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Identification of leader and self-
organizing communities in complex 
networks
Jingcheng Fu1,3, Weixiong Zhang2,3 & Jianliang Wu1

Community or module structure is a natural property of complex networks. Leader communities and 
self-organizing communities have been introduced recently to characterize networks and understand 
how communities arise in complex networks. However, identification of leader and self-organizing 
communities is technically challenging since no adequate quantification has been developed to 
properly separate the two types of communities. We introduced a new measure, called ratio of node 
degree variances, to distinguish leader communities from self-organizing communities, and developed 
a statistical model to quantitatively characterize the two types of communities. We experimentally 
studied the power and robustness of the new method on several real-world networks in combination of 
some of the existing community identification methods. Our results revealed that social networks and 
citation networks contain more leader communities whereas technological networks such as power 
grid network have more self-organizing communities. Moreover, our results also indicated that self-
organizing communities tend to be smaller than leader communities. The results shed new lights on 
community formation and module structures in complex systems.

Real systems in various fields, e.g., power grids in engineering, gene regulatory networks in biology, and circles of 
friends in social media like Facebook, are best formulated as graphs or networks where nodes represent entities 
and links represent relationships between entities. Complex networks are not random1, 2, but rather have vari-
ous structural and locational properties. One important property common to many networks is the presence of 
community structures, where the nodes within a community are more densely connected than the nodes across 
two communities3. Communities are an important network property3–6 since they typically constitute functional 
units of a network. For instance, groups in social networks often possess their own norms, orientations and sub-
cultures7. Within a cell, some proteins interact to form protein complexes to exert their functions8, 9.

Identification of communities in complex networks has attracted much attention10–12. Recent studies have 
extended to discovering internal, fine structures of network communities. Two types of internal communities 
have recently been proposed, the leader communities and self-organizing communities13, 14. Identification of such 
fine community structures can help gain insights into the formation of communities and provide some deep 
knowledge of network properties.

A leader community is a community where a few nodes are highly connected to nearly all or a substantial 
number of other nodes in the community - these highly connected nodes can be viewed as the leaders of the com-
munity and have a great influence on the community as a whole. One well-known example of leader communities 
is Zachary’s karate club network15, where the coach and the president of the club went into a dispute, causing the 
club to split into two with each of them being the leader of a group. In contrast, a self-organizing community is a 
community where all nodes have nearly equal or similar node degrees - there exists no single node that has dom-
inating influence on the community. One example is the American College Football network where each team 
within a conference plays against every other team, thus forming a self-organizing community.

Automatic distinguishing a leader community from a self-organizing community seems to be challenging. 
One plausible characteristic metric is the variance of node degree13. The leaders in a leader community have 
significantly higher node degrees than the other nodes, whereas the nodes in a self-organizing community 
have similar node degrees. Therefore, a leader community might have a higher variance of node degree than a 
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self-organizing community. It has been suggested to use VAR(C)>1 as a criterion to call a community C a leader 
community if its degree variance VAR(C) is greater than one13. One illustrating example is in Fig. 1A, where the 
left community is a leader community with two leaders in blue and the right community is a self-organizing 
community without a leader.

While seemed to be reasonable, this variance-based metric is not effective for separating leader and 
self-organizing communities. One example on which this metric fails completely is in Fig. 1B. As shown, the 
community on the left is a self-organizing community and the one on the right is a leader community with one 
leader node. The two communities all have large variances of node degree. The self-organizing community has 
a variance of 8.8 and the leader community 7.1. Remarkably, the self-organizing community in fact has a larger 
variance than the leader community! This simple example in part motivated our present study.

We developed a novel metric for automatic identifying and distinguishing leader and self-organizing commu-
nities. We studied the utility and robustness of this new metric on various real complex networks, demonstrating 
its effectiveness in comparison with the variance based metric.

Results
The main idea and the new metric. The result in Fig. 1B is thought provoking. Having a large variance 
of node degree may be a necessary feature, but not a sufficient condition, for forming a leader community. This 
means that while a leader community typically has a large variance of node degree, a community with a large 
degree variance may not be necessarily a leader community. This also entails that there must be some hidden 
feature that separates leader and self-organizing communities apart.

