentially expressed (log2FC = 3.6, FDR = 2.5 × 10−9) in BLC, which was reported 
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to facilitate proliferation and inhibit cell apoptosis in bladder cancer39. PCAT29, as a new biomarker in prostate 
cancer40, is the most significant DELs (log2FC = 2.68, FDR = 4.43 × 10−15) in PRC from our analysis. CTBP1-AS 
is observed to be significantly altered (log2FC = 2.7, FDR = 8.2 × 10−10) in PRC, which was reported to be an 
androgen-responsive lncRNA in prostate cancer41. The consistency between our results and the findings from 
earlier works confirms the reliability of our analysis method. Intriguingly, most of DELs altered in only one can-
cer type have not been reported to be related to cancer yet, for example, MIR99AHG, the most down-regulated 
DEL (log2FC = −6.44, FDR = 1.23 × 10−27) in BLC, and LINC00968, a significantly down-regulated DEL 
(log2FC = −3.77, FDR = 1.58 × 10−49) in ADC. These unreported lncRNAs could provide helpful information 
for possible biomarkers in further experiments owing to their significant dysregulation in the specific tumor type.

The remaining 236 (23.4%) DELs are altered in more than two cancer types (Supplementary Table S4). 
Previous studies indicated that lncRNAs differentially expressed in multiple cancer types may have conserved 
oncogenic or tumor suppressor roles42. Thus, we defined the 236 DELs as onco-lncRNAs in our study. Among 
all onco-lncRNAs, there were only 9 DELs dysregulated in all the four cancer types: CTD-2047H16.2, CTD-
2517M22.14, CTD-2574D22.3, FGF14-AS2, PVT1, RP11-196G18.22, RP11-346D14.1, RP11-498C9.4 and 
RP11-510N19.5. Majority of the 236 DELs were missed in earlier studies (Supplementary Table S5). Only 11 
onco-lncRNAs were reported to have a bearing on tumorigenesis previously42–52 (Fig. 3), two of which (PVT1 
and MEG3) were confirmed by conclusive evidences as cancer-associated lncRNAs in multiple cancers43, 44. The 
other nine known cancer-associated lncRNAs were only studied in one cancer type and there have been no exper-
imental evidences and clinic data to support their associations with multiple cancers. In contrast, we also found 
2,017 PCGs significantly altered in more than two cancer types (Supplementary Table S6), in which 92 genes were 
reported as oncogenes in COSMIC database (https://cancer.sanger.ac.uk/census) (Supplementary Table S7), for 
example, MYC, NOTCH1 and MET.

To gain insight into the associations between the onco-lncRNAs and multiple cancers, we did a survival anal-
ysis through an online tool Kaplan-Meier Plotter, which contains a large number of microarray datasets of breast 
cancer, lung cancer, gastric cancer and ovarian cancer53–56. We chose three known cancer-associated lncRNAs 
(ADAMTS9-AS2, FGF14-AS2 and PCAT19) whose Affymetrix id can be found in this tool to perform the sur-
vival analysis over the four cancer types included in the Kaplan-Meier Plotter (Supplementary Fig. S1). For all the 

Figure 1. Distributions and expression levels of expressed genes in the four cancer types. The venn plot of 
14,470 expressed protein-coding genes (a) and 2,902 expressed lncRNA genes (b). (c) The proportion of 
expressed protein-coding genes (blue) and lncRNA genes (red) appearing in different number of cancers. The 
x axis depicts the number of cancer types. The y-axis depicts the proportion of expressed genes, which is the 
ratio between the counts of expressed genes appearing in different number of cancers and the total counts of all 
expressed genes. (d) The expression levels (log2(FPKM + 0.1)) of expressed protein-coding genes (blue) and 
lncRNAs (red) in each cancer type.
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three lncRNAs, the survival time is significantly separated between high-expression groups and low-expression 
ones in all the four tumor types (p ≤ 0.05). And overexpression of the three lncRNAs exhibits a good prognostic 
effect in all the cancer types, except for FGF14-AS2 whose low expression is good for the survival in the gastric 
and ovarian cancer. Although the three lncRNAs were identified as cancer-related by previous studies on single 
cancer types45, 46, 51, our analysis has revealed for the first time that their expression levels are significantly associ-
ated with clinical prognosis across multiple cancers. The results imply that the three lncRNAs may play important 
roles in multiple cancers, which could also provide support for the other onco-lncRNAs identified here being 
important in multiple cancers.

