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The native state of prion protein 
(PrP) directly inhibits formation of 
PrP-amyloid fibrils in vitro
Ryo P. Honda1 & Kazuo Kuwata2,3

The conversion of globular proteins into amyloid fibrils is associated with a wide variety of human 
diseases. One example is the prion protein (PrP), which adopts an α-helical structure in the native 
state but its amyloid form is implicated in the pathogenesis of prion diseases. Previous evidence has 
suggested that destabilization of the native state promotes amyloid formation, but the underlying 
mechanism remains unknown. In this study, we report that the native state of PrP serves as a 
potent inhibitor in the formation of PrP amyloid fibrils. By monitoring the time courses of thioflavin 
T fluorescence, the kinetics of amyloid formation was studied in vitro under various concentrations 
of pre-formed amyloid, monomer, and denaturant. Quantitative analysis of the kinetic data using 
various models of enzyme kinetics suggested that the native state of PrP is either an uncompetitive or 
noncompetitive inhibitor of amyloid formation. This study highlights the significant role of the native 
state in inhibiting amyloid formation, which provides new insights into the pathogenesis of misfolding 
diseases.

The formation of amyloid fibrils or amyloid-like aggregates is one characteristic feature in a variety of human 
diseases1. A wide range of such misfolding diseases is associated with the conversion of globular proteins into 
amyloid fibrils. Examples include hemodialysis-related amyloidosis, amyotrophic lateral sclerosis, and prion dis-
eases. The kinetics of amyloid formation has been extensively studied to understand the fundamental mechanism 
underlying misfolding diseases2–9. It is well established that globular proteins have an increased propensity to 
amyloid formation under solution conditions where the native structure is destabilized by pH, high temperature, 
and the addition of chaotropic agents such as urea and guanidine hydrochloride (GuHCl)10. However, it is not 
well understood how destabilization of the native structure is related to amyloid formation. This motivated us 
to investigate the kinetics of amyloid formation by prion protein (PrP). PrP adopts an α-helical structure in the 
native state11 but has the ability to form amyloid fibrils12–15 and amyloid-like aggregates16–19 under conditions 
that destabilize the native form. The amyloid forms of PrP have been implicated in the pathogenesis of prion 
diseases20, 21.

Results and Discussion
A systematic investigation of amyloid formation in vitro.  In this section, we will briefly outline our 
experimental strategy for investigating amyloid formation by PrP. We performed a series of seeded growth exper-
iments in which pre-formed amyloid fibrils (“seeds”) were added to a solution containing a bacterially-expressed 
recombinant PrP (rPrP), and their growth under a quiescent condition was continuously monitored at 37 °C 
through the change in thioflavin T (ThT) fluorescence (Fig. 1A and B). The seed fibrils were generated from rPrP 
using serial protein misfolding cyclic amplification (PMCA)22. We employed a microtiter plate method to rapidly 
examine a wide variety of different conditions (Fig. 1A). A total of 264 different conditions were studied by sys-
tematically varying the concentrations of seed fibrils, monomer, and GuHCl. To facilitate direct comparison of 
the results, the measured fluorescence was normalized to that of a reference sample containing 2.5% seed fibrils 
and the same concentration of GuHCl but no monomer.
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Figure 1C shows a representative result when amyloid formation was examined at a fixed concentration of 
seed fibrils (2.5%) and GuHCl (3.0 M) by varying the concentration of monomer. The addition of seed fibrils 
completely eliminated the lag phase and we observed an exponential increase in ThT fluorescence. This overall 
behavior is similar to the growth reaction observed in other amyloid systems23, indicating that the growth of the 
pre-existing seed is the dominant process in our system.

Effects of varying the seed concentration on amyloid growth.  We performed the first set of seeded 
growth experiments at a fixed monomer concentration (18 µM) by varying the seed concentration from 0 to 10% 
and the GuHCl concentration from 1.3 to 5.0 M. The structure of seed fibrils was essentially identical for the entire 
concentration range of GuHCl, as judged by far UV circular dichroism (CD) (Figure S1). In addition, the biases 
associated with ThT fluorescence24 are negligible under these conditions, as the rate of amyloid growth is almost 
identical in the presence or absence of ThT (Figure S2 and SI Text 2). No significant growth of amyloid fibril was 
observed below 1.3 M GuHCl at least up to three hours (data not shown).