The variance-based metric fails in part because it uses no reference to network structures to adequately call 
for a leader or a self-organizing community for a given network. It ignores the inherent, albeit hidden, structures 
embedded in a given community. Instead, it rigidly relies on a fixed criterion of VAR(C)>1 to call for a leader 
community and VAR(C)<1 for a self-organizing community. Here, the threshold “1” used is very much arbitrary.

A leader community has an eminent feature of having a few leaders that are highly connected. Thus, a leader 
community is sharply different from a random community even if the latter has the same average node degree. A 
random community resembles a self-organizing community as both of them do not seem to have any particular 
structures. This observation suggests that a remedy to the serious drawback of using the degree variance alone 
is to introduce an expected structure that is anticipated for a given community as a reference. To this end, we 
introduce and utilize a random null model of the community that has the same average node degree as the given 
community. The variance of the node degree of the random null model is then used as a reference to the variance 
of the node degree of the given community.

Figure 1. A network with both kinds of communities. (A) A leader community (left) and a self-organizing 
community that can be identified by the variance of node degree. The two communities have 14 nodes and 
an average node degree of 4. However, the degree variance of the leader community is 13.7 while the degree 
variance of the self-organizing community is 0. Here the degree of a node counters the edges within its 
community. (B) Another leader community (right) and a self-organizing community (left), each of which has 
14 nodes. The leader community has an average node degree of 3.7 and a degree variance of 7.1. In contrast, the 
self-organizing community has a larger average node degree of 11.3 and a larger degree variance of 8.8. While 
the self-organizing community has a larger degree variance, it is not a leader community. Likewise, the leader 
community has a smaller degree variance than the self-organizing community, the former is a typical leader 
community.



www.nature.com/scientificreports/

3Scientific RepoRts | 7: 704  | DOI:10.1038/s41598-017-00718-3

Specifically, we took the ratio ρ between the degree variance of the given community and the expected degree 
variance of the corresponding random model as a yardstick to quantify a community. That is

ρ = VAR VAR/ (1)real rand

where VARreal and VARrand are the degree variances of the actual and random communities, respectively. When 
ρ > 1, the community has a degree variance greater than the expected degree variance of the random model that 
has the same average connectivity. A larger ρ > 1 means that the given community deviates more significantly 
from the random model, indicating more strongly the former to be a leader community. In contrary, when ρ < 1, 
the given community has a more uniform node degree than the random model, so that the former is more likely 
to be a self-organizing community. When ρ = 1, the community can be viewed as neither a leader community nor 
a self-organizing community.

The Erdös-Rényi(ER) random network and variance of degrees. The new method uses a random 
null model as a reference. To this end, we adopted the Erdös-Rényi(ER) random network16 as the random model. 
An ER random network with N nodes and an average node degree 〈k〉 can be generated by connecting a pair of 
nodes with probability of 〈k〉/(N − 1). One useful feature of the ER network is that its expected variance of node 
degrees can be efficiently and accurately approximated using N and 〈k〉 (see Methods). It can also be shown that 
the expected variance of node degrees is not greater than the average node degree (see Methods). Furthermore, 
these two values become closer to each other as the average degree decreases and the network becomes larger. In 
other words, the sparser the network, the closer the two values (Fig. 2).

Evaluation of the new metric. In order to assess the new metric ρ for separating leader and self-organizing 
communities, we applied it to several well-known real networks with known community structures. These real 
networks include the Dolphins network17, Football network18, Karate network15, Polblogs network19, Polbooks 
network20, School friendship network21 and Word network22 (Table 1 and Materials and Methods).