Module-based functional characterization of onco-lncRNAs with co-expression network anal-
ysis. In order to explore potential functions of the 236 onco-lncRNAs, we used WGCNA to construct a 
co-expression network based on their normalized expression data of all the 236 onco-lncRNAs and 6,316 PCGs 
whose expression profile are highly correlated with at least five onco-lncRNAs (see Materials and Methods). 
Finally, we got 18 modules with sizes ranging from 34 to 1,463 genes, in which the number of onco-lncRNAs 

Figure 2. Hierarchical clustering based on expression profiles of significantly differentially expressed lncRNA 
genes (DELs) from each cancer type. (a) The heatmap of 357 DELs in bladder cancer. (b) The heatmap of 321 
DELs in prostate cancer. (c) The heatmap of 267 DELs lung adenocarcinoma. (d) The heatmap of 375 DELs in 
breast cancer. The intensity of the color scheme is scaled to expression values (log2(FPKM + 0.1)) which are 
Z-score standardized per gene. The color bar above the heatmap represents the sample groups, and red indicates 
tumor sample, and blue represents normal sample.
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varies between 0 and 67 (Supplementary Fig. S2 and Supplementary Table S4). We took the first principal com-
ponent as a module eigengene and used it to represent the overall expression profile of a module18, as shown in 
Supplementary Fig. S3. We obtained the variation of the eigengene between the normal tissues and the tumor 
ones by one-way analysis of variance (ANOVA) with FDR corrected p-value. The p-value cutoff was set to be 
0.0001. Consequently, 12 modules containing the onco-lncRNAs were selected for downstream analysis. The 
details of the 12 modules are listed in Table 1.

To further determine the biological functions of the onco-lncRNAs in the 12 modules, DAVID32 was used 
to mine the modules’ biological significance including GO biological process (BP) terms and KEGG pathways. 
Supplementary Table S8 lists all significantly enriched GO BP terms (p ≤ 0.05) for each module. Figure 4 displays 

Figure 3. Heatmap of the eleven well-characterized onco-lncRNAs across all the four cancers. Red denotes 
up-regulation, and blue indicates down-regulation. Blank represents the gene which is not significantly 
dysexpressed in cancer.

Module
PCGs’ 
counts

Onco-
lncRNAs’ 
counts Known-function lncRNAs

Module 
Cancer 
Pvalue

Functional 
category

greenyellow 178 4 — 5.6 × 10−14 cell adhesion

tan 118 3 — 1.5 × 10−10 cell cycle

black 242 4 PKI55 6.5 × 10−9 signal transduction

cyan 99 8 FENDRR, MIR22HG, 
DIO3OS, PCAT19 8 × 10−9

response to 
immune activity 
and stimulus

yellow 441 12 FGF14-AS2 1.2 × 10−8
response to 
immune activity 
and stimulus

brown 844 67 — 4.0 × 10−7 genomic stability

lightgreen 30 4 — 1.4 × 10−6 cell cycle

blue 1402 41
PVT1, PCAT6, TINCR, 
TARID, MIR210HG, 
MIR503HG

1.91 × 10−5 signal transduction

red 288 16 ADAMTS9-AS2, MIR143HG 3.4 × 10−5 cell adhesion

green 308 7 — 3.7 × 10−5
response to 
immune activity 
and stimulus

salmon 109 5 — 3.7 × 10−5 cell cycle

magenta 182 29 — 9.0 × 10−5 morphogenesis

Table 1. Overview of 12 cancer-associated modules.
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three representative terms for each module. Table 2 lists the significant KEGG pathways with p ≤ 0.05 and gene 
counts ≥5. According to major biological processes, the 12 modules were parceled out in the following six 
sections.

