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analysis of alphaMissense data 
in different protein groups and 
structural context
Hedvig Tordai  1, Odalys Torres  1, Máté Csepi1, Rita Padányi1, Gergely L. Lukács  2 & 
tamás Hegedűs  1,3 ✉

Single amino acid substitutions can profoundly affect protein folding, dynamics, and function. The 
ability to discern between benign and pathogenic substitutions is pivotal for therapeutic interventions 
and research directions. Given the limitations in experimental examination of these variants, 
AlphaMissense has emerged as a promising predictor of the pathogenicity of missense variants. Since 
heterogenous performance on different types of proteins can be expected, we assessed the efficacy 
of AlphaMissense across several protein groups (e.g. soluble, transmembrane, and mitochondrial 
proteins) and regions (e.g. intramembrane, membrane interacting, and high confidence AlphaFold 
segments) using ClinVar data for validation. Our comprehensive evaluation showed that AlphaMissense 
delivers outstanding performance, with MCC scores predominantly between 0.6 and 0.74. We observed 
low performance on disordered datasets and ClinVar data related to the CFTR ABC protein. However, 
a superior performance was shown when benchmarked against the high quality CFTR2 database. Our 
results with CFTR emphasizes AlphaMissense’s potential in pinpointing functional hot spots, with its 
performance likely surpassing benchmarks calculated from ClinVar and ProteinGym datasets.

Introduction
In both the medical field and the broader realm of biology, understanding the pathogenicity of mutations holds 
high significance1,2. Pathogenic mutations disrupt the normal function of genes, leading to multiple diseases and 
medical conditions. From the early onset of genetic disorders in infants to the development of complex diseases 
in adults, the transformative power of a single nucleotide change can be profound. Discerning between benign 
and pathogenic mutations can influence diagnostic accuracy, guide therapeutic interventions, and inform prog-
nosis3. Therefore, reliable tools and methodologies to predict and understand mutation impact are essential.

Prior to the advent of more advanced genetic analytical tools, several algorithms emerged as standard bear-
ers in predicting the potential impact of mutations, such as PROVEAN, PolyPhen-2, and SIFT. PROVEAN 
(Protein Variation Effect Analyzer) offers predictions based on the alignment of homologous protein sequences. 
Meanwhile, PolyPhen-2 (Polymorphism Phenotyping v2) employs a combination of sequence and structural 
information to classify variants as benign or probably damaging4. SIFT (Sorting Intolerant From Tolerant) oper-
ates by considering the degree of conservation of amino acid residues in sequence alignments derived from 
closely related sequences to predict whether an amino acid substitution affects protein function5. While these 
tools have undeniably advanced our understanding of mutation pathogenicity, they also underscore the com-
plexity of the task and highlight the need for continuous refinement in the face of rapidly accumulating genomic 
data. Newer tools for evaluating the pathogenicity of missense mutations were created. MVP (Missense Variant 
Pathogenicity prediction) has gained attention for its sophisticated integration of multiple features related to 
genetic variation6. MetaSVM is an ensemble method that merges the outputs of various tools using support vec-
tor machines to consolidate pathogenicity prediction7. M-CAP (Mendelian Clinically Applicable Pathogenicity) 
stands out for its high specificity in distinguishing disease-associated variants from neutral ones8. VESPA, the 
Variant Effect Scoring Prediction Algorithm, is based on embeddings of a protein language model, which cap-
tures nuanced relationships between amino acid residues, allowing for a more refined and context-aware pre-
diction of variant impacts9.
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AlphaMissense machine learning, developed recently by DeepMind, can predict the pathogenicity of mis-
sense variants and stands at the frontier of missense variant pathogenicity prediction10. Importantly, it lever-
ages the structural prediction capabilities of AlphaFold11 to analyze these variants. To potentially enhance the 
precision of missense variant pathogenicity insights, AlphaMissense evolved the field by merging sophisticated 
machine learning with structural biology. Moreover, AlphaMissense aims to tackle the challenge of interpreting 
the vast number of missense variants in the human genome, many of which have unclear clinical significance. It 
holds the promise of revolutionizing the understanding and diagnosis of genetic diseases by classifying missense 
variants as likely benign or likely pathogenic10.