Each of the Dolphins network, Karate network, Polblogs network and Word network has two communities, 
and the Polbooks network has three. Two of the communities of these five networks, the first community of the 
Polbooks network and the third community of the Word network, have real values of degree variance smaller 
than 1, indicating that these two communities are self-organizing communities under the old metric (Fig. 3A). On 

Figure 2. Approximation of the expected degree variance with the average node degree in the ER network. This 
experimental analysis of the relationship between the expected variance of node degrees and the average degree 
was done on networks of four increasing sizes, N = 10, 100, 1000 and 10,000, with the average degrees of [0.5, 
1, 1.5, …, 5, [2, 4, 6, …, 20], [3, 6, 9, …, 30], and [4, 8, 12, … 40], respectively. Each data point in the figure was 
averaged over 1,000 random problem instances.
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the other hand, the real degree variances of these two communities are respectively smaller than the expected 
degree variances of their corresponding random graphs. They are detected as self-organizing communities under 
the new metric as well (Fig. 3B(b)). These two communities are sparse and all of their nodes have similar degrees, 
which make the real variances not only smaller than 1 but also smaller than random variances. The real variances 
are greater than the random variances for the rest 9 communities of these five networks, meaning that they are 
classified as leader communities under the new metric. On the other hand, all these 9 communities have real 
variances greater than 1 and should be leader communities under the old metric. Because each of these 9 commu-
nities has at least one leader node with a high degree, which makes its real variance large enough (greater than 1 
and the random variance). In short, the old and new metrics had the same results on these networks regarding the 
types of communities they have (Table 1).

The disagreement between the two metrics appeared in the last three networks. The Football network is 
special. Three known communities in this network, corresponding to the conferences of “Conference USA”, 
“Independents” and “Western Athletic”, do not have well organized structures. Each of these communities has 
at least one team (node) played more games with teams in the other conferences than in its own conference. The 
new metric was able to detect this anomaly and correctly mark these communities differently from other commu-
nities (Table 1 and Fig. 3C(a)). However, the old metric could only detect some of these anomalous communities. 
It correctly detected two leader communities, the conferences of “Conference USA” and “Independents”, but failed 
to identify the conference of “Western Athletic” as a leader community.

The School6 and School7 networks are the same but are divided into 6 and 7 communities, respectively. For 
these two networks, VARreal’s are greater than VARrand’s for all communities (Fig. 3A(c) and A(b)), meaning that 
all communities in these networks were marked as leader communities using the new metric. However, two com-
munities in the School7 network were recognized as self-organizing communities by the old metric. These two 
communities, on which the two metrics gave different results, are shown in Supplemental Figure S1. One of these 
two communities forms a simple star with total four nodes and the node with degree 3 being the leader. The other 
community has a leader as well, which is the node with degree 5. The old metric made the same mistake on the 
School6 network to mark a leader community as a self-organizing community (Figure S1(a)).

In summary, the new metric evidently outperformed the old metric on these real networks.
On large networks, it is computationally inefficient to derive VARrand via simulation (Fig. 3B). We thus have to 

adopt the approximation scheme ≈VAR krand  (see Methods). We chose five networks to show the effects of 
using VARrand’s from simulation and from approximation k  (Fig. 3B). All communities were classified correctly 
by the values from the two methods, except two special cases. The Football network was reported to have three 
leader communities when VARrand’s were derived from simulation (3B(a)), whereas only one of these communi-
ties was detected as a leader community by the approximation method k  (3B(c)). One of the two communities 
with disparity results is dense so that the approximation k  is not accurate. The other case is a disconnected 
community that has five nodes and one edge, on which a corresponding random ER network is more likely to 
have no edge and the VARrand from simulation may be smaller than its real variance. Despite these three excep-
tional communities with ill-organized structures, the approximation of k  performed well on most large real 
networks.

In summary, the results on these real networks with known community structures evidently showed that the 
new metric is able to distinguish subtle community features that would have otherwise been missed by the old 
metric, demonstrating the superiority of the new metric over the old one.

Applications of the new metric. To further analyze the new metric, we applied it to real-world networks 
with little information of community structures, aiming at revealing deep structural properties of these real 
networks.

