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A Circulating MicroRNA Signature 
Capable of Assessing the Risk 
of Hepatocellular Carcinoma in 
Cirrhotic Patients
Ya-Hui Huang1, Kung-Hao Liang1, Rong-Nan Chien2, Tsung-Hui Hu3, Kwang-Huei Lin1,4, Chao-
Wei Hsu1,4, Chih-Lang Lin1,2, Tai-Long Pan5,6, Po-Yuan Ke1,7 & Chau-Ting Yeh1,4,8

With the availability of potent antiviral therapies, complete suppression of hepatitis B virus (HBV) 
replication and total eradication of hepatitis C virus (HCV) can now be achieved. Despite these 
advances, hepatocellular carcinoma (HCC) still develops in a substantial proportion of cirrhotic patients, 
suggesting that host factors remain critical. Dysregulation of miRNAs is noted in many cancers, and 
circulating miRNAs can be readily assayed. In this study, we aimed to develop a circulating miRNA 
signature to assess the risk of HCC in cirrhotic patients. We first discovered that HBV- and HCV-related 
cirrhotic patients had distinguishable circulating miRNA profiles. A cohort of 330 cirrhotic patients was 
then compared against a cohort of 42 early HCC patients with complete remission. A score comprising 
5 miRNAs and a binary etiology variable was established that was capable of differentiating between 
these two groups (AUC = 72.5%, P < 0.001). The 330 cirrhotic patients were further stratified into 
high- and low-risk groups, and all patients were longitudinally followed for 752 (11–891) days. Of them, 
19 patients developed HCC. The high-risk group had significantly higher cumulative HCC incidence 
(P = 0.038). In summary, a circulating miRNA-based score was developed that is capable of assessing 
HCC risks in cirrhotic patients.

Liver cirrhosis is a major sequel of chronic hepatitis in patients suffering from a prolonged period of persistent 
necroinflammation. Once progressing to liver cirrhosis, patients are at high risk of liver function decompensa-
tion and hepatocellular carcinoma (HCC). Because hepatitis B virus (HBV) and hepatitis C virus (HCV) are the 
most common etiologies for chronic hepatitis, these two viruses are the most important causes of liver cirrhosis, 
functional decompensation and HCC. Several predictive models have been built to estimate the risk of HCC 
in patients with chronic HBV or HCV infection. When applying these scoring systems, two important aspects 
should be carefully evaluated. First, one must identify the clinical stage of hepatitis in which these models have 
been built. Second, one must distinguish whether the models were established before or after the era of effective 
antiviral therapy.

Several virological predictors are associated with HCC risk in chronic hepatitis B1, 2. Accordingly, risk scores 
were proposed by research groups from different Asian areas3–6. However, because the patients’ data were col-
lected before antiviral treatment was available, the effect of antiviral treatment was not considered. Additionally, 
cirrhotic patients were either excluded in the baseline or included as a small proportion of the subjects. A subse-
quent study attempting to understand the accuracy of these scoring systems in patients receiving antiviral treat-
ment discovered that the independent predictors for HCC include only older age, liver cirrhosis and virological 
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relapse7. With the availability of potent antivirals, virological relapses can now be completely prevented. A recent 
retrospective analysis for antiviral-treated chronic hepatitis B patients revealed that the virological factors were no 
longer useful for HCC prediction and that only cirrhosis and therapeutic methods were independent predictors8.

In treatment-naïve, HCV-infected patients, the risk factors for HCC included liver cirrhosis, coinfection 
with HBV or HIV, HCV viremia and HCV genotypes9–13. In a study assessing HCC risk in interferon-treated, 
chronic hepatitis C patients, the following factors were included to formulate a scoring system: host factors, 
HCV genotype and sustained virological response14. With the development of new direct antiviral agents, com-
plete virological response can now be achieved in >95% of patients, regardless of HCV genotype. Therefore, in 
the post-antiviral era, virological factors are less effective in prediction of HCC risk. The risk of HCC could be 
reduced to a very low level in patients without liver cirrhosis. However, recent studies indicated that a substantial 
proportion of cirrhotic HBV patients still developed HCC even under effective antiviral treatment15, 16. Thus, 
there is still an urgent need for HCC prediction among patients with liver cirrhosis.

Over the past decade, dysregulation of microRNAs (miRNAs) was noted in many cancers and could serve as 
diagnostic or prognostic biomarkers17. In 2008, Lawrie et al. discovered that dysregulation of miRNAs in serum 
was similar to that in tumor tissues18, suggesting that circulating miRNAs could be powerful biomarkers. The 
differential expression of miRNAs in various types of liver diseases, including HCC, has been explored19, 20, and 
dysregulation of several circulating miRNAs in HCC patients was reported in recent years21–25. As circulating 
miRNAs are easy to detect and analyze, it is possible to establish a signature profile for HCC risk prediction. 
In this study, we enrolled a cohort of HBV- and/or HCV-related liver cirrhosis patients who were regularly fol-
lowed in liver clinics with sporadic HCC development during follow-up. Another cohort of early HCC patients 
under complete remission was included for comparative analysis. Given that miRNAs are more stable in plasma 
compared with serum26, 28 circulating miRNA candidates obtained from a literature search were quantitatively 
assayed using plasma samples. The aims of this study were (i) to understand whether differential miRNA profiles 
could be identified between cirrhotic patients with different hepatitis viral etiologies and (ii) to build a prediction 
model for HCC risk in cirrhotic patients with viral hepatitis.