Modules associated with signal transduction. The blue module contains 41 onco-lncRNAs and 1,402 PCGs. As 
observed from Fig. 4 and Supplementary Table S8, PCGs in this module are significantly enriched in processes 
like regulation of Ras protein signal transductions, protein amino acid phosphorylation and protein kinase cas-
cade. The significant KEGG pathways included several signaling pathways relevant to cancer, like VEGF sign-
aling pathway, Notch signaling pathway and MAPK signaling pathway (Table 2). VEGF signaling pathway can 
mediate proliferation and migration of endothelial cells and promote their survival and vascular permeabil-
ity. Inappropriate regulation of VEGF was observed to have effects on cell migration and survival in cancers57. 
The black module contains four onco-lncRNAs and their enriched functions are similar to the blue module, as 
reflected by Fig. 4, Table 2 and Supplementary Table S8.

In the two modules, only two onco-lncRNAs (PVT1 and PCAT6 in the blue module), which exhibit connec-
tions to the genes with topological overlaps (w) greater than or equal to 0.05 in the network, were reported to 
have associations with cancers43, 47. Supplementary Fig. S4a,b show distributions of their expression profiles in 
the four cancers. It can be seen that PVT1 displays significant overexpression in all the four tumor tissues while 
PCAT6 is significantly overexpressed in three types of tumor tissue except for PRC. In addition, the two lncRNAs 
are highly connected (w ≥ 0.05) to genes showing functions in the signaling cascade (Supplementary Fig. S5). For 
example, HGS is a positive regulator of VEGF and insulin signaling58, and the absence of KCTD13 is likely to lead 
to hyperactivation of the RhoA signaling pathway59.

PVT1, as a candidate oncogene, was revealed to be related with cell proliferation and tumor progression 
in many neoplastic diseases43. Tseng60 indicated that high MYC protein levels in 8q24-amplified human can-
cer cells require gain of PVT1 expression to suppress phosphorylation of T58, in turn protecting MYC protein 
from degradation. Indeed, our functional analysis of the blue module shows that phosphorylation is a signifi-
cant functional term (Supplementary Table S8) and the nodes connected to PVT1 contain a MYC-related gene, 
EHMT1 (PCC = 0.72) (Supplementary Fig. S5), which is part of the E2F6 complex involved in silencing of 
MYC-responsive genes and G0/G1 cell cycle transition61. The consistency between our computational analysis 
and the earlier observations confirms reliability of our predicted results. Thus, it is reasonable to speculate that the 

Figure 4. Barplot of representative GO biological process (BP) terms of 12 modules. Three representative GO 
BP terms were chosen from top 10 significant terms for each module. The y-axis depicts names of BP terms, and 
the x-axis depicts −log10 (P-value). Bar color denotes the module color. The red dotted line denotes p-value of 
0.05.

http://S8
http://S8
http://S4a,b
http://S5
http://S8
http://S5


www.nature.com/scientificreports/

7Scientific RepoRts | 7: 754  | DOI:10.1038/s41598-017-00856-8

onco-lncRNAs clustered in the blue and black modules very likely play important roles in many signaling circuits, 
in turn influencing the cancer progress.

Modules associated with response to immune activity and stimulus. The yellow module, which contains 12 
onco-lncRNAs and 441 PCGs, shows functional enrichment in response to endogenous stimulus, organic sub-
stances, and blood vessel development (Fig. 4, Supplementary Table S8). Pathway analysis further reveals that 
the genes in the module are enriched in some signal transduction pathways like insulin signaling pathway and 
chemokine signaling pathway, and also in some cancer-associated pathways like melanoma (Table 2). The cyan 
and green modules, which contain 8 and 7 onco-lncRNAs, respectively, share the BP terms about vascular system 
with the yellow module. In addition, the cyan and green modules also show enrichment in immune response, and 
inflammatory regulation (Fig. 4, Supplementary Table S8).

The lncRNA FGF14-AS2 in the yellow module, was reported to be a breast-cancer-associated lncRNA and 
may act as a tumor suppressor45. This gene is observed to be down-regulated in the tumor tissues of all the four 
cancer types, as evidenced by Supplementary Fig. S4c. Some protein-coding genes connected to it (w ≥ 0.05) take 
roles in the function of response to stimulus (Supplementary Fig. S6). In addition, FGF14-AS2 shows a high cor-
relation with a famous cancer-associated gene VEGFB (PCC = 0.70), which is a member of vascular endothelial 
growth factor family and dysregulated in many cancers62.