The analysis was carried out in comparison with 9 existing community detecting methods on 4 large real-world 
networks with no information of community structures. These methods include BGLL23, RB24, CPM25, SCluster26, 
UVCluster27, OSLOM28, SVI29, Infomap30 and COPRA31. BGLL is regarded as one of the best algorithms for com-
munity detection based on modularity maximization, and can detect hierarchical community structures. Both RB 
and CPM are based on a multi-resolution Potts model. Consensus hierarchical clustering is used in both SCluster 
and UVCluster, along with two methods to maximize a function called Surprise32. OSLOM is an algorithm based 

Name n m K N N/leader
old method

self organizing
old method N N/leader

new method
self organizing
new method Ref

Dolphins 62 159 2 2/0 2/0 17

Karate 34 78 2 2/0 2/0 15

Polblogs 1,222 16,714 2 2/0 2/0 19

Polbooks 105 441 3 2/1 2/1 20

Word 112 425 2 1/1 1/1 22

Football 115 613 12 2/10 3/9 18

School6 69 440 6 5/1 6/0 21

School7 69 440 7 5/2 7/0 21

Table 1. Eight real networks with known community structures. In the table, n and m are the numbers of nodes 
and edges, respectively, and K is the number of communities in a network. Nx

y means the number of x 
community under method y, where x ∈ {leader, self organizing} and y ∈ {old method, new method}.

http://S1
http://S1(a)
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Figure 3. VARreal’s, VARrand’s and variance ratios of communities in real world networks with known 
community structures. Here VAR_real is the VAR of a community. VARrand’s in panel A are from simulation, 
averaged over M randomly generated ER networks with the same number of nodes N and average node degree, 
where M takes values of 500 and 1,000 and denoted as VAR_ER_500 and VAR_ER_1,000, respectively. As 
shown, VAR_ER_500 is almost the same as VAR_ER_1,000, suggesting that the approximation of VARrand via 
simulation is stable and efficient. Panel B shows the results from simulation and approximation VARrand = 〈k〉. 
Simulation with M = 1,000 is used for B(a) and B(b) and approximation for B(c) and B(d). The line in each 
diagram is the bound of VARrand = VARreal. The ratios of p = VARreal/VARrand are shown in panel C, where 
VARrand’s are from simulation with M = 1,000 as in B. The x-axes of the figures correspond to community sizies, 
which are ordered from small to large.
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on optimization of a local fitness function. SVI is based on a Bayesian network model that allows nodes to be 
members of multiple communities. Therefor, it can detect overlapping community. Infomap, which is regarded as 
the fast method to detect communities in direct networks, is based on information theory. The last method, 
COPRA, is based on the well-established label propagation. It can also detect overlapping communities.

The real-world networks that we considered are US airport network, Power grid, Ca_Hepth citation network 
and Pretty-Good-Privacy social network (PGP network) (Table 2). Pretty-Good-Privacy is an encryption algo-
rithm for safe communication, and the PGP network is a social network in which a node represents a user on the 
web and an edge between two users means that they trust each other. This network was built based on the data of 
191,548 keys and 286,290 signatures which are generated using the PGP algorithm.

The results from these methods on the four large networks were categorically consistent - these networks 
contain a large number of communities (Fig. 4), many of which are small. In the analysis, we focused on large 
communities and ignored small ones with less than 10 nodes.

The results on these networks showed that the new metric is robust and stable. While different methods 
might not necessarily generate the same communities, they often produced the same community types (leader or 
self-organizing) on a given network (Fig. 4). This means that the new metric is robust to tolerate different com-
munity detection methods used.

The most interesting result from this analysis of real-world networks is that self-organizing communities tend 
to be small, and in contrast leader communities are typically large. As shown in Fig. 4, most of the large commu-
nities in the four real-world networks (on the right of each panel) have degree variance ratios greater than 1 and 
were consequently marked as leader communities. This is intuitive as large communities often tend to be difficult 
to manage so that hierarchical structures with leaders may be more effective for management.

In particular, almost all communities found in the airport network are leader communities (Fig. 4A). All 
communities discovered by six of the nine methods and the majority of the communities by the remaining three 
methods are leader communities (Fig. 5). This result is in agreement with the fact that there are large cities or 
megacities, such as Los Angeles, New York, and Chicago, in different regions of the US, and regional hub airports 
of major airlines, which correspond to leaders of the communities, have flights connecting to the rest of the air-
ports throughout the regions.