Results
Determination of a panel of 28 candidate circulating miRNAs. Three criteria were established for 
determination of miRNA candidates: (1) the miRNA was reported with a similar role (oncogene or tumor sup-
pressor) in HCC in at least two reports in the literature; (2) the miRNA could be clinically correlated with HCC 
patient survival; and (3) the miRNA was readily detectable using stem-loop RT-qPCR. After a thorough literature 
search, 18 miRNAs were identified to satisfy these criteria (miR-21, miR-221, let-7g, miR-122, miR-139-5p, miR-
203, miR-18a, miR-338-3p, miR-125b, miR-126, miR-199b-5p, miR-222, miR-223, miR-25, miR-26a, miR-192, 
miR-27a, and miR-124). Furthermore, 10 additional miRNAs (miR-155, miR-15a, miR-15b, miR-29a, miR-30b, 
miR-30c, miR-381, miR-432, miR-486-3p, and miR-876-5p) that were identified as postoperative prognostic pre-
dictors for HCC recurrence in our previous study were also included27. Thus, a total of 28 miRNAs were analyzed.

Cross-sectional analysis of associations between circulating miRNA levels and HCC. The study 
cohorts comprised 330 liver cirrhotic patients without HCC at baseline and 42 patients with early HCC but under 
complete remission (Fig. 1). No significant disparity of gender, liver function variables (AST, ALT, bilirubin, AFP 
and albumin levels) and viral etiology (HBeAg positivity/negativity, Anti-HCV antibody positivity/negativity) 
was noted between the two groups (Table 1). In contrast, significant differences in miRNA levels between the 
cirrhosis and HCC groups were noted for 12 miRNAs, including miR-15a, miR-21, miR-486-3p, let-7g, miR-122, 
miR-18a, miR-338-3p, miR-222, miR-223, miR-26a, miR-192, and miR-124, using the univariate logistic regres-
sion method (Table 2). The multivariate analysis of these miRNAs revealed that only miR-15a was independently 
associated with HCC (Table 2). The adjusted odds ratio was 0.185 (95% confidence interval = 0.037~0.913), indi-
cating that higher levels of miRNA were associated with reduced HCC risks.

The classification of cirrhosis and HCC patients based on their miR-15a levels was moderately successful, with 
an area under the receiver operating characteristic curve (AUC) of 64.1% (P = 0.003, Fig. 2A). However, when we 
analyzed the time-to-HCC development in cirrhotic patients after longitudinal follow-up (N = 330), the patient 
strata of high and low miR-15a levels (each strata N = 165) did not exhibit a significantly different cumulative 
incidence of HCC (P = 0.257, Fig. 2B).

We then incorporated all of the 12 miRNAs that exhibited significant differences in the univariate analysis into 
a logistic regression model for classifying cirrhotic and HCC patients. An AUC of 68.8% was achieved (P < 0.001, 
Fig. 2C). However, when the cirrhosis patients were stratified into the high-risk and low-risk groups by their 
estimated HCC risks in the logistic regression model (each group N = 165), no significant difference in the cumu-
lative incidence of HCC was identified between the two groups (P = 0.261, Fig. 2D).

Distinct circulating miRNA profiles between chronic hepatitis B and C in cirrhotic patients. In 
the cirrhotic group, 17 patients were co-infected by HBV and HCV; 220 patients had HBV monoinfection, and 
93 had HCV monoinfection. We compared the miRNA expression profiles in three different classifications of 
etiology: (i) HBV monoinfection versus HCV monoinfection; (ii) HCV monoinfection versus HBV monoin-
fection + HBV/HCV co-infection; and (iii) HBV monoinfection versus HCV monoinfection + HBV/HCV 
co-infection. In (i), the levels of miR-15b (P = 0.022), miR-30b (P = 0.047) and miR-122 (P = 0.017) were sig-
nificantly different (Table 3). In (ii), only miR-15b (P = 0.028) and miR-122 (P = 0.027) remained significantly 
different. In (iii), the number of differentially expressed miRNAs substantially increased to 14 (Table 2). The sig-
nificance level of miR-15b (P = 0.020) and miR-122 (P = 0.009) also increased. As a result, classification method 
(iii) was used in the subsequent analysis.
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To formulate a miRNA profile to distinguish between HBV and HCV with/without HBV infection, the sub-
jects were then randomly divided into training (n = 220; including 61 HCV, 146 HBV and 13 co-infected) and 
validation (n = 110; including 32 HCV, 74 HBV and 4 co-infected) subsets. No significant difference was observed 
between the miRNA levels in the two subsets (Table S1). In the training subset, a total of 7 miRNAs, including 
miR-21, miR-30c, let-7g, miR-15a, miR-122, miR-221 and miR-30b, reached P < 0.1 for the classification of etiol-
ogy. Among them, 3 miRNAs had P < 0.05 (Table 4). The levels of seven miRNAs with P < 0.1 were then analyzed 
using the generalized iterative modeling (GIM) algorithm (see Methods) to formulate a model. Six out of the 7 
miRNAs were chosen by the algorithm, and an etiology score was defined as follows:

= − ⋅ . + − ⋅ .
+ − ⋅ . + − ⋅ − ⋅ − .
+ − ⋅ − . + .

