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Studies of quadruped animal motion help us to identify diseases, understand behavior and unravel 
the mechanics behind gaits in animals. the horse is likely the best-studied animal in this aspect, but 
data capture is challenging and time-consuming. Computer vision techniques improve animal motion 
extraction, but the development relies on reference datasets, which are scarce, not open-access and 
often provide data from only a few anatomical landmarks. addressing this data gap, we introduce 
PFERD, a video and 3D marker motion dataset from horses using a full-body set-up of densely placed 
over 100 skin-attached markers and synchronized videos from ten camera angles. Five horses of diverse 
conformations provide data for various motions from basic poses (eg. walking, trotting) to advanced 
motions (eg. rearing, kicking). We further express the 3D motions with current techniques and a 3D 
parameterized model, the hSMAL model, establishing a baseline for 3D horse markerless motion 
capture. PFERD enables advanced biomechanical studies and provides a resource of ground truth data 
for the methodological development of markerless motion capture.

Background & Summary
Over the years, capturing and modeling the articulated motion of humans and animals has been a research topic 
across different disciplines, ranging from medicine1 to robotics2 to computer graphics3. Humans and animals 
integrate verbal communication with body posture and movements, and understanding body language would 
greatly advance the design of intelligent interactive artificial systems. Detecting anomalies in articulated motion4 
can serve as a crucial tool for early health intervention, helping to mitigate potential long-term injuries or dis-
ease, hence improving the subject’s quality and length of life. Systems able to synthesize realistic motion can be 
a useful tool for artists to create characters for games and virtual worlds5. Recently, generative AI methods have 
been wildly trained to synthesize human motion5–7.

We focus our study on horses. Horses have historical and cultural significance in most human societies 
and are one of the oldest domesticated mammals. They have played a significant role in human history, from 
transportation to warfare, from agriculture to culture, from work to equestrian sports. Their significance is 
related to their unique bodily strength and speed, made possible by an efficient quadruped locomotor system. 
This body system has evolved to have bulky muscles close to the upper body, proportionally long limbs that act 
like pogo-sticks thanks to specialized tendons and a mass reduction of the lower limb and foot that effectively 
reduces inertia. This optimized locomotor apparatus is however susceptible to injuries as it operates under load-
ing conditions close to its point of failure8. Thus, studying the motions of horses has been the focus of researchers 
in different fields such as robotics9,10, biology11,12 and veterinary medicine13,14.

Marker-based motion capture systems are widely used to capture complex human and animal motions 
by recording the positions of wearable markers placed on the body in an indoor environment. Marker-based 
motion capture has demonstrated its significance for motion study15–17 and utility across a wide array of appli-
cations14,18. While marker-based solutions are in need of physical contact with the animal and not scalable to 
in-the-wild scenarios, computer vision techniques have been developed to implement markerless motion cap-
ture, where the articulated motion of a skeleton is inferred from visual data19–29. With images and video as the 
input, straightforward systems provide the image coordinates of skeleton joints as solutions19–21. This is not suffi-
cient for many high-quality downstream applications, where a solution independent from the capture geometry 
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is often required. In these cases, a 3D articulated pose, given as the set of 3D rotation angles of skeleton joints, 
is preferable.

3D markerless motion capture for humans is a novel technology, accurate enough to be used in many appli-
cations. In particular, monocular markerless capture, where the 3D pose of the subject is inferred from just one 
camera, allows designing applications that can exploit low-cost capture devices like smartphones. The basis 
of these achievements is data-driven methods that leverage large amounts of captured human data. While 2D 
methods use data in the form of large image datasets with body joint annotations, which are easy to obtain, 
the data capture task for learning systems outputting 3D poses is significantly more challenging. Moreover, 
estimating 3D pose from a single view is ambiguous. The problem can be approached by learning explicit 3D 
pose priors, that constrain the ambiguous solutions to the more likely ones, or learning implicit 3D priors from 
annotated datasets. The first solution makes use of decoupled data, usually image or video datasets of humans 
and 2D joints, which are also used for 2D pose estimation, and datasets of human motions. The second solution 
requires large datasets of images and corresponding 3D poses. These datasets can be obtained at a large scale 
but only synthetically. Notably, the synthetic dataset generation still requires human articulated motion data. 
However, relying solely on the priors of human articulated motion is insufficient to achieve markerless motion 
capture. Seen from the camera, a long leg pointed to the camera can have the same appearance as a shorter leg 
bent with a different angle. To deal with these ambiguities, a 3D shape prior, encoding the correlation between 
the body segment proportions, is required.

