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Proteomics profiling of the 
honeybee parasite Tropilaelaps 
mercedesae across post-embryonic 
development
Qiaohong Wei  1,4, Jiangli Wu1,4, Fengying Liu1, Jiajing Sun1, Weipeng Kang1, Meijiao Zhao1, 
Feng Wang2, Chenhuan Zhang3, Shufa Xu  1 ✉ & Bin Han  1 ✉

Tropilaelaps mercedesae, an ectoparasitic mite of honeybees, is currently a severe health risk to 
Apis mellifera colonies in Asia and a potential threat to the global apiculture industry. However, our 
understanding of the physiological and developmental regulation of this pest remains significantly 
insufficient. Using ultra-high resolution mass spectrometry, we provide the first comprehensive 
proteomic profile of T. mercedesae spanning its entire post-embryonic ontogeny, including 
protonymphs, deutonymphs, mature adults, and reproductive mites. Consequently, a total of  
4,422 T. mercedesae proteins were identified, of which 2,189 proteins were significantly differentially 
expressed (FDR < 0.05) throughout development and maturation. Our proteomic data provide an 
important resource for understanding the biology of T. mercedesae, and will contribute to further 
research and effective control of this devastating honeybee pest.

Background & Summary
The honeybee (Apis mellifera) is an important economic insect that is extensively reared around the world. The 
pollination services provided by honeybees make them irreplaceable in protecting biodiversity and maintaining 
food security1,2. Nevertheless, a variety of biotic and abiotic factors have put severe pressure on the health of 
honeybees, leading to increased attention on their survival3,4. Among the stresses, ectoparasitic mites are the 
most prominent biotic stressors threatening honeybees, and the Varroa destructor (Mesostigmata: Varroidae) 
has been a global epidemic5–7, making it one of the primary research focuses8–10. However, another obligate 
ectoparasitic mite, Tropilaelaps mercedesae (Mesostigmata: Laelapidae), which is widely prevalent in Asia and 
causes serious damage to A. mellifera, also poses a risk of global spread11.

T. mercedesae has shifted from its original host, the giant Asian honeybee species (Apis breviligula, 
Apis dorsata, and Apis laboriosa), to A. mellifera for over half a century, and has now well adapted to par-
asitizing its new host, feeding on it, and transferring viruses12,13. Similar to the Varroa mites, the life 
cycle of T. mercedesae also includes alternates between reproductive and dispersal stages. The entire 
reproductive stage unfolds within the capped brood cells, initiating with a mature female entering the 
cell just before capping and beginning to lay eggs about 10 hours after capping, laying eggs approxi-
mately every 24 hours. Upon hatching, the eggs develop to maturity after passing through the proto-
nymph stage and the deutonymph stage. During this period, the foundress mite and her offspring feed on 
the hemolymph of honeybee pupae14. By the time their host bees emerge from the cell, almost all female 
T. mercedesae offspring have become mature adults, emerge together with their hosts, and enter the 
next reproductive cycle15. Unlike Varroa mites, the dispersal phase of T. mercedesae is much shorter 
and they do not feed on adults. Instead, they feed on young larvae in uncapped cells16,17, as their body 
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size and mouthparts are not suitable for parasitizing and feeding on adult bees18. The combination of an  
accelerated reproductive rate, truncated life cycle, and abbreviated dispersal phase collectively underpin the 
rapid proliferation of T. mercedesae within honeybee colonies, potentially endowing it with a heightened 
capacity to compromise bee health compared to Varroa. However, current research on the molecular biology 
of T. mercedesae is still limited, constraining a profound understanding and effective control of it.

In the current study, applying ultra-high-resolution mass spectrometry, we performed the first comprehen-
sive proteomic profiling of T. mercedesae across all post-embryonic developmental stages (i.e., protonymph, 
deutonymph, adult, and reproductive stages). The data generated will provide an important resource for under-
standing the biology and developmental regulation of T. mercedesae, and will help to develop effective treat-
ments for this devastating honeybee pest.