Etiology score miR 21 0 4724 miR 30c 2 7896
let 7g 0 6248 miR 15a miR 122 0 3175
miR 30b 3 1162 1 6562

( ) ( )
( ) ( )

( ) (1)

In the training subset, the etiology model could classify patients with distinct etiology, achieving an AUC 
of 61.1% and a significance level of 0.007 (Supplementary Figure S1). The constant term of the model equation 
was calibrated so that the optimum cut-off, which was determined by Youden’s J statistic, occurred at a score of 

Figure 1. A flowchart of patient stratifications in this study.

Subject number

Cirrhosis HCC P

330 42 0.001

Age, y 59.32 ± 10.86 64.6 ± 8.99

Gender

Male 226 (68.48%) 33 (78.57%) 0.181

Female 104 (31.52%) 9 (21.43%)

Etiology

HBsAg Positive 237 (71.82%) 30 (71.43%) 0.958

Anti-HCV Positive 110 (33.33%) 17 (40.48%) 0.358

Liver function variables

AST, IU/L 43.02 ± 39.68 45.79 ± 36.14 0.647

ALT, IU/L 38.31 ± 45.02 37.26 ± 42.00 0.881

Bilirubin, mg/dL 1.40 ± 6.26 1.11 ± 0.67 0.437

AFP, ng/ml 10.48 ± 44.02 8.66 ± 11.80 0.559

Albumin, g/dL 3.60 ± 0.34 3.62 ± 0.41 0.733

Table 1. Demographic information of the study cohort.

http://S1
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0. Thus, a positive value of the etiology score indicated HCV-related cirrhosis (including coinfection), whereas a 
negative value indicated HBV-related cirrhosis. For prediction of HCV-related cirrhosis (including coinfection), 
the sensitivity was 67.57%, the specificity was 54.79%, the positive predictive value was 43.10%, and the negative 
predictive value was 76.92%.

When the etiology model was tested in the validation subset, the score distributions of the HBV and 
HCV + co-infection groups remained significantly different (Mann-Whitney P = 0.017) (Fig. 3). The sensitivity 
was 61.11%, the specificity was 60.81%, the positive predictive value was 43.14%, and the negative predictive value 
was 76.27%.

A miRNA signature for the prediction of subsequent HCC occurrence in cirrhotic patients who 
had no HCC at baseline. We then compared the miRNA levels in patients with (n = 42) and without 
(n = 330) HCC at baseline. A total of 16 miRNAs manifested significantly different levels in the univariate analy-
sis, where the classification performance was assessed by the AUC and the Mann-Whitney U-statistics (Table 5). 
Based on the miRNA profiles differing significantly in chronic hepatitis B and C, a binary etiology variable “HCV 
positive” together with the 16 miRNAs was incorporated into the multivariate analysis by the GIM algorithm. If 
a patient was anti-HCV antibody positive, he/she was either HCV monoinfected or HCV-HBV co-infected, and 
the value of the variable was 1. In contrast, if a patient was anti-HCV antibody negative, the value of the variable 
was 0. An HCC risk score was then generated for the optimal distinction between HCC and non-HCC cirrhotic 
patients (AUC = 72.5%, P < 0.001, Fig. 2E).

Univariate Multivariate

Odds 
ratio (95% CI) P

Odds 
ratio (95% CI) P

miR-155 0.918 (0.541–1.559) 0.752

miR-15a 0.474 (0.288–0.782) 0.003 0.185 (0.037–0.913) 0.038

miR-15b 0.752 (0.553–1.022) 0.069

miR-21 0.633 (0.423–0.947) 0.026 2.891 (0.741–11.274) 0.126

miR-221 0.738 (0.494–1.103) 0.138

miR-29a 0.751 (0.514–1.098) 0.140

miR-30b 0.768 (0.551–1.071) 0.119

miR-30c 0.767 (0.558–1.053) 0.101

miR-381 1.061 (0.669–1.685) 0.800

miR-432 0.960 (0.739–1.246) 0.758

miR-486-3p 0.536 (0.301–0.953) 0.034 1.027 (0.419–2.518) 0.954

miR-876-5p 1.024 (0.632–1.661) 0.922

let-7g 0.611 (0.407–0.917) 0.017 0.819 (0.274–2.445) 0.721

miR-122 0.525 (0.317–0.868) 0.012 0.662 (0.321–1.365) 0.264

miR-139-5p 0.686 (0.451–1.045) 0.079

miR-203 0.957 (0.625–1.466) 0.840

miR-18a 0.716 (0.526–0.974) 0.033 1.023 (0.523–2.001) 0.946

miR-338-3p 0.613 (0.387—0.972) 0.038 0.893 (0.445–1.790) 0.749

miR-125b 0.926 (0.531–1.615) 0.787

miR-126 0.799 (0.627–1.018) 0.070

miR-199b-5p 0.729 (0.442–1.204) 0.217

miR-222 0.655 (0.455–0.943) 0.023 1.046 (0.269–4.074) 0.948

miR-223 0.754 (0.570–0.996) 0.047 0.943 (0.327–2.716) 0.913

miR-25 0.751 (0.458–1.231) 0.256

miR-26a 0.682 (0.496–0.936) 0.018 0.894 (0.265–3.015) 0.857

miR-192 0.637 (0.412–0.986) 0.043 2.127 (0.760–5.947) 0.150

miR-27a 0.749 (0.555–1.011) 0.059

miR-124 0.399 (0.204–0.782) 0.007 0.484 (0.199–1.173) 0.108

Table 2. Association of miRNA levels with HCC using the logistic regression model.
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− ⋅ − ⋅ .