While the conception of AlphaMissense represents a commendable stride, defined by its intricate design 
and advanced methodologies, there remain gaps in our understanding of its performance on selected groups 
of proteins or individual proteins. In particular, a pivotal concern arises from the specificities of its missense 
mutation predictions and the limited accessibility to its dataset. Whereas there are initiatives to make the data 
accessible through R and Python tools12–16, these require a certain level of computational skills, thus significantly 
restricting the user base. Addressing these voids, we assessed AlphaMissense performance on different datasets 
using ClinVar data.

Results
Performance of AlphaMissense across diverse protein groups in relation to ClinVar data. The 
performance of AlphaMissense may exhibit variability across different protein types, necessitating careful scru-
tiny when analyzing target proteins. We evaluated AlphaMissense’s efficiency across a range of protein groups, 
choosing single nucleotide variants from ClinVar as our benchmark. While ClinVar is a valuable resource, it has 
its shortcomings. For instance, it may disproportionately represent genes under intensive study while under-
representing highly pathogenic mutations due to the fact that individuals harboring them might not survive to 
birth. Additionally, heterozygotes also make it challenging to draw conclusions about the effects of mutations. For 
our analysis, we juxtaposed all benign and pathogenic missense mutations rated with at least one star in ClinVar 
against AlphaMissense predictions for proteins in our datasets. Only genes with corresponding ClinVar entries 
were considered. Subsequently, we derived precision (position predictive value, PPV), recall (true positive rate, 
TPR), F1 score, aucROC, and Matthew’s Correlation Coefficient (MCC) (Table 1). In general, the calculated 
statistical measures were high for all the groups studied. Most importantly, MCC exceeded 0.6 for all but two 
groups, with low values possibly stemming from sparse input data for MemMoRFs and compromised ClinVar 
data quality, especially for CFTR. We also determined the frequency of likely benign and pathogenic mutations in 
ClinVar relative to protein length (Table 1).

Our initial analysis centered on mitochondrial proteins of bacterial origin. Given the unique sequence attrib-
utes of these proteins, prediction biases were anticipated. Intriguingly, the pathogenic variation frequency for 

n(protein) n(mutation) PPV TPR F1 aucROC MCC f(CV,benign) f(CV,pathogenic) f(AM,benign) f(AM,pathogenic)