As shown in Figure S3, nearly exponential growth of seed fibrils was observed in all 55 cases examined. To 
quantitatively evaluate the growth reaction, we measured the rates of formation of the first few percent of amyloid 
fibrils (initial rate) and displayed them as black circles in Fig. 2A. Over the concentration range evaluated, the 
initial rates were directly proportional to the concentration of the added seed. Therefore, the amyloid growth of 
PrP is simply described by the pseudo-first order kinetics with respect to the seed concentration.

The black circles in Fig. 2B show the pseudo-first order rate constant (k1st) under various concentrations of 
GuHCl. The log(k1st) vs. [GuHCl] plot displayed a bell-shaped profile with a peak around 2.3 M, and a wide lin-
ear range was found between 2.5 and 5.0 M. Interestingly, far UV CD experiments revealed that this linear range 

Figure 1.  (A) A schematic representation of seeded growth experiments. (B) Transmission electron microscopy 
images of seed fibrils (scale bar, 100 nm). (C) A representative result of the seeded growth experiment. The 
growth reaction was examined at a fixed concentration of seed fibrils (2.5%) and GuHCl (3.0 M) by varying the 
monomer concentration from 5 to 300 µM (from bottom to top). The dotted lines represent the linear fits to the 
initial increase in fluorescence.
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Figure 2.  Effects of varying the seed concentration on amyloid growth. (A) Initial rates of the growth reaction 
(WT [black] and V210A [red]) as a function of the seed concentration. The GuHCl concentrations in the 
reaction mixtures are shown in the top left of each images. The monomer concentration was 18 µM in all 
experiments. (B) Pseudo-first order rate constants of WT (black) and V210A (red circles) as a function of 
the GuHCl concentration. The dotted and solid lines represent least-squares fits to the one-step (Fig. 2D) 
and the native-state inhibition models (Fig. 5), respectively. (C) Equilibrium unfolding curves of monomeric 
WT (black) and V210A (red) obtained by CD. Solid lines represent a least-square fits to the two-state 
unfolding model. (D) One-step reaction model for amyloid growth. Mi represents an amyloid fibril with the 
polymerization degree of i and n is the size of the critical nucleus. U and N is the unfolded and native state of 
PrP, respectively.
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corresponds to the concentration at which monomeric PrP is completely unfolded (black circles in Fig. 2C). This 
result implied that, at least when the substrate monomer is unfolded, amyloid growth follows the transition state the-
ory in chemical kinetics, in which the logarithm of the rate constant is linearly correlated with the denaturant con-
centration25. As the concentration of GuHCl decreases from 2.5 to 1.3 M, the fraction of folded proteins increases 
(Fig. 2C), and log(k1st) starts to deviate from the linear dependence (Fig. 2B). This type of bell-shaped curve resem-
bles the “rollover” in protein folding25, and it was previously reported in the growth reaction of insulin amyloid7.

The relation between rollover and the stability of the native state was further investigated using a single-site 
variant of PrP (V210A) as the substrate monomer. The V210 residue is located in the hydrophobic core of PrP, 
and the replacement of valine with alanine lowered the stability of the native state by 0.87 kcal/mol (Fig. 2C). We 
performed equivalent experiments with this variant and measured the initial rates under various concentrations 
of seed fibrils and GuHCl (Fig. 2A and Figure S4). As shown in Fig. 2B, rollover was less pronounced in this 
variant compared with that in the wild-type (WT), indicating that the stability of the native state (“N”) is a key 
determinant of the observed behavior.