+ − ⋅ . ⋅ .

− − ⋅ − ⋅ .

+ − ⋅ ⋅ . − .

HCC Risk Score HCV positive miR 27a 0 0135 miR 18a 0 0029
miR 18a 0 0906 miR 222 0 3534
miR 223 0 007
miR 26a 1 1716 miR 27a 1 4062
miR 222 miR 18a 0 0150
miR 222 0 3842 miR 26a 0 0218
miR 222 miR 27a 0 0885
miR 27a miR 18a 0 0001 1 1091

( ( ))
( ) ( )
( )
( ) ( )

( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) (2)

2 3

2

3 2

where the “HCV positive” variable was defined as

= − −HCV positive {1, 0 1: anti HCV antibody positive; 0: anti HCV antibody negative}

By introducing the “HCV positive” variable, this model could be applied to both HBV- and HCV-related 
cirrhotic patients. Using the optimum cut-off determined by Youden’s J statistics to predict HCC occurrence, the 
sensitivity was 66.67%, the specificity was 77.88%, the positive predictive value was 27.72%, and the negative pre-
dictive value was 94.83%. The constant term of the model equation was calibrated to enable a zero median value 
in the cirrhosis patient group (N = 330).

Finally, because all 330 cirrhotic patients had been longitudinally followed, the initial HCC risk score could 
be calculated at the baseline when patients were enrolled. During the follow-up of 752 (11–891) days, 19 patients 
developed HCC. Comparing the distributions of HCC risk scores of those who did or did not develop HCC, 
a borderline significance level was obtained (P = 0.070, unpaired t-test with unequal variance). However, this 
analysis was a cross-sectional case/control analysis where the time information of HCC occurrence was not used. 
Therefore, we further analyzed the time-to-HCC development with respect to the patient strata by the baseline 
HCC risk scores. The patients were divided into the high-risk and low-risk groups (each N = 165). In total, 14 
HCC development events were noted in the high-risk group, and 5 events were noted in the low-risk group. Our 
results indicated that the high-risk group exhibited significantly reduced time-to-HCC-development compared 

Figure 2. Cross-sectional classification and longitudinal time-to-HCC analysis of three different models. (A) 
and (B): based on miRNA-15a level only; (C) and (D): based on the logistic regression model incorporating 12 
miRNAs; (E) and (F): based on the proposed HCC Risk score. Red: the cumulative incidence of the higher-risk 
patient stratum (N = 165); Blue: the cumulative incidence of the lower-risk patient stratum (N = 165).
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with the low-risk group (P = 0.038, Fig. 2F). The average times to HCC are 839 ± 14 days and 860 ± 8 days in the 
high-risk and low-risk groups, respectively.

HBV vs. HCV HCV vs. HBV + co-infection HBV vs. HCV + co-infection

AUROC (95% CI) P AUROC (95% CI) P AUROC (95% CI) P

miR-155 0.449 (0.377–0.521) 0.156 0.541 (0.469–0.612) 0.252 0.434 (0.367–0.501) 0.049

miR-15a 0.430 (0.360–0.500) 0.050 0.561 (0.492–0.631) 0.082 0.423 (0.357–0.489) 0.023

miR-15b 0.418 (0.348–0.488) 0.022 0.578 (0.508–0.648) 0.028 0.422 (0.356–0.487) 0.020

miR-21 0.435 (0.364–0.505) 0.068 0.555 (0.485–0.625) 0.121 0.421 (0.355–0.487) 0.020

miR-221 0.437 (0.368–0.506) 0.078 0.550 (0.482–0.619) 0.154 0.420 (0.355–0.484) 0.017

miR-29a 0.431 (0.362–0.499) 0.052 0.561 (0.493–0.629) 0.083 0.424 (0.359–0.488) 0.024

miR-30b 0.429 (0.360–0.498) 0.047 0.561 (0.493–0.629) 0.084 0.418 (0.353–0.483) 0.015

miR-30c 0.439 (0.369–0.508) 0.087 0.554 (0.486–0.623) 0.125 0.432 (0.366–0.498) 0.044

miR-381 0.536 (0.465–0.607) 0.311 0.456 (0.386–0.526) 0.212 0.512 (0.445–0.579) 0.721

miR-432 0.486 (0.415–0.557) 0.703 0.516 (0.445–0.586) 0.654 0.494 (0.427–0.560) 0.850

miR-486-3p 0.449 (0.378–0.519) 0.152 0.547 (0.478–0.617) 0.181 0.448 (0.382–0.514) 0.126

miR-876–5p 0.523 (0.453–0.593) 0.526 0.478 (0.408–0.548) 0.536 0.523 (0.457–0.589) 0.496

let-7g 0.440 (0.370–0.509) 0.092 0.549 (0.480–0.618) 0.168 0.424 (0.359–0.489) 0.024

miR-122 0.415 (0.345–0.485) 0.017 0.578 (0.509–0.648) 0.027 0.412 (0.347–0.477) 0.009

miR-139-5p 0.466 (0.397–0.535) 0.343 0.530 (0.461–0.599) 0.396 0.462 (0.397–0.528) 0.265

miR-203 0.454 (0.386–0.522) 0.201 0.546 (0.479–0.614) 0.193 0.460 (0.396–0.524) 0.240

miR-18a 0.438 (0.370–0.506) 0.083 0.555 (0.487–0.622) 0.122 0.432 (0.368–0.497) 0.044

