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Crystal structure-based discovery 
of a novel synthesized PARP1 
inhibitor (OL-1) with apoptosis-
inducing mechanisms in triple-
negative breast cancer
Leilei Fu1, Shuya Wang1,2, Xuan Wang1, Peiqi Wang1,3, Yaxin Zheng1, Dahong Yao1, Mingrui 
Guo1, Lan Zhang1 & Liang Ouyang1

Poly (ADP-ribose) polymerase-1 (PARP1) is a highly conserved enzyme focused on the self-repair of 
cellular DNA damage. Until now, numbers of PARP inhibitors have been reported and used for breast 
cancer therapy in recent years, especially in TNBC. However, developing a new type PARP inhibitor 
with distinctive skeleton is alternatively promising strategy for TNBC therapy. In this study, based 
on co-crystallization studies and pharmacophore-docking-based virtual screening, we discovered a 
series of dihydrodibenzo[b,e]-oxepin compounds as PARP1 inhibitors. Lead optimization result in the 
identification of compound OL-1 (2-(11-(3-(dimethylamino)propylidene)-6,11- dihydrodibenzo[b,e]
oxepin )-2-yl)acetohydrazide), which has a novel chemical scaffold and unique binding interaction 
with PARP1 protein. OL-1 demonstrated excellent potency (inhibiting PARP1 enzyme activity 
with IC50 = 0.079 μM), as well as inhibiting PARP-modulated PARylation and cell proliferation in 
MDA-MB-436 cells (BRAC1 mutation). In addition, OL-1 also inhibited cell migration that closely related 
to cancer metastasis and displayed remarkable anti-tumor efficacy in MDA-MB-436 xenograft model 
without apparent toxicities. These findings highlight a new small-molecule PAPR1 inhibitor (OL-1) that 
has the potential to impact future TNBC therapy.

Poly (ADP-ribose) polymerase-1 (PARP1) is a highly conserved enzyme focused on the self-repair of cellular 
DNA damage, participating in several biological processes including apoptosis, chromosome stability, gene 
amplification, transcriptional regulation and cell division1, 2. When DNA damage occurs, PARP1 senses and binds 
to the site of Single-strand breaks (SSBs) and becomes catalytically activated. It utilizes nicotinamide adenine 
dinucleotide (NAD+) as substrate to form branching chains of poly (ADP-ribose) (PAR) onto PARP1 itself as 
well as other nuclear proteins or enzymes including histones, DNA topoisomerases, ligases and polymerases3, 4. 
Synthesized PAR chains recruit X-ray repair cross-complementing protein 1 (XRCC1), DNA ligase III and DNA 
polymerase β to DNA damage sites, subsequently mediating base excision repair (BER)5. Inhibition of PARP1 
will lead to the accumulation of SSBs and stalling of DNA repair machinery, finally resulting in double-strand 
breaks (DSBs)6. Interestingly, over-expressed PARP1 has been demonstrated in various cancers such as mela-
nomas, glioblastoma and breast cancer7–11. Moreover, high expression level of PARP1 was found closely related 
with triple-negative breast cancer (TNBC)12. Consequently, targeting PARP1 and inhibiting its relevant biological 
function may be another avenue of breast cancer therapy, especially for TNBC.

Previous studies have been reported that inhibition of PARP1 leads to synthetic lethality in some BRCA1/2 
mutant cancers (including ovarian and breast cancer), which could be specifically targeted by PARP1 inhibitors13. 
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Currently, various PARP inhibitors, such as Olaparib, Rucaparib, BMN-673, Niraparib and Iniparib (Fig. 1), are 
under development indifferent stages of clinical trial14–20. From a chemical point of view, most chemical scaffolds 
of PARP inhibitors contain amide structure, more new chemical structures can be found in the future21, 22; From 
a biological point of view, although these PARP inhibitors have high PARP1/2 inhibition and anti-tumor activity; 
however, long-term drug administration will accompany with drug resistance, leading to tumor recurrence and 
metastasis23. Thus, in addition to explore the in-depth drug resistance mechanism of existing inhibitors, as well as 
the relationship between PARP-mediated signaling pathways and tumor specificity, developing a new type PARP 
inhibitor with improved therapeutic efficacy and lower toxicity is alternatively promising strategy for TNBC 
therapy.

With the rapid development of computational methods and structural biology, many studies successfully 
identifying epigenetic inhibitors using pharmacophore-docking-based virtual screening and co-crystallization 
studies have been reported24–26. In this study, by constructing a pharmacophore of PARP1 inhibitor and screening 
a new chemical skeleton through co-crystallization studies, we designed and synthesized several series of PARP1 
inhibitors, then identified a novel PARP1 inhibitor (OL-1). This inhibitor could significantly induce cell death 
and inhibit cell migration in BRAC1 mutant MDA-MB-436 cells with potent anti-tumor efficacy in vivo. These 
findings highlight a new small-molecule PAPR1 inhibitor (OL-1) that has the potential to impact future TNBC 
therapy.