The Ca_Hepth citation network and the PGP network have more leader communities than self-organizing 
communities (Fig. 4B and C). About 70% of the communities of these two networks found by all the methods but 
one (UVCluster) are leader communities (Fig. 5). Note that the degree variance ratios ρ increase with the com-
munity sizes in these two networks. A community in the citation network presumably corresponds to a research 
field, where there are popular papers that have a large influence on the development of the field. In the PGP net-
work, a community represents a group of people who may know one another, and there are several people in a 
community who are well connected to the others.

The result from the Power grid network is interesting, in which most communities identified are 
self-organizing communities (Fig. 4D), meaning that every node plays a similar role in the power grid network. 
Less than 20% of the communities from five of the nine methods (RB, CPM, SCluster, UVCluster and SVI) and no 
more than half of the communities from three methods (BGLL, OSLOM and COPRA) are leader communities. 
Informap is an exception on this network. Although most communities from Infomap are leader communities, 
they do not have large degree variance ratios ρ (Fig. 5). In short, most communities of this network are 
self-organizing communities. Intuitively, a leader community is less stable than a self-organizing community 
because a failure of the leader(s) may destruct the community or make the community unstable. Such a destruc-
tive consequence must be avoided in power grids in order to minimize any catastrophic consequences due to 
power outage at the leader node(s). Therefore, forming self-organizing communities is a rational design strategy 
for power grid systems.

Summary and Discussion
We proposed in this paper a new metric, degree variance ratio ρ, that is able to accurately characterize leader com-
munities versus self-organizing communities in complex networks. Two modes of communities evolutions are 
reflected by these two communities patterns. Nodes in leader communities are more likely to connect to the pop-
ular nodes that already have relatively high connectivity, turning them into leaders, while nodes in self-organizing 
communities do not have a tendency to connect to the popular nodes. We use the words “self-organizing” to refer 
to the latter case of communities formation and call the resulting communities self-organizing communities. 
We applied this new metric to benchmark networks with known community structures. The results showed that 
the new metric outperformed the existing metric and was able to accurately identify leader and self-organizing 
communities. Furthermore, in combination of nine state-of-the-art community-finding methods, we applied 
the new metric to four large real-world networks with no community structure information. Although these 

Name n m Description Ref

US airport network 500 2,980 Transportation network 33

Power grid network 4,941 6,594 Technology network 34

Ca_Hepth 9,877 51,971 Citation network 35

PGP network 10,680 24,340 Social network 36

Table 2. Information of Real-world Networks with no known community structures. Here, n and m are, 
respectively, the numbers of nodes and edges in network.
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Figure 4. Variance ratios ρ of communities in (A) the US airport network, (B) Ca_Hepth citation network, 
(C) PGP network and (D) Power grid network that were discovered by 9 community-finding methods. Each 
figure for one of the four networks represents the result from one of the nine community-finding methods. For 
clarity, the x-axes correspond to community sizies, which are ordered from small to large. (A) In the US airport 
network, all of the communities, except four, have variance ratios ρ > 0, so that they were marked as leader 
communities. (B and C) In the Ca_Hepth citation network and the PGP networks, more leader communities 
were detected by the nine methods. (D) In the Power grid network, more self-organizing than leader 
communities were identified by eight of the nine algorithms, with Infomap as an exception.
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community-finding methods may not identify the same communities, the new metric provided stable and con-
sistent results on similar communities from different methods, showing that it is robust against perturbations 
due to different community detecting methods used. Here two communities from different methods are con-
sidered similar if they share more than 70% common nodes of the smaller community. Moreover, the results 
also showed that large communities are more likely to be leader communities and small communities tend to 
be self-organizing communities. In particular, in the Power grid network, more self-organizing communities 
are identified than leader communities by our new method. In contrast, nearly all communities in the Airport 
network have leader nodes, which is in agreement with the reality that many large cities serve as airline hubs with 
flights connecting to small cities in the regions. The communities in the citation network are mixed, in which 
most communities are leader communities, which are likely to be relatively mature research fields.