Methods
Sample collection. Tropilaelaps mercedesae samples were collected from 12 honeybee (Apis mellifera) colo-
nies in three apiaries (four colonies from each apiary) located in Beijing, Tianjin, and Hebei, China. All colonies 
were queen right and managed using standard apicultural practices, except they were not treated to control mite 
populations.

All T. mercedesae samples were collected from capped brood cells using a soft paintbrush and soft tweezers. 
Reproductive mites (Rep) were collected from brood cells containing white-eyed pupae. Protonymphs (Pro) 
and one deutonymphs (Deu) were sampled from brood cells containing purple-eyed pupae. Adult T. mercedesae 
(Adu) were collected from cells close to emerging (about one day before adult bees emerged).

For each group (protonymphs, deutonymphs, adults, and reproductive mites), collected mites from all 12 
colonies were randomly allocated to one of three replicates (50 mg for each replicate). All samples were rinsed 
with PBS and air-dried to remove many contaminates that may have been attached to the cuticle, flash-frozen 
using liquid nitrogen, and stored at −80 °C for further processing.

Preparation of peptide extracts for proteomic analysis. Mite samples were homogenized at 4 °C 
using SDT buffer (4% SDS, 100 mM Tris-HCl, 1 mM DTT, pH 7.6) for sample lysis and protein extraction. The 
contrition of protein was quantified with the BCA Protein Assay Kit (Bio-Rad, USA). The general quality of 
extracted proteins was confirmed by SDS-PAGE: 20 µg of protein for each sample were mixed with 5X loading 
buffer respectively and boiled for 5 min. The proteins were separated on 12.5% SDS-PAGE gel (constant current 
14 mA, 90 min). Protein bands were visualized by Coomassie Blue staining.

Protein digestion by trypsin was performed according to the filter-aided sample preparation (FASP) pro-
cedure described previously19. In brief, 200 μg of proteins for each sample were incorporated into 30 μl SDT 
buffer (4% SDS, 150 mM Tris-HCl, 100 mM DTT, pH 8.0). The detergent, DTT and other low-molecular-weight 
components were removed using UA buffer (8 M Urea, 150 mM Tris-HCl, pH 8.0) by repeated ultrafiltration 
(Microcon units, 10 kDa). Then 100 μl iodoacetamide (100 mM IAA in UA buffer) was added to block reduced 
cysteine residues and the samples were incubated for 30 min in darkness. The filters were washed with 100 μl UA 
buffer three times and then 100 μl 25 mM NH4HCO3 buffer twice. Finally, the protein suspensions were digested 
with 4 μg trypsin (Promega) in 40 μl 25 mM NH4HCO3 buffer overnight at 37 °C, and the resulting peptides were 
collected as a filtrate. The peptides of each sample were desalted on C18 Cartridges (Empore™ SPE Cartridges 
C18, bed I.D. 7 mm, volume 3 ml, Sigma), dried by vacuum centrifugation and dissolved in 0.1% formic acid 
in distilled water, then quantified using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific) and 
stored at −80 °C for subsequent LC-MS/MS analysis.

Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Data Dependent 
Acquisition (DDA) Mass Spectrometry Assay: All fractions for DDA library generation were analysed by a 
Thermo Scientific Q Exactive HF mass spectrometer connected to an Easy nLC 1200 chromatography system 
(Thermo Scientific). The peptide (1.5 μg) was first loaded onto an EASY-SprayTM C18 Trap column (Thermo 
Scientific, P/N 164946, 2 cm long, 75 µm inner diameter, 3 μm resin), then separated on an EASY-SprayTM C18 
LC Analytical Column (Thermo Scientific, ES802, 25 cm long, 75 µm inner diameter, 2 μm resin) with a linear 
gradient of buffer B (84% acetonitrile and 0.1% formic acid) at a flow rate of 250 nl/min over 90 min. MS detection 
method was positive ion, the scan range was 300–1,800 m/z, resolution for MS1 scan was 60,000 at 200 m/z, target 
of AGC (automatic gain control) was 3e6, maximum IT was 25 ms, dynamic exclusion was 30 s. Each full MS–SIM 
scan followed 20 MS2 scans. The Resolution for MS2 scan was 15,000, AGC target was 5e4, maximum IT was 
25 ms, and normalized collision energy was 30 eV.