Results and Discussion
Co-crystallization screening and structure-based pharmacophore of PARP1/inhibitor com-
plex. Numbers of PARP inhibitors have been reported over the past several years, such as Olaparib, Rucaparib, 
BMN 673, Niraparib and Iniparib (Fig. 1)27–29. These previous work had well described that PARP inhibitors 
occupy the nicotinamide pocket in the NAD+ binding site of PARP1, forming key hydrogen bonds and π-π inter-
actions. Firstly, we used virtual screening of chemical libraries that based upon Drugbank and ZINC databases, 
searching for novel leading compounds with distinctive skeleton (Fig. 2A). Top500 hits were selected by LibDock 
protocol in the first step. Subsequently, Top100 (PA-1 ~ PA-100) hits were further determined by CDOCKER 
protocol and selected for co-crystallization screening. As a result, only one compound from Drugbank database 
(DB00321) named as PA-10 (3-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)-N,N-dimethylpropan-1-
amine) bound to the nicotinamide pocket of PARP1 (PDB ID code 5HA9) in the co-crystallization screening 
(Fig. 2B). To explore how to modify the leading compound, we constructed the structure-based pharmacoph-
ore including ten reported co-crystal structures of PARP inhibitors. The detected pharmacophore features were 
shown in Table 1 and Fig. 2C. Among these features, four of them were found as common in these complexes, 
including A1 (hydrogen bond acceptor), D1 (hydrogen bond donor), AR1 (ring aromatic) and H1 (hydrophobic) 
(Fig. 2D). Therefore, we can further modify the leading compound by increasing the length of carbon chain; 
increasing substituent containing hydrogen bond donor and changing of aromatic skeleton. And all newly syn-
thesized compounds were designed according to abovementioned structure-based pharmacophore features.

C h e m i s t r y.  As  out l i n e d  i n  F i g .   3 ,  3 - ( 1 0 , 1 1 - d i hy d ro - 5 H - d i b e n z o [ a , d ] [ 7 ] a n nu l e n -
5-yl idene)-N,N-dimethylpropan-1-amine (PA-10),  prepared from commercia l ly  avai lable 
isobenzofuran-1,3-dione (1) which was used as the key intermediate by following a literature procedure: Phthalic 
anhydride and phenylacetic acid were reacted in present of sodium acetate, then the product of Friedel-Crafts 
reaction was hydrolyzed under alkaline conditions. A Wolff-Kishner-Huang reduction was carried on and the 

Figure 1. PARP inhibitors in clinical trial.
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Figure 2. Crystal structure, pharmacophore models construction and molecular docking of PARP1 inhibitors. 
(A) Virtual screening schematic model for the discovery process of novel PARP1 inhibitors. (B) Candidate 
PARP1 inhibitor PA-10 bind to the NAD+ binding site. (C) Comprehensive structure-based pharmacophore 
features of PARP inhibitors. (D) The four common structure-based pharmacophore model.

PDB No. 1UK0 1UK1 1WOK 2RCW 3L3L 3L3M 4HHY 4L6S 4ZZZ 5A00

resolution 3.0 Å 3.0 Å 3.0 Å 2.8 Å 2.5 Å 2.5 Å 2.36 Å 2.2 Å 1.9 Å 2.75 A

ligand FRM FRQ CNQ AAI L3L A92 15R 1WQ FSU D7N

Release date 2004/1/27 2004/1/27 2005/3/15 2008/9/23 2010/12/22 2010/6/23 2013/3/27 2013/8/7 2015/8/12 2015/8/12

pharmacophore model features

A1 √ √ √ √ √ √ √ √ √

D1 √ √ √ √ √ √ √ √ √ √

AR1 √ √ √ √ √ √

H1 √ √ √ √ √ √ √ √

H2 √ √ √

H3 √ √ √

PI1 √ √ √

PI2 √ √

Table 1. Analyses of pharmacophore features based on ten co-crystal structures of PARP1 inhibitors obtained 
from the Protein Data Bank (PDB).

Figure 3. General Synthesis of compound PA-10. Reagents and conditions: (a) Phenylacetic acid, CH3COONa, 
fusion at 200 °C, 5 h; (b) MeOH, NaOH; (c) PEG, hydrazine hydrate, NaOH, 110 to 180 °C; (d) HCl; (e) PPA, 
100 °C; (f) THF, (3-(dimethylamino)propyl)magnesium chloride; (g) EtOH, con.HCl, reflux.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:_####_ | DOI: 10.1038/s41598-016-0007-2

intermediate was cyclizing in acidic conditions. The final product was obtained by Grignard reaction after hydrol-
ysis and dehydration.