Materials and Methods
Networks with known communities. Seven benchmark networks with known community structures 
were used to test the new and existing metrics for distinguishing leader and self-organizing communities.

Lusseau’s bottlenose dolphin network. The Dolphins Social Network, reported by Lusseau, contains 62 dolphins. 
A link is introduced to connect two dolphins or nodes if the two are observed to be together more often than 
expected by chance over a period of seven years from 1994 to 2001. The dolphins are mainly divided into the male 
dolphins and female dolphins, therefore, two communities exist in the network.

Zachary’s karate club network. The karate club network15 has been used extensively as a benchmark for com-
munity detection. A disagreement developed between the coach and the president of the club, which ultimately 
resulted in the split of the club into two communities.

School friendship network. The School Friendship Network was compiled from the National Longitudinal Study 
of Adolescent Health21. It was based on self-reporting from students from grade 7 to grade 12. Grade 9 has two 
subgraphs of white and black students. The original network can be divided into 6 or 7 communities depending 
on whether grade 9 is divided into two subgroups or not.

College football. The United States college football network, due to Newman18, has a node as a team an edge to 
mean a regular-season game between two teams based on the schedule of 2000 season. The teams are divided 
into conferences with 8–12 teams each. Games are more frequent between members of the same conference than 
between members of different conferences.

Political blogs. A directed network of hyper links between weblogs on US politics, Polblogs, recorded in 2005 
by Adamic and Glance19. These blogs can be divided into two groups by learning towards left or right(liberal, 
conservative) on the political spectrum.

Political books. A network of books about US politics published around the time of the 2004 presidential elec-
tion and sold by the online bookseller Amazon.com20. Edges between books represent frequent co-purchasing of 
books by the same buyers. The books can be divided into three communities: liberal, conservative and neutral.

Word adjacencies. An adjacency network of common adjectives and nouns in the novel David Copperfield by 
Charles Dickens22. The adjectives and nouns constitute two communities of the network.

Figure 5. The percentages of leader communities from nine community-finding methods on four real-world 
networks. Networks are color coded. For each network, nine bars corresponding to nine methods are in the 
same order as in Fig. 4.

http://Amazon.com
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Networks with no information of community structures. We considered four large real complex 
networks, listed in Table 2, on which no information of their communities is available.

Expected variance of node degrees in the Erdös-Rényi networks. Consider a community C of N 
nodes. Let 〈k〉 be the average degree of nodes of C. We denote VARreal and VARrand to be, respectively, the actual 
and expected variances of node degrees of an ER network with N nodes and 〈k〉 expected node degree.

We first define the degree variance of community C, VAR C( ), as follows,

= −VAR C E Ed d( ) ( ) ( ) , (2)C C
2 2

where dC is the series of node degrees of C.
For a small community, we used simulation to approximate the value of VARrand. We generated M ER net-

works with the same size N and average degree 〈k〉, and took the average of their variances as VARrand, i.e.,
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The first step in the equation above comes from the sum of −k k( )i
2 in different views, the former computes 

it by adding all of the nodes one by one while the latter computes it via clustering the nodes with the same degree 
first and then adding all of them. According to Erdös37, the distribution of node degrees of a random ER network 
can be approximated by a Poisson distribution:

λ
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P k e

k
( )

!
, (5)

k

where P(k) is the probability that a randomly chosen node has degree k. Combining Equations (5) and (4), we 
have

≤ = .VAR Var k k( ) (6)rand

Equation (6) holds since the variance of a Poisson distribution is λ, which is 〈k〉. This is reason that the degree 
variance is smaller than the average degree of ER networks, as shown in Fig. 2. However, for large k, P(k) decrease 
faster than the increasing of −k k( )2, supporting to ignore the items of ≥k N  when N is large.

Finally, the ratio of degree variance is then defined by

ρ = ≈ .
VAR
VAR

VAR
k (7)
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