In the last few years, we have seen a tremendous advance in 3D markerless motion capture for humans. This 
has been facilitated by the availability of the SMPL (Skinned Multi Person Linear) model30, a 3D parametric 
model, learned from thousands of 3D scans of people, encoding articulated human shape, and the AMASS data-
set31, a large dataset of human articulated motion, captured with mocap systems, expressed in the parameters 
space of the SMPL model. Together, SMPL and AMASS incorporate knowledge about how people appear in 
shape and how they move7,32–37.

Animal motion capture has been making strides in recent years but is still behind human motion studies. 
Analogous to the SMPL model, the SMAL (Skinned Multi Animal Linear) model38, learned from 41 toy scans, 
encodes articulated shapes of quadruped animals. Versions of the SMAL model have been made specifically for 
dogs39,40 and horses41. Nonetheless, the data collection on animals is more challenging compared to humans, 
since it is more difficult to instruct them to perform specific motions and to keep them in fragile indoor envi-
ronments. Existing animal mocap datasets prefer docile and small animals42–45, but are constrained by pose 
variability and lack the motion diversity that AMASS offers. This results in a paucity of comprehensive animal 
motion datasets for data-driven motion study, particularly for larger animals, like horses. In the equine veter-
inary field, motion capture has demonstrated its potential in clinic applications for lameness diagnostics46,47. 
However, within this field, the focus is often limited to capture of locomotion data from a limited number of 
anatomical landmarks48–50 due to difficulty and time constrain in placing markers on the horse’s body. This may 
lead to less analysis and a lesser understanding of full-body motions.

To bridge the gap, we introduce PFERD51, a dense motion capture dataset of horses of diverse conformation 
and poses with rich 3D horse articulated motion data. Recorded in an indoor riding arena in Sweden, using an 
optical motion capture system from the company Qualisys, the dataset includes five horses of different sizes 
and breeds, to ensure shape diversity (Fig. 1). Over 100 reflective markers were placed on each horse, covering 
both skeletal structures and soft tissues, to accurately capture motions. The dataset covers a wide variation of 
horse motions, guided by human instructors, ranging from basic activities like standing, walking, and trot-
ting, to complex motions like the piaffe, the passage, the pirouett, jumping, sitting as shown in Fig. 3. Two 
highly trained horses perform these advanced motions while the rest of the subjects provide common gaits and 
motions encountered in every-day horses. Furthermore, to promote the study of markerless motion capture, 
we provide multiple data types. In line with AMASS, we express 3D horse articulated motion with the hSMAL 
model41. The dataset further enriches its data diversity by including synchronized videos from ten camera views 
and corresponding 2D joints.

The PFERD dataset serves as an open resource for equine motion research and for the scientific development 
of computer vision and modeling applications that can benefit horse health and welfare and strengthen our 
understanding of horse behavior. It provides synchronized 3D data from skin-placed markers and multi-view 
2D RGB video streams. The dataset is small in terms of subject numbers, but unique thanks to the wealth of 
markers placed on the horses’ bodies as well as the subject variation in size, shape, and the rare motions that 
some of the horses perform. The dataset can be expanded given the detailed descriptions of data capture and 
model estimation procedures. With this data, we invite researchers to develop both statistical analysis and 
data-driven methods. We suggest the following tasks:

Fig. 1 Five horses with different sizes and breeds. (a) Horse No. 1. (b) Horse No. 2. (c) Horse No. 3. (d) Horse 
No. 4. (e) Horse No. 5.
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 1) Quantitative motion analysis: The diverse motions and full body marker setup allow for detailed biome-
chanical studies. The mocap data are, at the time of publication, the most marker-dense horse motion 
dataset available for research in horses. This data can help veterinary researchers to understand full body 
motions at a more detailed level than was earlier possible, and it contains unique movements that only 
highly trained horses can perform.