Meanwhile, condensation of 1,2-dibromoethane (or propane, butane) with Ph3P in toluene provided com-
pound 9, subsequent substituted by different amines in 74–85% overall yield respectively. Then, a witting reac-
tion occurred in present of compound 10 with n-BuLi in −10 °C provided 10,11-dihydro-5H-dibenzo[a,d][7]
annulen-5-ylidene derivatives (11a–f)in relatively high yields 82–91% (Fig. 4). 5-benzylidene-10,11-dihydro-5
H-dibenzo[a,d][7]annulene derivatives (15a–e) were prepared by (chloromethyl)benzene derivatives (12) react-
ing with Mg and I2, then condensation of the Grignard reagents (13) with compound 10 (Fig. 5). Inserting varies 
R1 moieties to the connecting linkage yielded compounds 15a–e in 45–78% overall yield.

To explore the impact of structure modifications in mother structures, as well as the framework reconstruction, 
compound 19 and 23 derived from dibenzo[b,e]oxepin-11(6H)-one (18) and dibenzo[b,e]thiepin-11(6H)-one 
(22) was also prepared (Fig. 6). Isobenzofuran-1(3H)-one (16) was treated with KOH in the temperature of the 
xylene reflux, then acidified with HCl to obtain compound 17 in 41% yield. The intermediate was then cyclizing 
in present of trifluoroacetic anhydride and BF3.Et2O to obtain compound 18 in 90% yield. A witting reaction sim-
ilar to previous descriptions occurred in present of compound 10 with n-BuLi in −10 °C provided dibenzo[b,e]
oxepin-11(6H)-ylidene derivatives (19a–c) in relatively high yields. Compound 22 was synthesized by a similar 
cyclization reaction in present of PPA and the final products dibenzo[b,e]thiepin-11(6H)-ylidene derivatives 
(23a–c) were obtained by a witting reaction similar to previous descriptions with n-BuLi in −10 °C.

At the same time, anthracen-9(10H)-ylidene derivatives (26a–c), 9H-xanthen-9-ylidene (28a–c), devoid of 
one carbon atom in the mother structures, were prepared from commercially available and respective ketones in 
three steps similar to the above synthetic description (Fig. 7).

Figure  8 showed the synthetic route of 2-substituted 3-(dimethylamino)propylidene)-6,11-
dihydrodibenzo[b,e]oxepin derivatives (33a–p): compound 16 was reacted with 2-(4-hydroxyphenyl)acetic acid 
(29) in present of MeONa in DMF, then acidified with HCl. The intermediate was then cyclizing in present of PPA 
in AcOH to obtain compound 30 in 85% yield.

Structural modification and structure activity relationship analysis. All synthesized compounds 
were tested to determine their PARP1 inhibition activities, and all compounds were further evaluated by cell via-
bility assay in MDA-MB-436 cells (BRAC1 mutant breast cancer). The clinical small molecular PARP1 inhibitors 
Iniparib and Olaparib were used as the reference compound. First, 10,11-dihydro-5H-dibenzo[a,d][7]annulen-
5-ylidene derivatives (11a–f) with a N,N-disubstited amino group attached 10,11-dihydro-5H-dibenzo[a,d][7]

Figure 4. Synthesis of 10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidenederivatives. Reagents and 
conditions: (a) toluene, Ph3P, reflux; (b) EtOH, amines, 70 °C; (c) THF, 6, n-BuLi, −10 °C to reflux.

Figure 5. Synthesis of 10,11-dihydro-5H-dibenzo[a,d][7]annulenederivatives. Reagents and conditions: (a) 
THF, Mg, I2; (b) THF, 6; (c) HCl.
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annulen-5-ylidene core through a different length linker were synthesized to improve the molecular flexibil-
ity. Disappointingly, these compounds demonstrated negligible effects on PARP1 inhibition comparing with 
compound PA-10 (Table 2). Further, switch of the terminal N substituents to phenyl, afforded new derivatives 
15a–e, showing less improvement in PARP1 activity (Table 3). Therefore, the structural modification of side 
chain exhibited when n = 1, R1 = R2 = Me, it had best activity. To further explore the impact of core structure, a 
series of bioisostere was synthesized, compound 19 and 23 was obtained through ibenzo[b,e]oxepin-11(6H)-one 
(18) and dibenzo[b,e]thiepin-11(6H)-one (22). Interestingly, both compounds displayed significantly enhanced 
PARP1 activity and anti-proliferative activity (Table 4), especially compound 19b, showing an IC50 value of 
0.75 μM. However, replacing the core structure to anthracen-9(10H)-ylidene or 9H-xanthen- 9-ylidene, led to 
compounds 26a–c and 28a–c, possessing almost no PARP1 inhibitory activity (Table 5). From further analysis of 
co-crystallization and pharmacophore, we assumed that 2-substituted groups might be an important functional 
group interacting with PARP1 protein. Therefore, a series of 2-substituted 3-(dimethylamino)propylidene)-6,1
1-dihydrodibenzo[b,e]oxepin derivatives were obtained from compound 31. Lots of new compounds displayed 
significantly enhanced PARP1 activity, especially compound 33e (hereafter refer to OL-1), showing an IC50 value 
of 0.079 μM against PARP1 and 0.736 μM against MDA-MB-436 cells (Table 6) and being 10-fold more potent 
than leading compound PA-10, while the one of the positive control Olaparib showing an IC50 value of 0.005 μM 

Figure 6. Synthesis of dibenzo[b,e]oxepin-11(6H)-ylidene and dibenzo[b,e]thiepin-11(6H)-ylidenederivatives. 
Reagents and conditions: (a) KOH, Xylene, reflux, then HCl, H2O; (b) CH2Cl2, trifluoroacetic anhydride, BF3.
Et2O,40 °C; (c) THF, 10, n-BuLi; (d) EtOH, NaOH, overnight; (e) PPA, 100 °C; (f) THF, 10, n-BuLi.