Module Entry Name Count P Value

brown
hsa03040 Spliceosome 11 2.8 × 10−4

hsa03430 Mismatch repair 5 1.2 × 10−3

blue

hsa04370 VEGF signaling pathway 14 2.3 × 10−4

hsa04666 Fc gamma R-mediated phagocytosis 15 7.6 × 10−4

hsa04330 Notch signaling pathway 10 1.0 × 10−3

hsa04070 Phosphatidylinositol signaling system 12 2.6 × 10−3

hsa04664 Fc epsilon RI signaling pathway 12 3.9 × 10−3

hsa04660 T cell receptor signaling pathway 14 7.1 × 10−3

hsa04010 MAPK signaling pathway 25 1.4 × 10−2

hsa04662 B cell receptor signaling pathway 10 2.4 × 10−2

hsa05222 Small cell lung cancer 10 4.5 × 10−2

black

hsa05220 Chronic myeloid leukemia 5 7.4 × 10−3

hsa04722 Neurotrophin signaling pathway 6 8.9 × 10−3

hsa05200 Pathways in cancer 9 1.9 × 10−2

hsa04062 Chemokine signaling pathway 6 4.4 × 10−2

hsa04010 MAPK signaling pathway 7 5.0 × 10−2

yellow

hsa04910 Insulin signaling pathway 12 1.4 × 10−3

hsa05218 Melanoma 7 1.5 × 10−2

hsa05200 Pathways in cancer 17 2.2 × 10−2

hsa04062 Chemokine signaling pathway 11 3.8 × 10−2

hsa03320 PPAR signaling pathway 6 4.5 × 10−2

cyan
hsa04610 Complement and coagulation cascades 5 1.5 × 10−3

hsa04010 MAPK signaling pathway 6 4.2 × 10−2

green

hsa04610 Complement and coagulation cascades 9 6.1 × 10−5

hsa05332 Graft-versus-host disease 6 9.9 × 10−4

hsa04650 Natural killer cell mediated cytotoxicity 10 1.3 × 10−3

hsa05416 Viral myocarditis 6 1.3 × 10−2

hsa04621 NOD-like receptor signaling pathway 5 3.5 × 10−2

red

hsa04510 Focal adhesion 17 1.9 × 10−7

hsa04270 Vascular smooth muscle contraction 13 3.2 × 10−7

hsa04810 Regulation of actin cytoskeleton 15 1.3 × 10−5

hsa04020 Calcium signaling pathway 12 1.8 × 10−4

hsa04260 Cardiac muscle contraction 8 3.3 × 10−4

hsa04530 Tight junction 10 4.2 × 10−4

hsa04512 ECM-receptor interaction 6 1.4 × 10−2

hsa04670 Leukocyte transendothelial migration 7 1.5 × 10−2

hsa04010 MAPK signaling pathway 10 3.8 × 10−2

tan
hsa03030 DNA replication 6 1.2 × 10−6

hsa04110 Cell cycle 7 4.7 × 10−5

Table 2. Significant KEGG pathways (P ≤ 0.05, counts ≥ 5) associated with 12 cancer-associated modules.
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The cyan module contains four lncRNAs (MIR22HG, PCAT19, FENDRR and DIO3OS) whose functions were 
characterized51, 63–65. Although there have been no studies to provide evidence for their associations with cancers, 
in our study, they exhibit an accordant down-expression pattern in the cancer tissues when they were significantly 
dys-expressed (Supplementary Fig. S4d–g). In addition, some protein-coding genes connected to the four lncR-
NAs (w ≥ 0.05) are also associated with the response to stimulus (Supplementary Fig. S7). For MIR22HG, two 
studies revealed its roles in chemical stress responses63, 66. In our study, MIR22HG shows a positive correlation 
with IL6 (PCC = 0.68), which was implicated in inflammation, hematopoiesis and carcinogenesis67. In addition, 
MIR22HG also exhibits a positive correlation with CCL2 (PCC = 0.80), which was reported to be involved in 
immunoregulatory and inflammatory processes of multiple cancers68. FENDRR presents a strong positive cor-
relation with FOXF1 (PCC = 0.85), consistent with a previous study42. FOXF1 was indicated to play roles in 
response to wounding and chemical stimulus, and be important in human development and tissue repair69.