ALL 11,486 107,681 0.829 0.776 0.802 0.870 0.697 0.009 0.005 3.425 1.713

MITO 299 2,970 0.804 0.874 0.837 0.888 0.702 0.011 0.010 3.085 2.039

HK 1,011 8,329 0.878 0.801 0.838 0.861 0.714 0.008 0.006 2.899 2.285

SOL 7,938 73,816 0.831 0.746 0.786 0.867 0.686 0.009 0.004 3.484 1.755

IBS 138 55 0.895 0.944 0.919 0.890 0.755 0.340 0.760 1.800 3.880

MemMoRF 35 21 0.462 1.000 0.632 0.846 0.496 0.381 0.619 2.286 2.619

HTP85 1,653 16,015 0.815 0.855 0.834 0.872 0.704 0.009 0.007 3.352 1.762

HTP85 – TM 1,653 1,997 0.895 0.900 0.898 0.872 0.745 0.453 0.683 2.127 3.045

HTP85 – nonTM 1,653 14,018 0.799 0.845 0.822 0.870 0.694 0.623 0.471 3.336 1.881

GPCR 299 1,696 0.802 0.651 0.719 0.871 0.631 0.009 0.003 3.573 1.647

ABC 42 1,557 0.770 0.948 0.850 0.882 0.646 0.009 0.019 3.370 1.787

CFTR 1 207 0.884 1.000 0.939 0.975 0.478 0.005 0.134 3.289 1.776

CFTR (CFTR2) 1 119 0.961 0.961 0.961 0.852 0.725 0.011 0.069 3.289 1.776

lowAF 12 327 0.828 0.358 0.500 0.831 0.481 0.022 0.002 2.466 1.952

lowAF-pLDDT50 12 126 0.828 0.571 0.676 0.819 0.573 0.010 0.003 1.843 2.595

SOL-pLDDT50 7,938 44,045 0.832 0.785 0.808 0.843 0.660 0.007 0.005 2.825 2.333

Table 1. AlphaMissense performance on proteins sets, benchmarked with ClinVar. n(protein): number of 
proteins with associated ClinVar entries, n(mutations): number of missense mutations from ClinVar SNVss 
with at least one star, for the given set of proteins, PPV: positive predictive value, TPR: true positive rate, 
aucROC: Area Under the Receiver Operating Characteristic Curve, MCC: Matthews’s correlation coefficient, 
f(CV|AM, benign|pathogenic): the number of benign and pathogenic missense mutations from ClinVar (CV) 
SNV data and from AlphaMissense (AM) predictions was normalized to the number of amino acids (summed 
length of proteins) for each protein set, MITO: mitochondrial, HK: housekeeping, SOL: soluble, IBS: interfacial 
binding site, HTP85: Proteins in the Human Transmembrane Proteome with at least a confidence score of 85, 
TM: transmembrane region only, CFTR2: CFTR2 database entries used for comparison, lowAF: low quality 
AlphaFold structures, -pLDDT50: without residues with a pLDDT score lower than 50.
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these proteins was higher than that of the entire human protein ensemble. The important cellular function of 
these proteins in energy balance might hint their role as housekeeping genes. Drawing from a specific database 
(https://housekeeping.unicamp.br)17, we cross-referenced 1,011 housekeeping genes with 299 mitochondrial 
genes from our collection and only a modest overlap of 98 genes was observed. The anticipated elevation in 
pathogenic mutation frequency was evident in the housekeeping gene dataset.

Mutation frequencies and AlphaMissense efficiency on transmembrane (TM) proteins were also assessed. 
We segregated residues into TM and non-TM subsets using the Human Transmembrane Proteome database18. 
Counterintuitively, AlphaMissense performed better on TM regions (88% correct and 6% failed predictions ver-
sus 85% and 8% for soluble regions, respectively; Table 1 and Fig. 1a,b). This is unexpected, since hydrophobicity 
reduces sequence variance thus evolutionary insights from sequence alignments. However, the spatial con-
straints of transmembrane domains lacking intrinsically disordered regions might boost the AlphaFold-based 
AlphaMissense predictions19. Remarkably, pathogenic mutations were more prevalent in TM domains than 
benign ones (Table 1).

Then we focused on specific membrane protein subsets. While a surge in pathogenic mutations for GPCRs 
in ClinVar was anticipated, this was not observed. In contrast, ABC proteins manifested elevated pathogenic 
mutation frequencies in the ClinVar database. Such disparities might be the result of the disease-associated spe-
cific protein classes or research biases. Importantly, type and quality of data can profoundly impact these types 
of analyses. For instance, when juxtaposing AlphaMissense’s predictions against ClinVar data for the CFTR/
ABCC7 protein, benign mutations were infrequent, whereas pathogenic mutations predominated. The MCC for 
CFTR ClinVar/AlphaMissesnse comparison was low (0.478).

Membrane-interacting protein residues were also investigated. One dataset included interfacial bind-
ing site (IBS) residues20 while the other contained membrane molecular recognition features (MemMoRFs; 
lipid-interacting disordered regions)21. For IBS residues, pathogenic mutations were approximately twice 
as frequent as benign ones (0.760 vs. 0.340), likely reflecting the functional significance of these residues. 
Similar trends were evident for the MemMoRF set, although it’s crucial to recognize the limited sample size 
for this category that might explain the diminished MCC when comparing ClinVar and AlphaMissense out-
comes. Moreover, the intrinsic disorder and low sequence conservation of these regions might also influence 
AlphaMissense’s predictive power on these proteins10.

Finally, the potential source of low MCC values were investigated. In the case of CFTR, we tested 
AlphaMissense predictions against a gold standard CFTR mutation database, CFTR2 (The Clinical and 
Functional TRanslation of CFTR (CFTR2); available at http://cftr2.org). The CFTR2 database exhibited benign 
mutation frequencies comparable to other groups but a marked increase in pathogenic mutations. The cal-
culated MCC with this benchmark set was one of the highest (0.725) compared to any of the other protein 
groups. We assumed that the very low MCC for MemMoRF groups may have caused by the high prevalence 
of disordered residues in these proteins. Because of the small size of this dataset we tested this possibility on 
soluble proteins, by excluding those residues from the calculations, which residues exhibit a pLDDT score lower 
than 50 in AlphaFold structures as a proxy for intrinsically disordered regions22. A small increase was observed 
for PPV, TPR, and F1, but not for rocAUC and MCC values (SOL-pLDDT50 in Table 1) when compared to 
all soluble proteins. Therefore, we assumed that low results of proteins with MemMoRF may have arisen from 
the AlphaFold’s capabilities for predicting their structures, since the MemMoRF containing protein set involve 
several single-pass, bitopic transmembrane proteins. Therefore, we indirectly investigated this possibility, and 
used a transmembrane protein set with failed AlphaFold predictions23, which group of proteins resulted also 
very low MCC scores (lowAF in Table 1). Interestingly, excluding residues with a pLDDT score lower than 50 
(lowAF-pLDDT50 in Table 1) increased the TPR, F1, and MCC scores. The latter score for this set became 0.573.