Figure 7. Synthesis of anthracen-9(10H)-ylidene and 9H-xanthen-9-ylidenederivatives. Reagents and 
conditions: (a) SnCl2, HCl, AcOH, reflux; (b) THF, 10, n-BuLi.
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Figure 8. Synthesis of 3-(dimethylamino)propylidene)-6,11-dihydrodibenzo[b,e]oxepinderivatives. Reagents 
and conditions: (a) DMF, MeONa, 120 °C; then, PPA, AcOH, 75 °C; (b) THF, 10, n-BuLi; (c) CH2Cl2, SOCl2, r.t.; 
(d) CH2Cl2, amine.

Compound n R1 R2

Enzymatic 
inhibition 
(IC50, μM)a

Anti-cell viability 
(IC50, μM)a

PARP1 MDA-MB-436

11a 0 Me H >20 n.d.b

11b 0 Me Me 16.17 ± 1.24 >20

11c 1 Me H 14.21 ± 2.13 >20

11d (PA-10) 1 Me Me 1.65 ± 0.25 5.44 ± 1.01

11e 2 Me H >20 n.d.b

11f 2 Me Me >20 n.d.b

Table 2. Inhibition Data of compounds 11 against Recombinant Human PARP1 and MDA-MB-436 cells. aThe 
IC50 values are presented as mean ± SD, which is determined by at least three independent experiments. bThe 
n.d. means data are not determined.

Compound R1

Enzymatic inhibition 
(IC50, μM)a

Anti-cell viability 
(IC50, μM)a

PARP1 MDA-MB-436

15a H >20 n.d.b

15b F >20 n.d.b

15c Cl >20 n.d.b

15d Br >20 n.d.b

15e Me >20 n.d.b

Table 3. Inhibition Data of compounds 15 against Recombinant Human PARP1 and MDA-MB-436 cells. aThe 
IC50 values are presented as mean ± SD, which is determined by at least three independent experiments. bThe 
n.d. means data are not determined.
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and 1.12 μM. In addition, we also used the built pharmacophore to estimate the enzymatic activities of all synthe-
sized compounds on PARP1 inhibition. As expected, OL-1 also displayed the best potency on PARP1 inhibition 
with an estimated IC50 value of 0.29 μM (see Table S1). Consequently, based on abovementioned results, OL-1 
emerged as the best leading compound with both potent PARP1 inhibition activity and good anti-proliferative 
effect against MDA-MB-436 cells. Moreover, we used molecular docking to examine the binding states between 
OL-1 and PARP1. As a result, OL-1 showed a good binding affinity with PARP1 with two hydrogen bonds 
formed in GLY863 (Fig. 9A). Then, we performed the 10-ns molecular dynamics (MD) simulations on OL-1/
PARP1 complex, and obtained the low root-mean-square deviation (RMSD) fluctuations, indicating OL-1 could 
steadily bind with PARP1 (Fig. 9B). After achieving the most potent compound OL-1, we conducted extensive 
structure-activity relationship (SAR) studies on part A, B, C (Fig. 10), The activity of the seven membered ring 
in Part A is superior to six membered ring and when the substituted X is O, the activity is better. In Part B, The 
more activity is shown when R2 is substituted for different amide groups. In Part C, the carbon chain needs a 
certain length and the best activity is shown when R1 is substituted by tertiary amine group. This analysis is also 
consistent with the results of previous molecular docking. Therefore, we selected OL-1 as the parent structure to 
remain unchanged.

Compound X n

Enzymatic inhibition 
(IC50, μM)a

Anti-cell viability 
(IC50, μM)a

PARP1 MDA-MB-436

19a O 0 13.17 ± 2.33 >20

19b O 1 0.75 ± 0.27 4.14 ± 1.17

19c O 2 >20 n.d.b

23a S 0 19.21 ± 3.05 >20

23b S 1 1.04 ± 0.17 17.88 ± 2.11

23c S 2 >20 n.d.b

Table 4. Inhibition Data of compounds 19 and 23 against Recombinant Human PARP1 and MDA-MB-436 
cells. aThe IC50 values are presented as mean ± SD, which is determined by at least three independent 
experiments. bThe n.d. means data are not determined.