miR-338-3p 0.460 (0.391–0.528) 0.258 0.538 (0.470–0.606) 0.282 0.460 (0.395–0.524) 0.232

miR-125b 0.485 (0.413–0.556) 0.665 0.503 (0.432–0.574) 0.938 0.456 (0.389–0.523) 0.192

miR-126 0.439 (0.371–0.507) 0.090 0.552 (0.484–0.619) 0.145 0.429 (0.365–0.493) 0.035

miR-199b-5p 0.473 (0.400–0.545) 0.449 0.517 (0.445–0.589) 0.635 0.454 (0.386–0.522) 0.171

miR-222 0.453 (0.385–0.522) 0.193 0.535 (0.467–0.603) 0.322 0.436 (0.371–0.500) 0.057

miR-223 0.446 (0.378–0.514) 0.131 0.543 (0.475–0.610) 0.227 0.431 (0.367–0.496) 0.042

miR-25 0.463 (0.392–0.533) 0.298 0.526 (0.456–0.595) 0.467 0.443 (0.377–0.510) 0.094

miR-26a 0.443 (0.375–0.512) 0.113 0.548 (0.480–0.616) 0.178 0.433 (0.368–0.498) 0.048

miR-192 0.452 (0.383–0.521) 0.181 0.537 (0.468–0.605) 0.299 0.437 (0.372–0.503) 0.064

miR-27a 0.474 (0.406–0.543) 0.475 0.515 (0.447–0.583) 0.675 0.458 (0.393–0.523) 0.215

miR-124 0.493 (0.422–0.565) 0.850 0.501 (0.431–0.572) 0.967 0.482 (0.415–0.549) 0.601

Table 3. Different circulating miRNA levels were observed in liver cirrhotic patients with different viral 
etiology. Particularly, many miRNA have significant difference between “HBV monoinfection” and “HCV + co-
infection” patients.

miRNA

HBV vs. (HCV + co-infection)

miRNA

HBV vs. (HCV + co-infection)

AUROC (95% CI) P AUROC (95% CI) P

miR-155 0.459 (0.377–0.541) 0.320 miR-139-5p 0.457 (0.377–0.536) 0.293

miR-15a 0.421 (0.340–0.502) 0.055 miR-203 0.446 (0.368–0.524) 0.190

miR-15b 0.440 (0.358–0.521) 0.145 miR-18a 0.436 (0.357–0.515) 0.121

miR-21 0.414 (0.334–0.495) 0.038 miR-338-3p 0.487 (0.408–0.567) 0.759

miR-221 0.429 (0.350–0.508) 0.086 miR-125b 0.449 (0.369–0.529) 0.218

miR-29a 0.433 (0.353–0.513) 0.107 miR-126 0.441 (0.362–0.520) 0.156

miR-30b 0.419 (0.339–0.499) 0.050 miR-199b-5p 0.457 (0.375–0.539) 0.298

miR-30c 0.431 (0.352–0.511) 0.096 miR-222 0.436 (0.357–0.514) 0.119

miR-381 0.492 (0.411–0.572) 0.840 miR-223 0.437 (0.359–0.516) 0.129

miR-432 0.509 (0.428–0.590) 0.824 miR-25 0.438 (0.357–0.518) 0.130

miR-486-3p 0.436 (0.356–0.515) 0.120 miR-26a 0.451 (0.371–0.531) 0.237

miR-876-5p 0.517 (0.437–0.598) 0.673 miR-192 0.439 (0.359–0.519) 0.140

let-7g 0.418 (0.338–0.497) 0.046 miR-27a 0.452 (0.373–0.531) 0.241

miR-122 0.416 (0.337–0.494) 0.041 miR-124 0.477 (0.395–0.559) 0.578

Table 4. Univariate analysis of associations between miRNA levels and viral etiology. A total of 7 miRNAs 
reached a significance level of 0.1 (underscored). Among them, 3 miRNA has P < 0.05 (shown in bold face).
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As a benchmark, the same set of 16 miRNAs and the HCVpositive variable were jointly analyzed by the sup-
port vector machine (SVM) algorithm for the classification of the HCC and non-HCC groups. The resulting AUC 
was 68.3% (P < 0.001, Supplementary Figure S2A). In addition, the high-risk and low-risk patient strata by the 
SVM score (each strata N = 165) did not exhibit a significant difference in cumulative HCC incidence (P = 0.227, 
Supplementary Figure S2B). This benchmark showed that GIM HCC Risk Score outperformed the SVM score 
both in cross-sectional classification (AUC = 72.5% > 68.3%) and longitudinal analysis (P = 0.038 < 0.227).