Fig. 1 Distribution of AlphaMissense predictions in transmembrane (a) and soluble regions (b) of TM proteins. 
Transmembrane and soluble parts were determined for HTP entries with a confidence score higher than 85. 
Benign and pathogenic AlphaMissense predictions for SNVs present in ClinVar were collected and split into 
true and false categories for plotting. Ambiguous AlphaMissense predictions (6% and 7% for TM and soluble 
regions, respectively) were not included.
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Variability in AlphaMissense predictions across different groups of proteins. The observed dif-
ferences in True Positive Rate (TPR) and F1 scores implied that the distribution of benign and pathogenic muta-
tions is not uniform across protein groups. To gain a deeper insight and understand AlphaMissense’s predictive 
properties, we investigated the frequency and distribution of its SNV predictions across various protein categories 
(Table 1). Typically, benign mutations were more frequent, with values hovering between 3 to 3.5, as opposed to 
pathogenic mutations, which ranged from approx. 1.5 to 2. Given that AlphaMissense predictions cover all possi-
ble missense mutations, not biased by human issues, it is reasonable to deduce that only about 30–35% of the pos-
sible human missense mutations are pathogenic. A few of our protein sets deviated from this trend. Housekeeping 
genes displayed slightly lower benign and higher pathogenic mutation frequencies. Both the IBS dataset and the 
transmembrane regions of transmembrane proteins demonstrated a large reduction in benign and an increase in 
pathogenic mutation frequencies. This elevated pathogenic frequency in the latter two datasets likely stems from 
the inclusion of functionally critical sites, which are more susceptible to mutations.

We next examined whether the reverse mutations demonstrated similar average AlphaMissense scores. For 
each variation, we calculated the mean scores and paired them with their reverse counterpart for visualization. 
We highlighted variation pairs that showed a difference of at least 0.2 in their average scores (Fig. 2a). The path-
ogenicity labels of three pairs are changed from pathogenic to benign (highlighted by asterisks). The contrast-
ing mean values of the Cys/Ser mutation, categorized as likely-pathogenic, and the Ser/Cys, which is deemed 
likely-benign, can be rationalized based on amino acid properties and structural implications. Cysteine plays a 
pivotal structural role, particularly in forming disulfide bridges. In a simplified form, this makes the replacement 
of Serine with Cysteine more tolerable than the other way around, as Serine cannot replicate Cysteine’s capability 
in forming disulfide bridges. Accordingly, Cys/Ser pathogenic mutation frequency (0.011) is 5.5 times higher 
than Ser/Cys pathogenic frequency (0.002) in the ClinVar dataset. The asymmetry of the Leu/Pro replacement 
can be understood as Pro restricts the available conformational space. The greater disruptiveness of the Leu/Ser 
replacement compared to Ser/Leu can be attributed to the structural importance of the hydrophobic Leucine, 
which has a high alpha-helix propensity, in contrast to the hydrophilic Serine that often occurs on protein 
surfaces24.

We also analyzed how the mean scores of all variations correlated with the symmetric BLOSUM62 matrix, 
a representation derived from amino acid substitution frequencies based on sequence alignments. BLOSUM62 
and mean AlphaMissense scores calculated from all possible amino acid substitutions correlated well (corre-
lation coefficient: −0.678, p = 6.39 × 10−27, Fig. 2b). Interestingly, numerous average scores for less favorable 
substitutions fell below the likely-pathogenic threshold set by AlphaMissense. This trend may arise from the 
higher ratio of variations predicted as likely-benign. Notably, the averages for Cys/Ser, Pro/Thr, and the Met/
Thr variations, which have a BLOSUM62 substitution score of −1, lie slightly below 0.34, placing them in the 
likely-benign category (Fig. 2b).