Based on these observations, we first hypothesized that rollover stems from a decreased population of a 
non-native state under the stabilizing conditions that can be directly converted into amyloid fibrils26. Although 
it remains controversial whether a partially or a completely unfolded state is actually involved27–32, we consid-
ered the completely unfolded state (“U”) as the direct precursor of amyloid fibrils in this particular case. This is 
partly because no partially unfolded state was detected in the GuHCl unfolding experiment (Fig. 2C), where the 
unfolding curves at all wavelengths can be globally fitted to the two-state unfolding model (Figure S5). Previous 
hydrogen/deuterium exchange and spectroscopic experiments also showed that most of the population of PrP is 
in either the N or U state at neutral pH33–35. Furthermore, a large difference between the α-helix structure of PrP 
and the parallel-in-register β-sheet structure of the amyloid form11, 36–38 implies that the native structure requires 
complete unfolding prior to the conversion. In addition to these experimental evidences, the rollover curve with 
a peak at around the denaturant midpoint can be explained without assuming any partially unfolded state, as 
described below. We therefore first tested a simple one-step reaction model in which the U state serves as a direct 
precursor of amyloid growth (Fig. 2D). It should be noted that rapid equilibrium between the N and U states is 
assumed in this model and the rate-limiting step is the bimolecular reaction. This was verified by the fact that the 
exchange rate between the N and U state is extremely rapid39, which is estimated to be 1000 s−1 at 37 °C in our 
ongoing folding/unfolding experiments (data not shown).

Following Oosawa’s treatment40, we solved the rate and equilibrium equations of the one-step model to obtain 
the time evolution of the mass concentration of amyloid fibrils as follow:

Figure 5.  (A) Uncompetitive inhibition model (Equation 3). (B) Noncompetitive inhibition model 
(Equation 4). (C) A schematic representation of native-state inhibition model. The unfolded (U) state of PrP 
serves as the direct precursor of amyloid fibrils, whereas the native (N) state inhibits the amyloid formation 
thorough uncompetitive or noncompetitive inhibition.

http://S4
http://S5


www.nature.com/scientificreports/

5Scientific Reports | 7: 562  | DOI:10.1038/s41598-017-00710-x

∑ ∑





λ





= λ λ
=

∞

+
=

∞d
dt

i t k f t( ) (t) ( )
(1)i n

i
U

i n
i

where fU is the fraction of the U state; λ(t) and ∑ λ=
∞ t( )i n i  are the number concentrations of monomer and amyloid 

fibrils, respectively. This rate equation implies that the amyloid growth behaves similarly as a second-order reaction 
with the pseudo-order first rate constant of k+fU (k1st = k+fU). This simple one-step model can qualitatively explain 
why the log(k1st) vs. [GuHCl] plot yields the rollover curve. This is because the denaturant has opposing effects on 
k+ and fU, in which k+ is negatively dependent on [GuHCl] (because the transition state between U and Mi+1 is more 
structured than U) while fU is positively dependent on [GuHCl]. However, a detailed kinetic analysis revealed that 
this simple model is unable to quantitatively reproduce the rollover curves in either WT nor V210A (dotted lines in 
Fig. 2B), where it significantly overestimates the growth rates at less than 2 M GuHCl. Therefore, the one-step model 
should be modified by including an inhibitory effect which reduces the growth rates at less than 2 M GuHCl.

Effects of varying the concentration of the U state on amyloid growth.  To further understand the 
relation between amyloid growth and stability of PrP, we next performed a seeded growth experiment at a fixed 
concentration of seed fibrils (2.5%) by varying the concentration of monomer from 5 to 300 µM. In this exper-
iment, we first focused on the high concentration range of GuHCl (2.3–5.0 M), where the N state is essentially 
absent (Fig. 2C), in order to directly evaluate the effect of the U state on amyloid growth. As shown in Fig. 3A, 
while monitoring amyloid growth in the presence of 2.3–3.5 M of GuHCl, a saturation kinetics was observed for 
both WT and V210A (see also Figures S6 and S7); at low concentrations of the substrate monomer, the growth 
rate increased linearly, but it reached a maximum value at the high concentrations. We eliminated the possibilities 
of the oligomerization of PrP (Figure S8 and SI Text 3) or the slow binding of ThT (Figure S9 and SI Text 4) as the 
cause of saturation kinetics, by measuring dynamic right scattering (DLS), size exclusion chromatography (SEC), 
and ex situ ThT fluorescence. Indeed, saturation kinetics has been reported for a number of different amyloids, 
including Sup3541, 42, insulin43, α-lactalbumin44, α-synuclein23, and S645, suggesting that this phenomenon is a 
general feature in the amyloid growth reaction.