Mass spectrometry data processing and statistical analysis. The extracted MS/MS spectra were 
searched against a protein database combined with Tropilaelaps mercedesae, Apis mellifera, and all viruses known 
to infect Apis mellifera (37,955 protein sequences in total from NCBI) and appended with the common contam-
inants using MaxQuant (v. 2.4.2.0). The search parameters were as follows: MS1 match tolerance: 20 ppm for the 
first search and 6 ppm for the main search; MS2 tolerance: 20 ppm; enzyme: trypsin; allow non-specific cleavage at 
none end of the peptide; maximum missed cleavages per peptide: 2; fixed modification, Carbamidomethylation; 
variable modifications: Oxidation and Acetylation (N-term); maximum allowed variable PTM per peptide: 3. A 
fusion target-decoy approach was used for the estimation of false discovery rate (FDR) and controlled at <1.0% 
both at peptide and protein levels. Proteins were identified based on at least one unique peptide. Protein quan-
titation analysis was performed using Perseus (v. 1.6.2.3), and the p-values were Benjamini Hochberg-corrected 
at 5% FDR.
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Data Records
The LC-MS/MS row data have been deposited in ProteomeXchange Consortium20 (http://proteomecentral.pro-
teomexchange.org) via the PRIDE partner repository21 with the dataset identifier PXD05134722.

technical Validation
Quality evaluation of mass spectrometry data. To assess the quality of our mass spectrometry data, 
we conducted a series of evaluations, including dmass of precursor ion distribution analysis, peptide length dis-
tribution analysis, missed cleavage distribution analysis, and protein coverage distribution analysis. The dmass 
of precursor ions before and after recalibration were normally distributed and mainly distributed within ± 2.5 
ppm, showing that the quality accuracy of the mass spectrometry is ideal (Fig. 1a). Most of the peptides detected 
by mass spectrometry were distributed in the range of 7–20 amino acids, which conform to the general rules of 
enzymatic digestion and mass spectrometry fragmentation (Fig. 1b). The proportion of peptides with missed 
cleavages of 0 and 1 was over 98%, confirming that the enzyme digestion is complete and favourable for identi-
fication (Fig. 1c). The protein coverage is positively correlated with its abundance in the sample, and in our data, 
the proportion of proteins with coverage higher than 10% accounts for about 80%, indicating that the protein 
identification is highly credible (Fig. 1d).

Reproducibility within the replicates. To ensure the representativeness of our samples, we collected 
T. mercedesae from 12 honeybee colonies in three apiaries, and prepared three biological replicates for each 
group of samples. The combination of box plots and violin plots indicates good consistency between our bio-
logical replicates (Fig. 2a). Using the unsupervised principal component analysis (PCA) model, the stability 
and reproducibility of all data sets were monitored. As shown in Fig. 2b, samples from the same group were 
tightly clustered together and separated from other groups, showing that there is a large overall protein differ-
ence between groups, while the variation within the groups is small. The correlation analysis between samples 
can be used to observe the biological replication between samples within the group. The correlation analysis 
results showed that the Pearson’s Correlation Coefficient (R) within all four groups of samples is greater than 
0.99, which is higher than the R between groups (Fig. 2c), indicating that the obtained differential proteins have 
high reliability.
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Fig. 1 Quality evaluation of mass spectrometry data. (a) Distribution of dmass of detected precursor ion.  
(b) Distribution of identified peptide length. (c) Distribution of missed cleavage of peptides. (d) Distribution  
of identified protein coverage.
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Code availability
Data analysis procedures have been described in detail in the Methods section. No custom code was used during 
this study for the curation and/or validation of the dataset.
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Fig. 2 Reproducibility within the replicates. (a) Distribution of protein abundance in each sample. The box 
plots show the degree of dispersion of the protein expression level (abundance), and the violin plots display the 
distribution and probability density of protein expression levels. (b) PCA plot based on the complete proteomic 
dataset. (c) Correlation plot between samples. Pro: protonymphs; Deu: deutonymphs; Adu: adult mites; and 
Rep: reproductive mites.
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