Improvement in the clinical-factor-based prediction model by incorporation of the miRNA 
score. Finally, we evaluated the well-established R.E.V.E.A.L. HCC model that was effective in predicting HCC 
risk in non-cirrhotic, treatment-naïve, chronic hepatitis B patients3, 5. We employed the same risk score assign-
ment of three host variables: age (score increased 1 for every 5-year increment of age, starting from the minimum 
age of the cohort: 29), gender (male: score = 2, female: score = 0), and ALT level (≥45: score = 2; between 15 
and 45: score = 1; <15: score = 0). The virological variables were not evaluated because our cirrhotic patients 

Figure 3. Distribution of the etiology-differentiation scores in the validation cohort. Each dot represents 
the score of a patient. Blue dots: HCV-related cirrhotic patients with score >0; Green dots: HBV-related 
cirrhotic patients with score ≤ 0. Median score for HBV-related cirrhotic patients = −0.230; Median score for 
HCV-related cirrhotic patients = 0.506; Mann-Whitney P = 0.017. When the cutoff was assigned as 0 for the 
prediction of HCV-related cirrhosis (including coinfection), the sensitivity was 61.11%, the specificity was 
60.81%, the positive predictive value was 43.14%, and the negative predictive value was 76.27%; N = 110.

miRNA

Cirrhosis vs. HCC

miRNA

Cirrhosis vs. HCC

AUROC (95% CI) P AUROC (95% CI) P

miR-155 0.465 (0.377–0.553) 0.464 miR-139-5p 0.435 (0.340–0.530) 0.170

miR-15a 0.359 (0.275–0.443) 0.003 miR-203 0.490 (0.399–0.580) 0.826

miR-15b 0.418 (0.332–0.504) 0.082 miR-18a 0.391 (0.304–0.477) 0.021

miR-21 0.394 (0.309–0.479) 0.025 miR-338-3p 0.376 (0.293–0.459) 0.009

miR-221 0.414 (0.326–0.502) 0.069 miR-125b 0.493 (0.406–0.580) 0.883

miR-29a 0.385 (0.307–0.462) 0.015 miR-126 0.384 (0.300–0.468) 0.014

miR-30b 0.408 (0.320–0.496) 0.052 miR-199b-5p 0.445 (0.351–0.539) 0.243

miR-30c 0.402 (0.315–0.489) 0.038 miR-222 0.377 (0.290–0.463) 0.009

miR-381 0.531 (0.447–0.614) 0.515 miR-223 0.382 (0.298–0.467) 0.013

miR-432 0.489 (0.384–0.595) 0.820 miR-25 0.420 (0.335–0.505) 0.091

miR-486-3p 0.394 (0.306–0.482) 0.026 miR-26a 0.389 (0.302–0.476) 0.019

miR-876-5p 0.503 (0.405–0.600) 0.956 miR-192 0.382 (0.299–0.465) 0.013

let-7g 0.386 (0.298–0.473) 0.016 miR-27a 0.403 (0.319–0.487) 0.041

miR-122 0.360 (0.270–0.449) 0.003 miR-124 0.359 (0.268–0.451) 0.003

Table 5. Univariate analysis of miRNA levels in association with HCC using the receiver operating 
characteristic curves. A total of 16 miRNAs has P < 0.05 (shown in bold face).
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included both HBV- and HCV-infected patients. Additionally, all HBV patients received antiviral treatment, if 
needed, to suppress HBV-DNA to an undetectable level. This HCC risk score was a discrete score with integer 
values ranging from 0 to 14 (Supplementary Figure S3A). The median value was 8, which was used for patient 
stratification in the same manner as described in previous analyses. Two different cutoffs of patient stratification 
were evaluated. Comparing patients with score > 8 and ≤ 8, no significant difference in the cumulative incidence 
of HCC was found (log-rank P = 0.116, Supplementary Figure S3B). Alternatively, when patients were stratified 
using scores ≥ 8 and < 8, the high-risk and low-risk groups demonstrated different cumulative incidences of HCC 
(log-rank P = 0.018, Supplementary Figure S3C). Of the 191 patients identified as high risk, 16 (8.38%) developed 
HCC in 2 years.

To evaluate whether the simplified R.E.V.E.A.L. score and the miRNA HCC score were confounding variables 
with respect to HCC occurrence, we performed a multivariate logistic regression analysis on the two scores. 
Statistical significance was found in both the simplified R.E.V.E.A.L score (adjusted Wald-test P = 0.005) and the 
miRNA HCC score (adjusted P = 0.002), suggesting that they were independently associated with HCC occur-
rence (Supplementary Table S2).

The regression formula can also be used for the calculation of a combined score:

. ⋅ + . ⋅ − .1 201 (miRNA HCC score) 0 217 (simplified REVEAL score) 3 892 (3)

The AUC of the combined score is 73.8%, a significant improvement from the simplified R.E.V.E.A.L. score 
(AUC = 66.4%, P = 0.034, Supplementary Figure S4A). In contrast, no significant difference was observed 
between the combined score and the miRNA score (AUC = 72.5%, P = 0.657, Supplementary Figure S4B). When 
the combined score was used for patient stratification, a significant difference in the cumulative incidence of HCC 
was observed between the high- and low-risk groups (P = 0.001, Supplementary Figure S4C).

We also explored the stratifications of patients using both the miRNA model and the simplified R.E.V.E.A.L. 
model (scores ≥ 8 versus < 8). Four distinct curves of the cumulative incidence of HCC were observed (log-rank 
P = 0.011, Supplementary Figure S5A). Furthermore, patients identified as the highest risk (in the high-risk group 
of both models; N = 98, 29.7% of all patients) manifested a distinct incidence curve from the other three groups 
(N = 232) (log-rank P = 0.001, Supplementary Figure S5B). Of these 98 patients, 12 (12.24%) developed HCC in 
2 years. The combined model outperformed the simplified R.E.V.E.A.L. model as well as the miRNA-only model, 
which identified 165 patients as high risk, and 14 (8.48%) patients subsequently developed HCC.