To extend the one-step model (Fig. 2D) to cover the saturation kinetics, we next considered a reaction that 
involves a transient complex consisting of U state and amyloid fibrils (UMi) (Fig. 3B). This type of two-step model 
has been proposed by various authors on the basis of nuclear magnetic resonance46, atomic force microscopy47, 48, 
fluorescence microscopy experiments49, 50. This is the analog of the Michaelis–Menten scheme in enzyme kinetics51,  
and the initial rate under steady-state approximation is

Figure 3.  Effects of varying the concentration of the U state on amyloid growth. (A) Initial growth rates as 
the function of the total concentration of monomers (WT [top row] and V210A [bottom row]). The growth 
reaction was seeded with 2.5% WT amyloid. The solid lines are least-squares fits to the Michaelis–Menten 
function (Equation 2). (B) Two-step reaction model for amyloid growth. (C,D) Elementary constants derived 
from Fig. 3A as a function of the concentration of GuHCl [k+2 (C) and k+2/Km (D)]. Note: 1 relative fluorescence 
unit (RFU)/% s−1 ≈1.2 × 103  s−1 (SI text 5).
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where Km is the Michaelis constant and is equal to (k−1 + k+2)/k+1. When the concentration of the U state 
(fUλ(0)) is larger than Km, the reaction rate tends to reach a limiting value, which is consistent with our current 
observations.

Relying on the two-step model, we then calculated the elementary constants using the least-square fitting 
method, and displayed them in Fig. 3C and D (see also Tables S1 and S2). One notable feature in the set of ele-
mentary constants is that the rate constant of structural conversion (k+2) is in the range of 1–10 × 10−3 relative 
fluorescence unit (RFU)/% s−1 (Fig. 3C). Given that 1 RFU/% s−1 is roughly equal to 1.2 × 103 s−1 (SI Text 5), 
k+2 ≈ 1–10 s−1, which is in good agreement with the folding rate constant of β-sheet-rich proteins, such as the 
β2-microglobulin (1–10 s−1) and β-lactoglobulin (0.1–1 s−1)52, 53. This agreement further validates the two-step 
model, because k+2 is the refolding rate constant from the U state to the β-sheet amyloid structure on the surface 
of amyloid fibrils (Fig. 3B).

The comparison between WT and V210A showed that the V210A mutation leads to a fourfold increase in 
k+2 (Fig. 3C), indicating that the V210 residue is involved in the structural conversion. However, the increase 
in k+2 was exactly compensated by an increase in Km and, consequently, we observed a common value of k+2/Km 
between V210A and WT (Fig. 3D). A similar trend of k+2/Km was also observed in our preliminary experiment, 
in which k+2 at pH 7.4 was significantly higher than that at pH 6.0 but k+2/Km was equal between the two condi-
tions (data not shown). These results imply that k+2/Km itself is an elementary constant in the reaction kinetics 
that represents a general feature of amyloid growth. One possible scenario to explain this finding is to assume the 
Briggs–Haldane mechanism51, in which k+2/Km is equal to the rate constant of diffusion-controlled encounter, 
namely k+1, and thus is not strongly affected by mutations and pH. In fact, the linear extrapolation of log(k+2/Km) 
to 0 M GuHCl yields a value of 1.2 × 106 M−1 s−1 (Fig. 3D), which is very close to the diffusion-controlled rate of 
107–108 M−1 s−1 51. The small difference between the two values can be explained in terms of a small free-energy 
barrier separating the U state from the encounter complex (UMi). Therefore, our results imply that the amyloid 
growth follows the Briggs–Haldane model, where U state initially binds to amyloid fibrils with a rate close to the 
diffusion limit, and subsequently undergoes a slow structural conversion with a rate of 1–10 s−1.

An inhibitory effect of the N state on amyloid growth.  Having established the relation between amy-
loid growth and the U state, we next sought to determine how the N state affects the kinetics of amyloid growth. 
To this end, we performed a seeded growth experiment in the lower concentration range of GuHCl (1.3–2.0 M), 
where both the N and U states are populated (Fig. 2C), by varying the total concentration of the monomers. 
Surprisingly, under these conditions the reaction rate first rose to a maximum value and then declined as the total 
monomer concentration increased (Fig. 4, Figures S5 and S6). This “up-and-down” behavior called for further 
modification of the two-step model (Fig. 3B and Equation 2) because the first derivative of Eq. 2 with respect to 
monomer concentration is always positive.