Compound X n

Enzymatic inhibition 
(IC50, μM)a

Anti-cell viability 
(IC50, μM)a

PARP1 MDA-MB-436

26a CH 0 >20 n.d.b

26b CH 1 17.85 ± 2.46 >20

26c CH 2 >20 n.d.b

28a O 0 >20 n.d.b

28b O 1 >20 n.d.b

28c O 2 >20 n.d.b

Table 5. Inhibition Data of compounds 26 and 28 against Recombinant Human PARP1 and MDA-MB-436 
cells. aThe IC50 values are presented as mean ± SD, which is determined by at least three independent 
experiments. bThe n.d. means data are not determined.
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Figure 9. Molecular docking and molecular dynamics (MD) simulations of candidate PARP1 inhibitor OL-1. 
(A) Molecular docking of PARP1/OL-1 complex indicated that two hydrogen bonds were formed with GLY863. 
(B) Molecular dynamics (MD) simulations of OL-1 binding to PARP1. The binding conformation was stabilized 
after 10 ns simulation.

Figure 10. Regions subjected to separate SAR investigation.
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OL-1 induces cell death in breast cancer cells. To determine the molecular mechanism of OL-1, we 
firstly found that OL-1 demonstrated anti-proliferative effects against various breast cancer cell lines, especially 
in the BRCA1 mutant MDA-MB-436 cells (IC50 = 5.14 µM) (Fig. 11A). Then we used Hoechst 33258 staining to 
confirm that OL-1-induced obvious morphologic alterations of apoptosis in MDA-MB-436 cells (Fig. 11B). In 
addition, we also measured the OL-1-induced apoptotic cell ratio by Annexin V-FITC/PI double staining, which 
was obviously increased in a concentration-dependent manner (Fig. 11C).

Loss of BRCA1 function leads to genome instability because of defection in DNA repair by homologous 
recombination30–32. Consequently, BRCA1 deficient or mutant cancer cells are commonly sensitized to the inhi-
bition of PARP/PAR-dependent DNA repair mechanisms due to the high-level of DNA  damage33, 34. Therefore, 
we determined the effect of OL-1 to inhibit the activation of PARP1 and downstream substrate proteins such 
as PAR in treated cells by western blot analysis. And we found that OL-1 treatment significantly inhibited the 
activity of PARP, accompanying with no cleavage of PARP. In addition, the expression of PAR was also decreased 
in OL-1 treated cells (Fig. 11D). Subsequently, we investigated the involvements of apoptotic markers in OL-1 
induced cell death. We found that OL-1 upregulated Bax expression as well as downregulated Bcl-2 expression. 
And OL-1 treatment also increased cleavage of caspase-3 (Fig. 11D). Moreover, we found that OL-1 could inhibit 
cell migration of MDA-MB-436 cells (Fig. 11E), indicating OL-1 may inhibit metastasis. These results demon-
strate that OL-1 could induce cell apoptosis by inhibiting PARP1 and inhibit cell migration in BRCA1-mutant 
MDA-MB-436 cells.

OL-1 displays potent anti-tumor activity in vivo. Based upon the anti-proliferative efficacy of OL-1 
on MDA-MB-436 cells, we proceeded to assess its efficacy on inhibiting tumor growth in xenograft breast cancer 
model. After OL-1 treatment, the tumor volumes and tumor weights of high dose group (25 mg/kg/d) were lower 

Figure 11. OL-1 induces cell death in breast cancer cells. (A) MCF-7, MDA-MB-231, MDA-MB-436, 
MDA-MB-468 cells were treated with different concentrations of OL-1, and then the cell viabilities were 
detected by MTT assay. (B) Hoechst 33258 fluorescence staining was used to detect DNA breakage. Scale 
bar = 200 μm. (C) MDA-MB-436 cells were treated with 0.25 μM, 0.5 μM and 1 μM OL-1 for 24 h, respectively. 
After Annexin V-FITC/PI double staining, the apoptosis ratios were analyzed by flow cytometry. (D) Western 
blot analysis of Bax, Bcl-2, Caspase-3, PARP1 and PAR expression levels in OL-1 treated cells. Each lane was 
loaded with 30 μg cell lysates, β-actin was used as a loading control. (E) MDA-MB-436 cells were scratch-
wounded by sterile pipette, and then treated with OL-1 for 24 h. Migrated cells were observed by phase-contrast 
microscope. Scale bar = 100 μm.
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Compound R1