 2) Addressing animal-related computer vision problems: Researchers can utilize this dataset to develop novel 
computer vision models or refine existing algorithms, promoting the development of markerless motion 
capture. The 3D motion data can be further used for many graphic tasks, like the development of motion 
generative models and the improvement of 3D animatable models.

 3) Benchmarking in method evaluation through provided groundtruth data: The dataset contains precise 3D 
mocap data and multi-view RGB video, and can provide both 3D and 2D groundtruth for method evalua-
tion, helping the development of new methods for 3D pose and shape estimation. Furthermore, it enables 
benchmarking of differences against the state-of-the-art methods we apply here31,52.

Methods
In this section, the procedures used to record the data are explained. In addition, the processing of mocap data 
and 3D pose data are presented.

Study subjects. The dataset has a diversity in terms of body shape and motion. We selected five horses of dif-
ferent breeds to provide variable information on shape and size. In terms of diverse motions, all horses performed 
some basic movements, such as standing (with the head moving from side to side, up and down), moving for-
ward/backward, walking, trotting, and cantering. Two of the horses (Horse No.4 and No.5) performed advanced 
movements based on signaling ques from their owners, such as pirouetting, rearing, piaffing, kicking, jumping, 
etc. Table 1 shows the detailed characteristics of the five horses and some motions are listed in Fig. 3.

Fig. 3 Motion examples. (a) Standing. (b) Neck bending. (c) Walking. (d) Trotting. (e) Cantering. (f) Piaffing. 
(g) Rearing. (h) Kicking. (i) Jumping. (j) Lying down. (k) Sitting. (l) Lying.

Fig. 2 Recording scenario with 56 mocap cameras and ten color cameras using Qualisys system. The system 
recognizes the markers and the orange lines are connections between the markers.
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Before each subject was selected, the horse owners were introduced to the aim of data collection and 
informed about the procedures. Written informed consent was obtained from the owners, permitting the use of 
the horses’ data for research purposes. The study was non-invasive and the procedure was covered by an animal 
ethical permission No. 5.8.18-15533/2018. Written consent was provided by all humans appearing in the video 
recordings.

Experimental design. In this subsection, the description of the mocap system and marker setup are 
presented.

Motion capture system. The data were collected using Qualisys optical motion capture system on November 
26–29, 2020. The system was set up in a riding arena of approximately × m19 30  at the Equine clinic of the 
University Animal Hospital (UDS) of the Swedish University of Agricultural Sciences (SLU) in Uppsala, Sweden. 
In total 56 mocap cameras from the Qualisys system (35 Oqus_700 + cameras and 21 Arqus_A12 cameras) and 
ten RGB full HD video cameras (Miqus_Video cameras) were mounted to the walls of the arena shown in Fig. 2. 
All cameras were synchronized creating an approximate × m16 20  effective recording volume in the center of 
the arena. The capture rate of the mocap cameras was 240 Hz and the RGB videos captured by cameras were 
20,30,60 Hz, respectively, depending on the data recording.

Marker placement and attachment methods. Reflective spherical markers with a diameter of 19 mm were 
attached to the horses’ skin with double-coated adhesive tape cut in pieces of around cm2 3× . Different meth-
ods were empirically tested for the more challenging attachment markers to body parts such as the ears and the 
hooves, shown in Fig. 4.