Figure 4.  Effects of varying the concentration of the N and U state on amyloid growth. Initial rates of amyloid 
growth as a function of total concentration of monomers (WT [top row] and V210A [bottom row]. The 
growth reaction was seeded with 2.5% of WT amyloid. The solid lines are least-squares fits to Equation 3 (red, 
uncompetitive inhibition) or 4 (blue, noncompetitive inhibition).
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We first invoked the substrate-inhibition mechanism in enzyme kinetics, in which the substrate also acts as 
an inhibitor of enzyme51. This mechanism can cause a decline of the reaction rate when the substrate is present at 
a high concentration. However, this is not the case in amyloid growth because the decline of reaction rate is less 
pronounced in destabilizing conditions which favor the formation of the substrate (U state), such as in V210A 
(bottom panels in Fig. 4) and at the high concentration range of GuHCl (Fig. 3A). This result indicates that the 
inhibitor of amyloid growth is not the U state but a more structured state which can be populated under stabiliz-
ing conditions.

Because there was no detectable partially unfolded state or oligomeric state in our GuHCl-unfolding (Fig. 2D) 
and DLS/SEC experiments (Figure S7), we thought that the native state (N) might be an inhibitor of amyloid 
growth. After testing several alternative models, we developed two models that include the inihibitory effect of 
N state and reproduce the “up-and-down” behavior of amyloid growth (Fig. 5). The first model assumes that N 
state interacts with a complex consisting of U state and amyloid fibrils, but has no direct interaction with amyloid 
fibrils itself (uncompetitive inhibition, Fig. 5A). The second model assumes that the N state interacts with the 
amyloid fibrils regardless of whether the U state is already bound (noncompetitive inhibition, Fig. 5B). Solving 
the equilibrium and rate equations of these schemes gives the initial rates of the reaction
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for noncompetitive inhibition, where the fN is the fraction of the N state and thus fNλ(0) is the concentration of 
the N state at time zero. These equations can be easily derived from the basic equations in enzyme kinetics51 by 
substituting the fNλ(0) for the inhibitor concentration and fUλ(0) for the substrate concentration.

Unfortunately, we cannot rule out either inhibition models, as the two rate equations include the completely 
same quadratic term in their denominators (fNfUλ(0)2/KI). This results in a similar deceleration curve in the ini-
tial rates vs. [monomer] plot (Fig. 4) and hence makes it challenging to distinguish between the two models by 
reaction rates only. Although such ambiguity remains, it is clear that either the uncompetitive or noncompetitive 
inhibition model can reproduce the observed reaction rate with good quality (Fig. 4). In addition, either models 
can also reproduce the log(k1st) vs. [GuHCl] plot in the first set of experiments, particularly at the low [GuHCl] 
range (Fig. 2B). We therefore concluded that the N state inhibits amyloid growth through either an uncompetitive 
or noncompetitive inhibition mechanism. It should be noted that a competitive model51, in which the N state 
inhibits the interaction between the U state and amyloid fibrils, is unable to reproduce the deceleration curve, 
because the rate equation lacks a quadratic term in its denominator.

Our native-state inhibition model suggests that an amyloid fibril (and/or its complex with the U state) has two 
distinct binding sites for the U and N states, through which the former is associated with the initiation of amyloid 
formation and the latter is associated with its inhibition (Fig. 5C). The presence of more than one binding site is 
not surprising, as multiple peptides derived from PrP can be converted to an amyloid fibril with an in-register 
β-structure54–57. This fact implies that amyloid fibrils from full-length PrP contains multiple regions each having 
the ability to interact with monomeric PrP. Indeed, a previous study by Horiuchi et al. showed that heterologous 
PrP can inhibit the pathogenic conversion of homologous PrP in a noncompetitive manner58, 59. Although our 
study revealed an interference between homologous but structurally different PrPs, these two studies consist-
ently demonstrate the presence of two functionally different sites (initiation and inhibition) in an amyloid-like 
aggregate.