Enzymatic inhibition 
(IC50, μM)a

Anti-cell viability 
(IC50, μM)a

PARP1 MDA-MB-436

31 OH 11.24 ± 1.16 >20

33a OMe 19.11 ± 1.67 >20

33b OEt >20 n.d.b

33c >20 n.d.b

33d NH2 0.344 ± 0.027 1.941 ± 0.514

33e (OL-1) 0.079 ± 0.013 0.736 ± 0.223

33f 0.724 ± 0.013 1.32 ± 0.31

33g 1.26 ± 0.14 4.22 ± 0.75

33h 13.47 ± 2.77 19.34 ± 3.11

33i >20 n.d.b

33j 7.35 ± 1.32 8.23 ± 1.56

33k 19.12 ± 2.16 >20

33l 4.45 ± 1.29 7.42 ± 0.27

33m 18.91 ± 2.29 >20

33n >20 n.d.b

33o >20 n.d.b

33p >20 n.d.b

PA-10 — 1.65 ± 0.25 5.44 ± 1.01

Iniparib — n.d.b 14.32 ± 1.56

Olaparib — 0.005 ± 0.001 1.12 ± 0.77

Table 6. Inhibition Data of compounds 31 and 33 against Recombinant Human PARP1 and MDA-MB-436 
cells. aThe IC50 values are presented as mean ± SD, which is determined by at least three independent 
experiments. bThe n.d. means data are not determined.
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Figure 12. OL-1 displays potent anti-tumor activity in vivo. (A) Relative tumor volumes of mice (n = 6) 
injected i.p. with PBS, Iniparib (100 mg/kg/d), low dose (12.5 mg/kg/d) and high dose (25 mg/kg/d) of OL-1. 
**P < 0.01; compared with control group. (B) Tumor weights of mice injected i.p. PBS, Iniparib (100 mg/
kg/d), low dose (12.5 mg/kg/d) and high dose (25 mg/kg/d) of OL-1. *P < 0.05; ***P < 0.001 compared with 
control group. (C) Body weights of mice during treatment. **P < 0.01; compared with control group. (D) The 
weights of liver, spleen and kidney of mice in different groups were measured. *P < 0.05; **P < 0.01; compared 
with control group. (E) Immunohistochemistry analysis of Ki-67 and PAR expression. Scale bar = 200 μm. (F) 
Western blot analysis of PARP, PAR and Caspase-3. Tumor tissues excised from the MDA-MB-436 xenograft 
mice were lysed. Each lane was loaded with 30 μg cell lysates, β-actin was used as a loading control.
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than the positive control (Iniparib, 100 mg/kg/d) and low dose groups (12.5 mg/kg/d) (P < 0.05) (Fig. 12A,B). 
For the toxicity study, compared with the control group and the Iniparib group, high dose of OL-1 (25 mg/kg/d) 
induced 10.05% loss of body weight during the 14 days of treatment (P < 0.01). In addition, the decrease of body 
weights in low dose group (12.5 mg/kg/d) was not obvious (Fig. 12C). Meanwhile, liver weights of Iniparib group 
were significantly decreased (P < 0.01), and spleen weights of mice were also affected by Iniparib (P < 0.05). 
The liver, spleen and kidney weights were not changed in OL-1 treated groups compared to the Iniparib group 
(Fig. 12D). In according to the balance between anti-tumor efficacy and toxicity, the low dose (12.5 mg/kg/d) was 
used as the optimum dose for treatment of tumor growth. To test whether OL-1-induced inhibition of tumor 
growth in vivo was due to reduced cell proliferation, we detected Ki-67 expression in tumor tissues of vehicle- 
and OL-1-treated mice by immunohistochemical analysis. As a result, OL-1 treatment significantly reduced the 
positive ratio of Ki-67 compared to the control group (Fig. 12E). For further confirm the mechanism of the thera-
peutic efficacy of OL-1 in vivo, we examined the expression of PARP, PAR and Caspase-3 by western blot analysis. 
Interestingly, the expression levels of PARP and PAR were highly in accordance with the in vitro results (Fig. 12F). 
Altogether, these results demonstrate that OL-1 displays potent anti-tumor activity in vivo by inhibiting PARP1 
and its substrate PAR.

Conclusions
In this study, we have described the discovery and identification of a potent and highly effective PARP1 inhibitor 
OL-1 (compound 33e) with a new chemical skeleton. This compound was designed and synthesized based upon 
co-crystallization studies of a hit compound PA-10. Further in-depth in vitro assays were performed with OL-1, 
which has displayed potent anti-proliferative activities in breast cancer cell lines, especially in MDA-MB-436 
cells (BRAC1 mutation). And PARP enzymatic inhibition assay revealed that OL-1 potently inhibits PARP1 
with an IC50 value of 0.079 μM. Western blot analysis demonstrated that OL-1 significantly inhibited activities of 
PARP1 and its downstream substrate PAR. In vivo anti-tumor activity assays showed that OL-1 had more potent 
anti-tumor efficacy than Iniparib in the MDA-MB-436 xenograft model. By the way, OL-1 was also found to 
inhibit cell migration by in vitro would-healing assay, indicating OL-1 may have a potential to inhibit metastasis 
in triple negative breast cancer. And yet, preliminary pharmacokinetic studies and its efficacy of combination use 
with other anti-tumor drugs need further intense studies.

Methods
Chemistry. All reagents used in this study were purchased from commercial sources without any purifica-
tion. All 1H-NMR and 13C-NMR spectra were tested in CDCl3 or DMSO-d6 by a Bruker-ARX-400 spectrometer. 
Chemical shifts were recorded in ppm. HRMS data were obtained by LC-ESI-TOF-MS instrument. The melting 
points were recorded in open capillaries and were uncorrected.