Discussion
Few predictive models for HCC occurrence are available for HBV- or HCV-related cirrhotic patients3, 14, 28. These 
models, however, included patients who had not received antiviral treatment (for HBV) or patients who had 
received interferon-based treatment (for HCV). Under these circumstances, virological factors are the key pre-
dictors. However, when the HBV models were validated in entecavir-treated patients, the only independent viro-
logical predictor was virological relapse7. As tenofovir was available globally, virological relapse could now be 
prevented in almost all HBV patients. However, with more effective direct antiviral agents for HCV, almost all 
HCV patients could be virologically cured. Thus, virological factors might not be included in the future predic-
tion models in antiviral-treated patients. Despite effective antiviral treatment, HCC still developed in a substan-
tial proportion of cirrhotic patients. It is therefore critical to develop HCC prediction models for this group of 
patients with or without antiviral treatments.

Instead of including virological factors, miRNAs were selected as candidate predictors in the study. Numerous 
miRNAs were aberrantly expressed in HCC29, and circulating miRNAs are readily detectable in serum or plasma30 
at quantifiable levels by qPCR31. Given that HBV and HCV were the two most important etiologies for cirrhosis 
in our population, we first studied whether the circulating miRNA profiles were different between these two etiol-
ogies. The results showed that HBV- and HCV-related cirrhosis could be distinguished by specific miRNA profil-
ing, suggesting that during the long courses of chronic hepatitis, HBV and HCV evoked different sets of miRNAs 
in the liver, both resulting in liver cirrhosis. Accordingly, a logistic variable was included in the prediction model 
for HCC risk assessment; therefore, this model could be used for both HBV- and HCV-related cirrhotic patients.

In this study, the model was built on 330 cirrhotic patients with no HCC developed at baseline. During the 
subsequent follow-up, some of these patients developed HCCs. To build a more accurate model, these HCC 
patients should be incorporated into the HCC group (n = 42). However, in the present study, we intended to 
perform a validation test using this cohort of patients for the established equation. Thus, these would-be HCC 
patients were included in the 330-patient cohort. Although the validation was successful, this was not a truly pro-
spective study. An authentic prospective validation study should be conducted for a final conclusion.

To our knowledge, this is the first circulating miRNA-based model for HCC risk prediction in cirrhosis 
patients. Our studies provided supporting evidence for two interesting concepts. First, HBV and HCV evoked 
differential miRNA dysregulation during the long courses of chronic hepatitis toward liver cirrhosis. Second, dys-
regulation of miRNAs may have occurred prior to the development of HCC, and the baseline miRNA levels might 
be used for identifying high HCC-risk patients among liver cirrhotic patients. Combined with the conventional 
clinical predictors, including age, gender and baseline ALT levels, a subgroup of cirrhotic patients (~30%) was 
identified with a particularly high risk of HCC compared with other cirrhotic patients (P = 0.001).

Materials and Methods
Patients. This study was approved by the Institutional Review Board of Chang Gung Memorial Hospital, 
Taiwan (IRB No. 103-5039 C). Written informed consent was obtained from all patients, and the study was con-
ducted in accordance with the Guidelines for Good Clinical Practice and the applicable laws and regulations. A 
total of 372 HBV- and/or HCV-related cirrhotic patients from three branches (Keelung, Linkou, and Kaohsiung 
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Branches; located at the northern, central-northern, and southern parts of Taiwan, respectively) of Chang Gung 
Memorial Hospital were enrolled. All of the patients provided informed consent. Among them, 330 patients 
had liver cirrhosis but did not develop HCC at the time when patients were recruited (the liver cirrhosis group), 
whereas 42 patients were diagnosed as early HCC at the Barcelona Clinic of the Liver Cancer Stage A (the HCC 
group). These HCC patients were treated by either surgical removal or radiofrequency ablation and were under 
complete remission when recruited. Plasma samples were collected from these subjects for analysis of 28 circulat-
ing miRNAs, which were obtained from a literature search. The liver cirrhosis group was further divided into the 
training and validation subsets by a 2:1 randomization for evaluation of miRNA profiles capable of distinguishing 
viral etiologies (Fig. 1). All 330 cirrhotic patients were prospectively followed until development of HCC or the 
final date of follow-up on 2015/07/23, whichever came first. Patients who did not develop HCC by the end of the 
follow-up were considered right-censored data in the time-to-HCC analysis. The median follow-up period was 
752 (11–891) days.

HCC was diagnosed by cytology or liver biopsy. Liver cirrhosis was diagnosed by either liver biopsy or ultra-
sound characteristics (coarse parenchyma and uneven surface) plus at least one of the following: (i) endoscopy 
visualization of esophageal varices, (ii) fibroscan value > 12kPa, or (iii) aspartate transaminase (AST) to platelet 
ratio index > 1.

No HCV-related cirrhotic patient received antiviral treatment at the time of, or after, enrollment. All 
HBV-related cirrhotic patients had a serum HBV-DNA level < 500 IU/mL. In 34 patients who had HBV-DNA 
level > 2000 IU/mL before enrollment, life-long antiviral treatment was provided, so that when included, the 
HBV-DNA levels were < 500 IU/mL.

RNA Extraction. To avoid miRNA degradation, 250 μL of plasma sample was mixed with 750 μL of TRIzol 
LS reagent (Thermo Fisher Scientific, Wilmington, DE, USA) immediately after centrifuge separation from blood 
cells. The RNA-containing mixture was transferred to a prepared PLG Heavy tube (BIOTOOLS, New Taipei City, 
Taiwan) for RNA extraction following the procedure provided by the manufacturer.