An interesting question is whether native-state inhibition could also occur in vivo. Because our seed growth 
experiments were performed in the presence of GuHCl, we calculated the rate of amyloid growth in a GuHCl-free 
condition by extrapolating the obtained elementary constants (Fig. 6, Tables S1 and S2). Under this more physi-
ological condition, the effect of native-state inhibition is dependent on the total concentration of monomers. In 
the low concentration range up to 0.1–1 µM, the inhibitory effect is minimal or absent, but the growth rate is dra-
matically decreased by 1–3 order of magnitudes in the high concentration range exceeding 0.1–1 μM. Although 
the physiological concentration of PrP in neural tissue is unknown at this time, it should be higher than that of 
the cerebrospinal fluid (0.01 μM)60. We therefore thought that native-state inhibition can also occur in vivo when 
the concentration of soluble PrP exceeds 0.1–1 µM.

Therapeutic implications.  This study supports the suggestion by Yuan et al. that the bacterially-expressed 
recombinant PrP (rPrP) is useful for the treatment of prion disease61. Yuan et al. employed a PMCA method 
to show that rPrP inhibits the production of proteinase K-resistant form with an IC50 of 60 nM. This result is 
excellently consistent with the current study, in which rPrP inhibits the production of amyloid fibrils with a sub-
micromolar range under the physiologically-relevant condition (Fig. 6). According to the native-state inhibition 
model (Fig. 5), this inhibitory effect can be further enhanced by stabilizing the N state of rPrP, because the pop-
ulation of the substrate form (U state) is decreased and that of the inhibitory form (N state) is increased simul-
taneously. Therefore, combination therapy using a stabilizing ligand62, 63 in conjunction with a stable variant of 
rPrP, such as a disulfide-linked variant64 and V209M65, might be a promising strategy for treating prion diseases.
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Methods
Materials.  ThT (Wako), GuHCl (Nacalai Tesque, specially prepared reagent) and 2-(N-morpholino)
ethanesulfonic acid (MES, Nacalai Tesque, specially prepared reagent) were dissolved with deionized water and 
passed through a 0.2 µm filter (Sartorius, Minisart® plus 17823 K) before use. The concentration of ThT was 
determined by a UV-Vis spectroscopy (Shimadzu, UV-2550) using the extinction coefficient of 36,000 M−1 cm−1 
at 412 nm, and that of GuHCl was determined by a refractometer using the previously reported values66. The pH 
of the MES solution was adjusted by adding 6N sodium hydroxide so that the final pH of the reaction mixture 
was 6.0.

Expression and purification of human prion proteins.  A plasmid encoding the full-length human 
prion protein (hPrP[23–230]) was kindly gifted by Dr. Kurt Wüthrich (ETH Zurich, Switzerland). A single muta-
tion (V210A) was introduced into the plasmid using a PrimeSTAR Mutagenesis Basal Kit (Takara), and the pres-
ence of the mutation was confirmed by DNA sequence. The resulting plasmids [hPrP(23–230) and hPrP(23–230, 
V210A)] were expressed and purified according to a previously published protocol62 with the following modifica-
tions. After the completion of oxidation, a solution containing 2 mg/mL protein and 8 M urea was 2.7-fold diluted 
with a buffer (10 mM Tris, 100 mM sodium phosphate, pH 8). Then the protein solution was supplemented with 
thrombin (Wako) at a final concentration of 10 units/mg and incubated at 25 °C for 16 h to cleave the His-tag. 
Undigested proteins and other impurities were removed by reverse-phase HPLC with a COSMOSIL 5C4-AR-300 
column (Nacalai Tesque). The eluted solution was dried using a freeze dryer (EYELA, FDY-2200) and dialyzed 
at 4 °C against deionized water. The dialyzed protein was lyophilized again and stored at −30 °C until use. The 
purity of the proteins was greater than 95% as judged by non-reduced SDS-PAGE. The matrix-assisted laser des-
orption ionization time-of-flight mass spectrometer was used to confirm the molecular weight of the proteins. 
The lyophilized protein was dissolved with 6 M GuHCl prior to use, at a protein concentration of 600–800 µM, to 
remove any possible aggregates. The protein concentration was determined by the UV-Vis spectroscopy using an 
extinction coefficient of 56590 M−1 cm−1 at 280 nm.