The observations above indicate that the onco-lncRNAs in these modules may contribute to functions associ-
ated with the response to stimulus and immunity. Previous researches proposed that the immune response is an 
attempt by the immune system to eradicate tumor, and could enhance tumorigenesis and progression70.

Modules associated with cell adhesion. There are 16 onco-lncRNAs and 288 PCGs in the red module. Our anal-
ysis shows that the genes in this module are significantly enriched in BP terms like cytoskeleton organization, cell 
junction assembly and cell adhesion (Fig. 4 and Supplementary Table S8). Further analysis indicates that they 
show enrichments in pathways associated with focal adhesion, regulation of actin cytoskeleton, tight junction 
and ECM-receptor interaction (Table 2), consistent with the observations from BP terms. Similarly, genes in the 
greenyellow module containing four onco-lncRNAs also show significant enrichment in the functions involved 
in cell migration and cell adhesion (Fig. 4 and Supplementary Table S8).

There are two reported lncRNAs (ADAMTS9-AS2 and MIR143HG) in the red module. MIR143HG, as a car-
diac mesoderm enhancer-associated non-coding RNA71, is observed to be significantly down-regulated in BLC 
and EBC (Supplementary Fig. S4i). ADAMTS9-AS2 was reported to be significantly down-regulated in glioma 
tumor tissues and its overexpression would result in significant inhibition of glioma cell migration46. In our study, 
ADAMTS9-AS2 is significantly down-expressed in BLC, ADC and EBC (Supplementary Fig. S4h). Furthermore, 
it can be seen from Supplementary Fig. S8 that most genes directly connected to ADAMTS9-AS2 (w ≥ 0.05) also 
participate in the functions like cell adhesion and migration, for example, NCAM172 (PCC = 0.70) and PALLD73 
(PCC = 0.70). Similar to ADAMTS9-AS2, MIR143HG also exhibits connections with genes involved in cell adhe-
sion like TGFB1I174 (PCC = 0.80).

Thus, it can be conjectured that the onco-lncRNAs in the red and greenyellow modules most possibly partic-
ipate in maintaining cell shape and changing attachment to other cells or extracellular matrix. The dysregulation 
in these functions can promote migration of cancer cells, leading to local invasion and distant metastasis70.

Module associated with genomic stability. The brown module contains the most onco-lncRNAs (67) among all 
the modules and 844 PCGs. However, none of the 67 onco-lncRNAs have been reported to have associations with 
cancers. The genes in this module significantly contribute to response to DNA damage stimulus, DNA repair and 
chromosome organization processes (Fig. 4 and Supplementary Table S8). The BP terms are associated with func-
tions of maintaining genomic stability and their disorders were revealed to be connected with predisposition to 
cancer75, 76. In addition, the genes are mainly enriched in spliceosome pathway and base excision repair pathway 
(Table 2), which are also associated with regulation of genomic stability. Therefore, it is reasonable to infer that 
the 67 onco-lncRNAs may play roles in maintaining genomic stability under normal circumstances and their 
imbalances could promote the cancerization progress.

Module associated with morphogenesis. The magenta module contains 29 onco-lncRNAs and 182 PCGs. None 
of the 29 onco-lncRNAs have been reported to be correlated with cancers. The enrichment analysis for BP terms 
reveals that most significant terms are involved in embryogenesis progresses, like embryonic skeletal system 
morphogenesis, embryonic organ morphogenesis and embryonic morphogenesis (Fig. 4 and Supplementary 
Table S8). Some evidences indicated that genes with functions involved in the embryo development stage would 
play a role in carcinogenesis77. Thus, it can be inferred that the onco-lncRNAs in the module magenta may be 
associated with steps of the embryonic morphogenesis and would advance carcinoma to progress to higher 
pathological grades78–80.

Modules associated with cell cycle. The tan, lightgreen and salmon modules contain three, four and five 
onco-lncRNAs, and the number of PCGs are 118, 30 and 109, respectively. The enrichment function terms in the 
three modules are all involved in cell cycles (Fig. 4 and Supplementary Table S8). As accepted, the most funda-
mental trait of cancer cells is to sustain proliferation and the abnormality of the cell cycle has been considered to 
be a common feature of cancers81. Thus, it can be speculated that the 12 onco-lncRNAs in the three modules could 
play an important role in cancers through dysregulation of the cell cycle.