Analyzing functional hotspots using AlphaMissense - CFTR as an example. We assessed the 
AlphaMissense predictions for the CFTR protein, which attracted substantial attention within the scientific com-
munity, primarily because of its association with cystic fibrosis25. For our study, we relied on the CFTR2 database 
(CFTR2_7April2023.xlsx, https://cftr2.org) to annotate mutations. Impressively, out of the 102 pathogenic and 
20 benign mutations listed in the CFTR2 database, AlphaMissense mispredicted only four pathogenic (I601F, 
A613T, I1234V, and V1240G with scores 0.49, 0.39, 0.08, and 0.5637) and four benign (F508C, L997F, T1053I, 
and R1162L with scores 0.87, 0.74, 0.35, and 0.89) mutations to the opposite or ambiguous category. Performance 
metrics for AlphaMissence on CFTR against ClinVar and CFTR2 databases are listed in Table 1 and correspond-
ing false predictions are shown in Fig. 3a utilizing the AlphaFold-predicted structure (AF-P13569-F1-AM_v4)26, 

Fig. 2 Symmetries of AlphaMissense amino acid substitutions. (a) Mean AlphaMissense scores for variations, 
which display a minimum score difference of 0.2 when compared to the reverse amino acid change. Asterisks 
mark those changes which get the opposite label (benign/pathogenic) in the case of reverse change. (b) Mean 
AlphaMissence scores for each variation grouped by their BLOSUM62 score. Dashed and dashed dotted 
lines indicate the cutoffs of the ambiguous AlphaMissense predictions. Solid back line was fitted (r = −0.678, 
p = 6.39 × 10−27). Orange circles: amino acid substitutions possible with single nucleotide change; blue circles: 
all other substitutions.
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demonstrating no clusterization of false predictions in specific structural areas, such as interfaces or ATP binding 
sites. The particular AlphaMissense scores of the 122 values for the CFTR2 mutations are visualized in Fig. 3b.

For spatial representation of these mutations we used the AlphaFold-predicted CFTR structure colored 
according the mean AlphaMissense score calculated for SNVs, since multiple nucleotide changes result in more 
pathogenic amino acid substitutions (Fig. 2b) and mask valuable information (Fig. 4a,b). The ATP binding sites 
of CFTR, especially, warrant attention. The formation of an ATP binding site is an intricate interplay between 
one Walker A motif from a Nucleotide Binding Domain (NBD) and a signature motif from the opposite NBD. 
In comparison to the functional site-2, both the count of CFTR2-sourced mutations and the AlphaMissense 
scores were observed to be lesser at the site1 (15 versus 3 and 0.584 versus 0.493, respectively; Fig. 4b,c), which 
site is degenerate, rendering it incapable of ATP hydrolysis27. The difference in the mean AlphaMissense scores 
decreased (0.725 versus 0.675) when calculated not only from possible SNVs but from all amino acid variations. 
The structural landscape around the F508 residue provides more insight. The CH4 coupling helix, which inter-
acts with the F508 residue, presents a greater number of both predicted and CFTR2-based mutations in compar-
ison to CH2, which is a structural counterpart of CH4 (Fig. 4d,e). No CFTR2 mutations are present in the other 
coupling helices. CH1, 2, 3, and 4 mean AlphaMissense scores are 0.336, 0.411, 0.136, and 0.648, respectively 
(0.478, 0.598, 0.237, and 0.773 when calculated from all possible amino acid variations). Interestingly, CH1 
was found to be devoid of CFTR2 mutations, but in vitro experiments in this region revealed that the R170G 
mutation, which has a likely-benign AlphaMissense label, impairs the domain-domain assembly and would be 
pathogenic if harbored by an individual28.

The F508 residue is not only an epicenter for deleterious mutations but has also been extensively researched. 
While CFTR2 lists no additional pathogenic mutations for this residue, a range of experimental works have delved 
into substituting the Phe with all the other nineteen possible amino acids to discern the impacts on the func-
tional expression of CFTR29. All F508 substitution were predicted as likely pathogenic in the AlphaMissense 
dataset. However, experimental data suggests that apart from the F508C variant the F508V mutation might also 
be functionally permissive29, deviating from AlphaMissense’s likely-pathogenic prediction. Two other variants, 
labeled as “unknown” or of “varying significance” in the CFTR2 database, show discrepancies between in vitro 
experiments and AlphaMissense predictions. Specifically, the F1052V mutation, predicted by AlphaMissense as 
likely-pathogenic, demonstrates a functional expression, with 57% mature protein form and 60% functionality 
relative to the wild type30. Conversely, the S912L variant, predicted as benign, appears to be a potential false nega-
tive AM prediction. This was based on displayed CF phenotypes in individuals with S912L CFTR31 which may be 
explained by its substantially reduced function, at 16% of the wild type, despite an expression level nearly on par at 
92% relative to the wild type30. However, earlier research suggests that the S912L variant should be viewed as neu-
tral in isolation, and highlights how complex alleles contribute to the broad phenotypic variability seen in CF32,33.