MicroRNA Detection. A stem-loop RT-qPCR method was performed as described in our previous report27. 
Briefly, 10 μl RT reaction mixture containing miRNA-specific stem-loop RT primers (final concentration, 2 nM 
each), 500 μM dNTP, 0.5 μl MMLV HP RT EPICENTRE Biotechnologies, Madison, WI), 0.5 μl RNaseOut 
(Invitrogen), and 80 ng total RNA was used for the RT reaction performed at 16 °C for 30 min, followed by 50 
cycles of reaction at 20 °C for 30 s, 42 °C for 30 s, and 50 °C for 1 s. The RT products were diluted 8-fold before 
qPCR. Next, 0.5 μl of diluted RT product was used as a template in a 6-μl PCR reaction mixture that contained 1× 
SYBR Master Mix (Applied Biosystem, Foster City, CA), 200 nM miRNA-specific forward primer, and 200 nM 
universal reverse primers. The conditions for qPCR were 95 °C for 10 min, followed by 40 cycles of reaction at 
95 °C for 15 s and 63 °C for 32 s. ABI 7900HT Fast Real-Time PCR system (Foster City, CA) was used for qPCR 
reactions. ABI 7900HT SDS 2.3 software was used to calculate the threshold cycle (Ct) and relative quantification. 
The ΔCt method was used to calculate expression levels normalized against U6. The miRNA expression level was 
calculated as POWER(2, ΔCt) × 106.

Statistical Analysis. Cross-sectional clinical variables, such as etiologies or logarithmic transformed 
miRNA levels, were evaluated using the area under the receiver operating characteristic curves (AUC), which 
were estimated by non-parametric empirical calculations using the SPSS statistical software version 21 (IBM, 
New York City, NY). The significance levels were evaluated using Mann-Whitney U statistics32. Longitudinal 
analysis of time to HCC was performed by the Kaplan-Meier method. Statistical significance was evaluated using 
the non-parametric log-rank test. Classification by the support vector machine was performed with the radial 
basis function kernel, using the svm() function of the R statistical scripting language. Differences of AUCs of two 
correlated, empirical ROC curves were evaluated by a bootstrap test with 2000 times of re-sampling, using the 
pROC package32 of the R runtime environment.

Generalized Iterative Modeling. A multivariate modeling method, the generalized iterative modeling 
(GIM) method, was used to produce an algebraic biosignature model (M) for the optimum clinical classification 
in terms of the maximum AUC:

∀ M arg M: max AUC( ), (4)M

where the AUC of M equates to the non-parametric Mann-Whitney U-statistics, normalized by the numbers of 
patients in two distinct clinical classes, n1 and n233:

=
−

⋅
M Mann Whitney U statistics

n n
AUC ( )

1 2 (5)

GIM is a generalization of previously published algorithms, GABA and HABA, which were specifically 
designed for analyzing discrete genomic information and therefore were restricted to Boolean algebra34, 35. The 
generalized algorithm can currently incorporate both continuous clinical variables and discrete genomic variables 
altogether. Briefly, candidate biosignature models were produced by joining randomly-selected clinical param-
eters with three basic algebraic operations, addition (+), subtraction (−) and multiplication (·). These models 
were then sculptured progressively to generate new models by the following computational operations: coefficient 
adjustment, adding or removing clinical variables, changing the algebraic operators between variables, and a 
crossover of two candidate models. Each model was assessed by their classification performance gauged by the 
empirical AUC. Models with better performance were more likely to be retained in the subsequent computation. 
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The entire process was iterated until quasi-optimal models were identified when the AUC did not increase any 
further after a predefined number of iterations. An optional input variable of the algorithm, the cost of model 
complexity c (c ≥ 0), was also introduced to penalize candidate models with many variables. In the computation 
of the HCC_Risk_Score, the value of c is 0.0005. The pseudocode of the GIM algorithm is as follows:

Input
 T: a patient-by-variable matrix
 L: a vector of patients’ class labels
 c: the cost of model complexity, c ≥ 0.

Output
 A model M1

Procedure GIM()
generate a set of k models (S) randomly;
 S = {Mi | M1, M2, M3……Mk}
for each Mi in S
{
 for each patient in T  
  calculate the score by Mi
 calculate AUC based on the scores of all patients in T, and the labels L
 Fitness score F(Mi) = AUC (Mi) − c * (number of variables in Mi)
}
sort the models in S w.r.t. descending F(Mi)

Repeat
{
 pick the subset Sp ∈ S with higher F
 Sd = S − Sp
 discard Sd

 Generate Sd’ by the following methods
 {
  Randomly pick M ∈ Sp and perform one of the following 
  {
  Coefficient adjustment 
  Adding/removing variables 
  Changing the algebraic operators between variables
   from multiplication (·) to addition (+), or  
   from addition (+) to multiplication (·) 
  } 
  Randomly pick Mi, Mj ∈ Sp and perform  
   Crossover between Mi and Mj
 }
 Update S = Sp + Sd’

 for each Mi in S
 { 
  for each patient in T  
   calculate the score by Mi 
  calculate AUC based on the scores of all patients in T, and the labels L  
   Fitness score F(Mi) = AUC (Mi) − c * (number of variables in Mi)
 }
 sort the models in S w.r.t. descending F(Mi)
} until (AUC (M1) =  = 1 or timeout)
return (M1);
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