In summary, the module analysis above indicates that the functions of onco-lncRNAs in the 12 modules are 
involved in the biological roles relevant to malignancies. Compared to the previous observations21, 31, some new 
functions of the lncRNAs like the morphogenesis and immune regulation are revealed by our work.

Hub-based analysis. Highly connected hub nodes are central to the network’s architecture18 and some stud-
ies suggested that genes more centralized in the network are more likely to be key drivers to proper cellular func-
tion than peripheral genes82. As observed above, the brown module has the most number of onco-lncRNAs and 
its eigengene shows a significant difference between the tumor and normal samples. Taking the brown module 
as an example, we further identify its intramodular hub genes. Although the filter for genes used in building the 
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network may lead the onco-lncRNA connectivity towards higher values, we could obtain more important nodes 
from the onco-lncRNAs through identifying hub nodes. We selected the 5% of nodes (51/911) with the highest 
connectivity as hub genes from the brown module, which contain 11 onco-lncRNAs and 40 PCGs. Figure 5a is 
a network of these hub genes, which only displays connections with w above a threshold of 0.2. It can be seen 
that the 11 onco-lncRNAs exhibit high connectivity with neighboring genes (RAD50, CHD9, KMT2A, ARID4B 
and RING1) whose functions are involved in maintaining genome stability. Especially, RAD50, KMT2A and 
ARID4B were revealed as biomarkers in a broad range of human malignancies83, 84. In addition, the 51 hub genes 
are overexpressed in the tumor tissues of each cancer type (Fig. 5b). The observation further indicates that the 11 
onco-lncRNAs may play important roles in the regulation of genome stability in tumor biology. Meanwhile, their 
higher connectivity than other onco-lncRNAs in brown module suggests that they may play more crucial roles in 
the biological functions and the development of cancers than the other onco-lncRNAs in this module.

Conclusion
Although accumulating studies have indicated that the lncRNAs play important roles in tumor progress, the 
functions for most lncRNAs have not been unraveled, in particular for potential oncogenic lncRNAs across mul-
tiple cancers. In this study, we mainly utilized the gene co-expression network to study the functions of the 
onco-lncRNAs for the four solid cancer types.

The 236 onco-lncRNAs altered in multiple cancers were identified, majority of which were unreported previ-
ously to have associations with cancers. Our co-expression network and function enrichment analysis indicate 
that the onco-lncRNAs should play carcinogenic roles in the most fundamental functions involved in regulating 
proliferation and genome stability, providing further supports for the previous observations31. More importantly, 
our results reveal that the onco-lncRNAs are also associated with some biological capabilities implicated in the 
processes related to major hallmarks of cancers, like cell adhesion and motility, morphogenesis, immune and 
inflammatory response.

Overall, our study is the first time to use WGCNA approach to investigate the functions of the lncRNAs across 
multiple cancers based on RNA-seq data. Although the biological importance of the unreported onco-lncRNAs 
need further evaluation by experiments, our study proposed a facile yet efficient strategy to identify important 
lncRNAs associated with cancers and predict their potential functional roles, which may guide subsequently 
experimental studies.

Materials and Methods
RNA-seq datasets. Raw fastaq files of RNA-seq datasets for the four cancer types were downloaded from 
the European Nucleotide Archive (http://www.ebi.ac.uk/ena), including bladder cancer (SRP018008)33, prostate 
cancer (ERP000550)34, lung adenocarcinoma (SRP012656)35 and estrogen receptor positive (ER+) breast cancer 
(SRP042620)36 (Supplementary Table S1). In each dataset, we only choose those tumor samples with matched 
adjacent normal samples. Finally, we obtained 132 samples, of which at least 11 sample pairs for each cancer type, 
to analyze downstream.