Discussion
We embarked on an in-depth analysis of AlphaMissense predictions, ranging from broad protein groups down 
to the individual CFTR protein. Our objective was to gain insights that would aid the interpretation of predic-
tions for specific target proteins, since heterogeneous performance on different protein groups can be expected. 
For benchmarking purposes, we turned to ClinVar, given its substantial repository of curated and reviewed 

Fig. 3 AlphaMissense predictions for CFTR. (a) False predictions are shown in the context of the structure 
(AF-P13569-F1-AM_v4). Light gray: TMD1; yellow: NBD1; gray: TMD2; orange: NBD2; blue spheres: false 
positive against mutations from ClinVar; dark blue spheres: false positive against mutations from both ClinVar 
and CFTR2 databases; purple spheres: false negative from CFTR2. (b) Histograms of AlphaMissense scores for 
benign (n = 20) and pathogenic (n = 102) mutations from the CFTR2 database.
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entries. Remarkably, AlphaMissense exhibited consistent performance across various protein categories, evi-
denced by an MCC value exceeding 0.6 (Table 1). While these falsified expectations for degraded performance in 
the case of some protein groups, exceptions arose in scenarios where either the volume of benchmark data was 
sparse or when the quality of the data was lower. These cases included MemMoRFs and ClinVar’s CFTR data, 
respectively. Our results indicate AlphaMissense performing well when comparing to the CFTR2 database and 
suggest that AlphaMissense performance likely performs better than expected based on benchmarks calculated 

Fig. 4 Distribution of AlphaMissense scores for CFTR. (a) AlphaFold structure of CFTR (AF-P13569-
F1-AM_v4) colored by mean AlphaMissense scores calculated for all possible amino acid changes. (b) The same 
structure was colored by mean AlphaMissense scores calculated for SNVs. Blue: 0–0.340, gray: 0.340–0.564, 
pink: 0.564–0.780, red: 0.78–1. Spheres represent pathogenic mutations from CFTR2. (c,d) The degenerate, 
non-catalytic ATP-binding Site-1 and catalytic Site-2. Residues 461–472 and 1346–1362 were highlighted for 
Site-1 structural elements and residues 548–564 and 1247–1258 for Site-2. (e,f) Pathogenic mutations and mean 
scores at the NBD/TMD interfaces. TMD: transmembrane domains, ICL: intracellular loops, NBD: nucleotide 
binding domains, CL: cytoplasmic loops, sticks: F508 and R170. Coloring scheme of all structures is the same.
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from ClinVar. Our assessment based on CFTR2 is in contrast with the study of McDonald et al.31, whose dif-
ferences likely arise from our exclusion of entries with unknown consequences and ambiguous AlphaMissense 
predictions. The discrepancies observed, like the S912L CFTR mutation30–33, between AlphaMissense predic-
tions and studies on CFTR are not unexpected, especially when the mutations in question are part of com-
plex alleles in cystic fibrosis or other diseases. We also emphasize that AlphaFold’s pLDDT scores can provide 
insights into AlphaMissense performance as the quality of the structures may further indicate the reliability of 
AlphaMissense predictions (lowAF in Table 1).

Both within ClinVar and the AlphaMissense SNV predictions, benign mutations typically outnumbered 
their pathogenic counterparts by a factor of approximately two, in several protein groups. Intriguing deviations 
from this trend were noted in groups such as mitochondrial proteins, housekeeping genes, transmembrane 
regions of membrane proteins, and IBS residues that pattern aligns with expectations. The IBS dataset, with 
its notably high pathogenic frequency, exclusively contains functional positions (Table 1). The pathogenicity 
of CFTR coupling helices were also predicted with remarkable congruency with CFTR2 data (Fig. 4d,e). These 
observations accentuate the potential of AlphaMissense predictions as a valuable tool for aiding the identifica-
tion of functionally crucial sites. To facilitate hotspot detection and access to AlphaMissense data, we established 
a dedicated web resource available at https://alphamissense.hegelab.org, which also provides structure files with 
mapped AlphaMissense scores for visualization, e.g. in PyMOL with our coloring plugin coloram.py, for facilitat-
ing local analysis26. These enhancements crucially aid in mutational hotspot detection, paving the way for more 
detailed and user-friendly analyses.