Preparation of a seed solution.  Seed fibrils were prepared in a 6 mL reaction mixture containing 50 µM 
hPrP(23–230), 20 mM MES (pH 6), and 3 M GuHCl. Thirty second ultrasonic pulses with an interval of 9.5 min 
were repeatedly applied to the reaction mixture at 37 °C using a programmable sonicator equipped with a 
microplate horn (Misonix, QSONICA 431MPX). The amplitude of the sonicator was set to 10%. Fibril forma-
tion was followed by ex situ ThT measurements (see Supplemental experimental procedures), and allowed to 
proceed until ThT fluorescence reached a maximum value. The seed solution was dispensed into small volume 
aliquots (30 µL), frozen with liquid nitrogen, and stored at –80 °C until use. The same seed preparation was used 
throughout this study. Before use, the seed solutions were thawed on ice and sonicated for 30 s at 10 °C using the 
aforementioned instrument.

Analysis of amyloid growth.  Amyloid growth was examined at 37 °C in 20 mM MES (pH 6), 50 µM ThT in 
the presence of various concentrations of GuHCl, seed fibrils, and monomers (WT or V210A). The reaction was 
initiated by mixing a monomer solution (pre-warmed at 37 °C) with various amounts of the seed solution. The 
reaction mixture of 100 µL was immediately transferred to a pre-warmed, flat-bottom 96-well plate (AS ONE, Cat. 
No. 1–6776–03) and tightly sealed with transparent film (WATSON, Cat. No. 547-KTS-HCP). The time courses 
of the ThT fluorescence at 485 nm (excitation at 445 nm) were measured by top-reading under a quiescent con-
dition using a plate reader (TECAN, infinite M200). Nine or eleven reaction mixtures were prepared in a single 

Figure 6.  Native-state inhibition under a physiologically relevant condition. Predicted growth rate at 0 M 
GuHCl as a function of the monomer concentration (uncompetitive [left panel] and noncompetitive inhibition 
models [right panel]). The solid and dotted lines are the growth rates in the presence or absence of native-state 
inhibition, respectively.
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experiment, and the time courses of the fluorescence were monitored simultaneously. A typical plate format is 
shown in Fig. 1A. After subtracting the background fluorescence, the fluorescence of the reaction mixtures was 
normalized to that of a reference sample containing 2.5% v/v seed solution and the same concentration of GuHCl, 
ThT, and MES but no monomer. Initial rates were determined by fitting an exponential or linear function to the 
initial region of each growth curve and taking the first derivatives of those functions at time zero. The experi-
ments were performed in duplicate or triplicate, and the average and standard deviation values were presented 
in this work.

Circular dichroism (CD) measurements.  GuHCl-induced unfolding of monomeric PrP and the seed 
fibrils was examined at 37 °C using a Chirascan-plus CD spectrometer (Applied Photophysics) with a 1 mm path 
length quartz cuvette (Hellma, 100-QS). The concentration of monomeric PrP and the seed solution were 5 µM 
and 10% v/v, respectively, in the presence of 20 mM MES (pH 6) and various concentrations of GuHCl. CD spec-
tra were recorded after 0 or 2 h of incubation at 37 °C. The unfolding curves for WT and V210A monomers were 
globally analyzed by a two-state unfolding model to derive a best fit value of ΔG.

θ = ×
+

+ + ×
+

=




−∆ + × 



n
K

u u GdHCl K
K

K G m GdHCl
RT

1
1

( [ ])
1

exp [ ]

i i s

The best-fit values were as follows: 3.37 kcal/mol for ΔG of WT, 2.50 kcal/mol for ΔG of V210A, 2.00 kcal/
mol/M for m, −6.74 mdeg for ni, −2.38 mdeg for ui, and 0.41 mdeg/M for us.

Electron microscopy (EM).  The seed solution was 10-fold diluted with deionized water and immediately 
loaded onto a carbon-coated grid (EM Japan, Cat. No. U1013). The grid was negatively stained with 2% phos-
photungstate (pH 7) and examined using a transmission electron microscope (JEOL, JEM-2100 F).
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