Figure 5. Network and expression levels of 51 top hub genes in brown module. (a) Cytoscape network 
visualization of 51 genes, in which only edges with weight (w) above a threshold of 0.2 are displayed. The red 
nodes denote lncRNA genes. The green and blue nodes both denote protein-coding genes, but the green color 
stands for genes with function in maintaining genomic stability. (b) The expression levels of 51 genes in each 
cancer type. The y axis represents the average FPKM value of samples in each group. And the blue and red colors 
denote protein-coding genes and onco-lncRNAs, respectively.

http://www.ebi.ac.uk/ena
http://S1


www.nature.com/scientificreports/

1 0Scientific RepoRts | 7: 754  | DOI:10.1038/s41598-017-00856-8

Raw reads alignment and expression quantification. After the sequence quality control on the raw 
sequence data by fastqc v0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), raw reads were 
mapped back to the reference genome GRCh38.p3 by TopHat v2.0.1385, 86, and we used the GENCODE v23 
gtf file (ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_23/gencode.v23.annotation.gtf.gz) as 
annotation file, which contains 15,931 lncRNA genes. Then we used Cufflinks v2.2.186, 87 for the gene assem-
bly and quantification. We obtained the gene expression levels by summarizing the FPKM value (Fragment Per 
Kilobase per Million mapped reads). In order to minimize the false positive and maintain a high number of 
differential expressed genes in downstream analysis, we only kept the expressed genes in terms of the criterion of 
FPKM ≥ 1 in more than 80% of the normal samples or 80% of the tumor samples for each cancer type according 
to Supplementary Fig. S9.

Differential expression analysis. We performed differential expression analysis on each cancer, based on 
BAM files derived from TopHat. DESeq2 v1.12.488 was used to test differential expression between the tumor and 
normal samples. A gene is defined as a differentially expressed gene between the normal sample and tumor one 
when the FDR adjusted p value is less than 0.01 (FDR ≤ 0.01) and the fold change (FC) is at least 2 times higher 
or lower (|log2FC| ≥ 1).

Co-expression network construction of onco-lncRNAs. We defined the lncRNAs significantly altered 
in more than two cancer types as onco-lncRNAs. In order to predict their functions, WGCNA v1.5118 was used 
to construct a co-expression network between the onco-lncRNAs and their “closely correlated” PCGs, based 
on the signed Pearson Correlation Coefficient (PCC) between their normalized expression levels as provided 
by Cuffnorm86. A PCG is defined to be “closely correlated” with the onco-lncRNAs when its absolute values of 
Pearson correlation coefficients with more than 5 onco-lncRNAs are equal or greater than 0.5. Consequently, 
6,316 correlated-PCGs were obtained. We then calculated a correlation matrix containing the absolute values 
of pairwise Pearson correlations among all the onco-lncRNAs and the correlated PCGs for the samples under 
study. In order to achieve a scale-free topology, we set β = 9 in terms of Supplementary Fig. S10 and converted 
the pairwise correlation into an adjacency matrix of connection strengths through soft-thresholding approach 
(connection strength = |correlation|β). A dissimilarity matrix based on topological overlap measure (TOM) was 
used to identify gene modules through a dynamic tree-cutting algorithm18. All modules were assigned to the 
corresponding color. The module eigengene was used to represent each module, which was calculated by the first 
principal component. Using the module eigengenes, Module-Cancer relationships were estimated by one-way 
ANOVA with FDR corrected p-value between the module eigengene and the tissue type (normal and tumor). 
Then we selected 12 significantly cancer-associated modules (p-value ≤ 0.0001) for the downstream analysis. 
We also analyzed the hub genes of the brown module, which were derived from top 5% genes with the highest 
connectivity.

Functional enrichment analysis of onco-lncRNA-containing modules. We used DAVID v6.732 
(https://david-d.ncifcrf.gov/) to perform the functional enrichment analysis for each module. The tool computes 
a modified Fisher exact test p-value. In the main text, we only show the three representative terms from top 10 
most significantly GO BP terms of each module. But, all significant terms (p ≤ 0.05) are listed in Supplementary 
Table S8. In addition, we only concerned significant KEGG pathways with p-value ≤ 0.05 and the number of 
enriched genes ≥ 5 (Table 2).

Statistical analysis and visualization. Statistical analysis was performed using R-3.3.1. Most of the vis-
ualizations were also presented by R, except for the survival analysis and the network visualization, where the 
Kaplan-Meier Plotter (http://kmplot.com/) and Cytoscape v3.3.0 (http://www.cytoscape.org/) tools were used. 
For the survival analysis, we chose recommended parameters from the web server to analyze the association 
between a queried gene and the survival time. Samples were grouped according to the median expression of the 
selected gene. All the survival curves denote overall survival (OS).
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