Methods
Datasets. The primary AlphaMissence datasets, AlphaMissense_hg38.tsv.gz and AlphaMissense_aa_sub-
stitutions.tsv.gz, was sourced from Zenodo (https://doi.org/10.5281/zenodo.8208688)34. This data contains all 
predictions with all possible missense variations in the human proteome. For our data analysis, we employed 
PostgreSQL 12 (https://www.postgresql.org) and Python scripts, which are accessible on Zenodo (https://doi.
org/10.5281/zenodo.10255502)26; refer to README.md and script help options for guidance). We used the load.
py script to input data from AlphaMissense_hg38.tsv into the database. To cross-reference ClinVar and UniProt 
IDs, we executed ‘load_amnames.py’ (using all_acc.pkl file from the clinvar/getids.ipynb IPython notebook and 
‘clinvar_result.txt’). Average AlphaMissense scores for each residue were calculated and saved in the database via 
the load_amspots.py script.

Missense data was retrieved from ClinVar35 as of 26th September 2023 and made available at Zenodo (clin-
var_result.txt)26. The dataset representing the human proteome was obtained from UniProt Release 2023_04, 
specifically from the file UP000005640_9606.dat (reference proteomes from https://www.uniprot.org/help/
downloads)36. This dataset proved instrumental in mapping Ensemble IDs from ClinVar to UniProt accession 
numbers since the inherent online ID mapping tool at UniProt matched only a very low number of entries.

Human protein structures were downloaded from AlphaFoldDB (version 4; https://alphafold.ebi.ac.uk/
download#proteomes-section)37. The gen_pdb_occupancy.py script was used to insert the mean AlphaMissense 
score for each residue into the occupancy and B factor columns of structure files. All of these structures are 
available at Zenodo as a zip file for bulk download. Individual structure files can be accessed manually or pro-
grammatically as https://alphamissense.hegelab.org/pdb/AF-{UNIPROT_ACC}-F1-AM_v4.pdb.

Data for comparing AlphaMissense performance on different groups of proteins presented in Table 1 were 
collected as follows. Mitochondrial (MITO) Protein Data was procured from MitoCharta (https://www.broadin-
stitute.org/mitocarta/mitocarta30-inventory-mammalian-mitochondrial-proteins-and-pathways)38. The down-
loaded Human.MitoCarta3.0.xls file was processed with mito/get_accs.ipynb resulting in the list of UniProt 
ACCs (mito/mito-accs.pkl). Housekeeping (HK) genes were collected from Housekeeping_GenesHuman 
(https://housekeeping.unicamp.br17) using hk/get_accs.ipynb, resulting in hk-accs.pkl. Proteins were consid-
ered soluble (SOL; htp/sol-accs.pkl generated by htp/get_accs_sol.py) if they were not listed in the Human 
Transmembrane Proteome (HTP; https://htp.unitmp.org; htp_all.xml, version d.2.0). The boundaries of mem-
brane regions in transmembrane proteins were sourced from htp_all.xml and filtered to include only entries 
boasting a quality score greater than 85 to maintain the integrity and accuracy of our analyses18 (get_accs_htp85.
ipynb produced htp85-accs.pkl). TM (HTP85-TM) and non-TM (HTP85-nonTM) regions were handled by our 
htp/htp.py library. HTP entries omitted from the TM analysis were not incorporated into the dataset encom-
passing soluble proteins. Since this criterion resulted in a sparse representation of high-quality predictions for 
ABC proteins, we supplemented the data with TM boundaries from our ABCM2 database (http://abcm2.hege-
lab.org; abc-accs.pkl and abcm-tm-boundaries.pkl)39,40. GPCR data were downloaded from https://gpcrdb.org/
services/receptorlist/ (get_receptorlist.py produced gpcr-accs.pkl output). The CF2 database were accessed for 
high quality data on CFTR mutations. CFTR2_7April2023.xlsx file was processed with process_cf2.py to gener-
ate cf-muts.pkl. IBS data was downloaded as https://github.com/reuter-group/pepr2ds/blob/main/Ressources/
datasets/PePr2DS.csv.zip and processed in the select_ibs_residues.ipynb notebook. MemMoRF data was 
extracted from our database (https://memmorf.hegelab.org, memmorf_extract_20220725.tsv, mmorf-residues.
pkl). UniProt identifieres of failed AlphaFold TM protein predictions were manually extracted from Jambrich 
et al.23 and stored in a Python list (lowaf-accs.pkl). Datasets with excluded residues with pLDDT lower than 50 
(lowAF-pLDDT50 and SOL-pLDDT50) were not generated explicitly. These residues were filtered within the 
analysis script (see below).