Molecular docking and molecular dynamics (MD) simulations. Virtual screening of candidate 
PARP1 inhibitor was processed by the LibDock and CDOCKER modules of Accelrys Discovery Studio (version 
3.5)35, 36. All of the compounds contained in the screening library were downloaded from Drugbank (http://www.
drugbank.ca/) and sub-library of ZINC build by NIBS (National Institute of Biological Sciences, Beijing), which 
contains 33,632 drug-like compounds. Energy minimization of the inhibitors was performed by the CHARMm 
force field37. All residues of PARP1 within 10 Å from the binding site of ligand were defined as the binding 
sphere. Additionally, Smart Minimizer and CAESAR (Conformer Algorithm based on Energy Screening and 
Recursive build-up) were applied for in situ ligand minimization and generating ligand conformations, respec-
tively. Moreover, in order to detect the binding affinity and complex stability between PARP1 and OL-1, 10 ns MD 
simulations were processed by GROMACS (version 4.5.5) according to our previous study38.

Protein expression and purification. N-terminal His6 tag was used as purification tag with catalytic 
domain of human PARP1 residue from 662-1011. Pet28a was used as vector to be produced in Escherichia coli 
BL21 bacteria. The expression of PARP1 protein was induced by 0.4 mM isopropyl β-d-1-thiogalactopyranoside 
(IPTG). Subsequently, HiTrap Ni2+-chelating HP column and HiPrep 26/60 Sephacryl S-300 HR gel-filtration 
column (GE Healthcare) were used to do the first step purification and following purification, respectively. The 
purified catPARP1 was stored at −80 °C in a buffer consisting of 140 mM NaCl, 25 mM Tris-HCl, 3 mM KCl  
pH 7.4.

Crystallization of PARP1. Crystals of PARP1 were grown at 25 °C using hanging-drop and vapor-diffusion 
methods. At beginning 9 kits were used for initial crystal screening, including CUBICPHASE1, JCSG+ and 
PACT (QIAGEN company), as well as CrystalScreen, PEGRX, PEG/ION, INDEX, SALT and SALTRX (Hampton 
company). Firstly, 1 μL PARP1 (15 mg/mL) was mixed with 1 μL stock solution. After one week crystals could be 
found from one condition, 2.1 M (NH4)2SO4, 0.1 M Tris-HCl pH 7.2–8.0. When the crystals were reached at a size 
of 0.002 mm3 (0.2 mm × 0.1 mm × 0.1 mm), they were soaked into the well solution containing 5 mM PA-10 and 
growing condition for overnight. 15% (v/v) glycerol was added as cryoprotectant, and then the crystal was rapidly 
cooled in liquid nitrogen.

X-ray diffraction data collection. Nylon loops was used to harvest the soaked PARP1 crystals and 
then immersed the crystals in mother liquor supplemented with 15% glycerol for 1 min. The synchrotron data 
were captured on an ADSC Q315 CCD detector (Shanghai Synchrotron Radiation Facility, Shanghai, China). 
HKL2000 was used to do the data processing.

Structure solution and refinement. PHASER program was used to do the Molecular replacement a probe 
PARP1 (Protein Data Bank (PDB) ID 4PJT). Then, REFMAC5 program was used to refine rigid-body by using 

http://www.drugbank.ca/
http://www.drugbank.ca/
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maximum likelihood. The generated model was manually restructured by COOT program prior to refinement 
again by REFMAC5 program. PARP1 structure was analyzed by PYMOL program. Refinement statistics details 
were showed in Table S2.

Structure-based pharmacophore models construction. Ten co-crystal structure data of PARP1/
ligand complex were downloaded from the Protein Data Bank (PDB)39. The structure-based pharmacophore 
models were constructed according to our previous study40. In brief, all PARP1/ligand co-crystal structures 
were turned into a generic reference frame set by using “Multiple Structure Alignment (Modeller)” module in 
Discovery Studio 3.5. Subsequently, ten individual pharmacophore models based on PARP1/ligand complex were 
constructed by pharmacophore generation protocol of Discovery Studio 3.5. The identified pharmacophore fea-
tures were filtered based upon the interaction patterns with PARP1 and showed in Table 1. The generated model 
was further modified with constraint sphere tolerance by Discovery Studio 3.5 pharmacophore modules.

PARP1 enzymatic inhibition assays. The PARP1 enzymatic inhibition assay was performed by using 
Universal Chemiluminescent PARP Assay Kit (Trevigen, Gaithersburg, MD, USA) according to the manufac-
turer’s instruction and previous report17. Briefly, serial dilutions of inhibitor were added to appropriate wells 
followed by addition of diluted PARP1 enzyme (0.5 Unit/well). After incubation for 10 min at room temperature, 
distributing 25 μL of 1X PARP Cocktail into each well and incubating the strip wells at room temperature for 
60 min. The strip wells were washed with 1X PBS and 0.1% Triton X-100 for twice. Then 50 µL/well of diluted 
Strep-HRP was added to each well and incubate at room temperature for 60 min. After another wash with PBS, 
mixing equal volumes of PeroxyGlow™ A and B together and adding 100 µl per well. Finally, immediately taking 
the chemiluminescent readings. The IC50 values of PARP1 inhibitors were determined using Prism 6 software 
(GraphPad, San Diego, CA, USA).

Cell culture. Breast cancer cells including MCF-7, MDA-MB-231, MDA-MB-436 and MDA-MB-468 cells 
were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA). The cells were fed with 
Leibovitz’s L-15 medium (MDA-MB-231, MDA-MB-436 and MDA-MB-468 cells) or DMEM medium (MCF-7 
cells) containing 10% Fetal Bovine Serum, 100 μg/mL streptomycin and 100 U/mL penicillin. MDA-MB-231, 
MDA-MB-436 and MDA-MB-468 cells were cultured in humidified cell incubator with atmosphere at 37 °C while 
MCF-7 cells was cultured with 5% CO2 at 37 °C.

Cell viability assay. 5 × 103 cells were seeded into each well in 96-well microplates and cultured for 24 h. 
Then the cells were exposed to different concentrations of OL-1 for 24 h. After drug treatment, the cell viabilities 
were detected by MTT assay.

Apoptosis assay. MDA-MB-436 cells (1 × 105 per well) were seeded into 6-well microplates in the presence 
or absence of OL-1 and cultured for 24 h, then incubated with 500 μL Hoechst 33258 staining solution (0.5 μg/
mL) for 30 min at 37 °C. After staining, the apoptotic features were observed under fluorescence microscope. 
Apoptotic ratio was measured by Annexin-V-FLUOS Staining Kit (Roche, Germany) according to the manufac-
turer’s protocol followed by flow cytometry (FACS) analysis (Becton Dickinson, Franklin Lakes, NJ).

Cell migration assay. MDA-MB-436 cells were cultured in 24-well microplates and scratch-wounded by 
sterilized pipettes. Then the cells were washed with PBS and cultured with normal medium or OL-1. After 24 h 
incubation, pictures were taken by phase-contrast microscope.

Western blot analysis. Western blot analysis was carried out briefly as previous description41. 
MDA-MB-436 cells were exposed to OL-1 for indicated time. Both floating cells and adherent were collected. 
The cell pellets were resuspended with RIPA lysis buffer and PMSF (1 mM) (Beyotime, Haimen, Jiangsu, China) 
and lysed at 4 °C for 1 h. After 12,000 rpm centrifugation for 10 min, the supernatant was collected to determine 
the protein content by the BCA Protein Assay Kit (CWBIO, Beijing, China). 30 μg cell lysates in each lane were 
separated by 8–12% SDS-PAGE and transferred onto PVDF membranes. After pre-blocking in TBST with 5% 
non-fat milk or BSA for 1 h, the membranes were incubated with primary antibodies overnight at 4 °C, and subse-
quently incubated with HRP-conjugated secondary antibody at room temperature for 1–2 h. Positive signals were 
detected by using ECL as the HRP substrate after washing with TBST solution.

Mouse experiments and in vivo xenograft tumor model. All experiments protocols used in this study 
were carried out in accordance with guidelines of the animal ethics committee (Sichuan University). Thirty-two 
6–8 weeks-old female BALB/c nude mice (18–20 g) were subcutaneously injected with MDA-MB-436 cells 
(1 × 107 cells/mouse). Until the tumor volumes reached 100 mm3 (calculated as V = L × W2/2), the mice were 
randomly divided into four groups. Two groups were treated with different doses of OL-1 by i.p. (intraperitoneal) 
injection for 14 days (low dose group, 12.5 mg/kg/d; high dose group, 25 mg/kg/d), whereas the control group 
was treated with equal amount of normal saline (NS), and the positive drug group was treated with Iniparib, 
100 mg/kg/d. Body weight and the tumor size were determined every day until the end of the study. All mice were 
sacrificed at the end of drug treatment. The organs of mice such as spleen, liver and kidney were harvested and 
weighed. Tumor tissues were detached and fixed in 4% paraformaldehyde for immunohistochemistry or lysed 
for western blotting.

Immunohistochemical analysis. Immunohistochemical analysis was carried out by the method of our 
previous study42. Samples were dehydrated using gradient ethanol, and subsequently paraffin embedded. The 
paraffin embedded samples were sliced into 5 μm thickness sections. The obtained sections were incubated with 
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primary antibodies against KI-67 and PAR for 15 min followed by biotinylated secondary antibodies and detected 
with DAB. Nuclei were counterstained with hematoxylin. The numbers of positive cells were counted in at least 6 
fields for each section and statistical analyzed.

Statistical analysis. All the experiments were independently performed by at least three times. The data 
were statistical analyzed by One-way ANOVA or Student’s t-test of SPSS 17.0 software. All tests with P < 0.05 were 
considered statistically significant.
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