Analysis. All data analyses were carried out using Python-based tools to ensure flexibility and scalability. 
To facilitate a lightweight and seamless interaction with the data stored in PostgreSQL 12, we employed the 
SQLalchemy 2.0.21 library41 renowned for its capability to provide a high-level, Pythonic interface to relational 
databases. Matplotlib 3.7.0 was used for generating plots that delineate various aspects of the data42. Structural 
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visualization of proteins was done using PyMOL (version 2.4, Schrödinger, LLC.), a molecular graphics sys-
tem with an embedded Python interpreter. To bridge the predictions of AlphaMissense with these structures, 
MDAnalysis 2.4.2 was employed43. This Python toolkit allowed us to incorporate the AlphaMissense scores 
directly into the PDB files, specifically inserting them into both the occupancy and B-factor columns.

The ClinVar entries and AlphaMissense predictions of the above protein groups were compared using ana_
clinvar_set.py, ana_clinvar_resi.py, and ana_clinvar_set_plddt.py when full protein sequences, specific residues 
(e.g. IBS, MemMoRF, and TM residues), and residues with high pLDDT scores were analyzed, respectively. Since 
aucROC calculation requires not only a contingency table but all the true labels and predictions, aucROC was 
calculated with separate scripts named calc_*_aucroc.py. The outputs were collected in an Excel table (table1.
xlsx).

The AlphaMissense scores were averaged for all possible amino acid changes for each residue in the full data-
set using the calc_revfreq.py script (output is stored in aaaa_revfreq.pkl). The AlphaMissense scores were also 
averaged for pairwise amino acid changes (aaa_freq.pkl) to compare them with the BLOSUM62 substitution 
matrix. The substitution matrix was taken from the BioPython 1.81 package (https://biopython.org/docs/latest/
api/Bio.Align.substitution_matrices.html). The aa_substitutions.ipynb notebook contains the code for analysis 
including linear regression and plotting the panels of Fig. 1.

Distribution of AlphaMissense scores for CFTR benign and pathogenic variations listed in the CFTR2 
database were calculated and plotted (Fig. 2a) with the ana_mutspreds.ipynb notebook. The CFTR structure 
AF-P13569-F1-AM_v4.pdb was visualized in PyMOL and colored using coloram.py script (Fig. 2b). Residues 
indicated pathogenic in the ClinVar database are displayed with spheres using the show_clinvar_patho.py script. 
AlphaMissense mean values referenced in the main text for ATP binding sites (Fig. 2c) and for NBD/TMD 
interfaces (Fig. 2c).

were calculated using the atpbsites-mean.py and interfaces-mean.py scripts, respectively. ATP binding sites 
and coupling helices in these panels were highlighted by setting the cartoon_transparency to 0.5 for all other 
parts of the structure.

Data availability
Both input and output data are available at Zenodo (https://doi.org/10.5281/zenodo.10023059)26. The files are 
organized into specific directories (e.g. according to datasets) and named in the Methods section and in the 
README.md file. AFwAM-pdb.tar contains compressed AlphaFold structures with AlphaMissense scores from 
SNVs in their occupancy and B factor columns. AFwAM-pdb-qb.tar includes structures with scores from SNVs 
and scores from all possible amino acid replacements in the B factor and occupancy columns, respectively.

Code availability
Python scripts and IPython notebooks can be accessed at Zenodo (https://doi.org/10.5281/zenodo.10023059)26. 
These files also include scripts, which were used to generate the data in Table 1 and to create Figs. 1, 2. They are 
stored along with data files in the pub.zip archive and listed in detail in the Methods section and the README.
md file. The coloram.py script is a PyMOL plugin for coloring structures in PyMOL.
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