The marker setup aimed to maximize both captures of body shape and motion and included 132 markers 
on both skeletal structure and soft tissues. Based on expert anatomical knowledge, markers were separated into 
three groups. The first group with 50 markers focuses on the precise palpation of anatomical skeletal structures 
that mark out the most important skeletal segments related to locomotion. Connecting these markers provides a 
“stick figure”, roughly representing skeletal movement from landmarks on the skin surface. We call these mark-
ers the “skeletal model”, see Fig. 5a. The second group of around 70 markers, were dispersed over the horse’s 
soft tissues, mainly covering the area of the neck, the thoraco-abdominal, and hindquarter segments. The third 
group of 12 markers were placed in groups of three on each hoof, to allow tracing of rotational motion of the 
hooves. The final full body marker setup is shown in Fig. 5b. Detailed descriptions are reported in Table 3.

Data acquisition. In this subsection, the whole procedure of data recording is explained, including mocap 
system calibration, subject preparation, and type of motion performances recorded.

Qualisys calibration. Calibration of the motion capture system was done with wand calibration, according 
to the manufacturer’s instructions. The video cameras were calibrated along with the marker cameras. For the 
first calibration, an L-shaped frame with static markers was placed in the approximate center of the capture vol-
ume to define the coordinate system. Then a calibration wand with two markers at a fixed distance was moved 
through the volume to present it to all cameras at different angles. Subsequent calibrations were done with only 
the calibration wand. The system was recalibrated before recording the first, second and fourth subject.

Study subject preparation. The fur and the hooves of horses were washed with soap water before attaching 
markers. Markers were cleaned between different trials if needed. Markers in the skeletal model were placed 
by palpating specific skeletal structures by two people with anatomical knowledge for precise positioning. The 

Fig. 4 Modified marker attachment methods. (a) Placement on the head: Markers on a soft halter and cap. (b) 
Placement on the mane: Markers with incorporated tassels. (c) Placement on the hooves: Markers with a piece 
of fabric in between the basis and marker itself. (d) Example of marker placements on the hoof.
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remaining markers were located on the body segment’s proportions using nearby skeletal markers and tape 
measure as references shown in Fig. 6. Each horse took 2-3 hours to finish all the preparations. The number of 
markers per horse (shown in Table 1) was a bit different since certain markers had to be excluded for various rea-
sons. For example, Horse No.3 was a small horse, and we had to reduce the number of markers to avoid marker 
merging, or label-swapping due to them being too close on the small body. Horse No.5 was sweating, resulting 
in markers not being attached properly, especially markers on the lower belly.

Recording sessions. During the recording session for each horse, the horse was first led to the recording arena 
by the owner and was familiarized with the recording environment. Then, the owner engaged with the horse, 
using methods such as whistling, waving the whip, and offering treats to guide the horse into performing spe-
cific motions. The movements began with fundamental actions, like standing, neck bending, moving forward 
or backward, as well as, walking, trotting and cantering. The complexity of the movements varied depending on 
the horse’s ability. For instance, Horse No.4 demonstrated more advanced movements like pirouetting, rearing, 
piaffing, passage, spanish walk and kicking, while Horse No.5 was rearing and jumping over an obstacle. The 
dataset comprised different numbers of data sequences for each of the five horses, ranging from 5 to 13, shown in 
Table 4. While most data recordings lasted approximately one minute, there were exceptions. Each data record-
ing captured more than one motion, allowing for a diverse range of horse movements.

Data processing. In this subsection, we describe the data process from Qualisys and the procedure of learn-
ing the 3D model from the mocap data using the hSMAL model and MoSh ++ .
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Fig. 5 Design marker setup (Modified figure from55). (a) Skeletal model (in blue), focusing on crucial skeletal 
segments for locomotion. (b) Final model, including skeletal model and markers on soft tissues (in red) and 
hooves (in green) over the surface.

HorseID Breed Ages (years) Gender Weight (kg) Wither height (cm) Marker Num

1 Swedish Warmblood 9 Gelding 702 178 131

2 Irish Pony 22 Gelding 378 130 132

3 Miniaure Shetland Pony 4 Gelding 110 76 120

4 Lusitano 17 Stallion 492 157 132

5 Connemara 17 Gelding 407 142 117

Table 1. Information about the five horses captured in PFERD.

Horse ID SeqNum
Total Length 
(unit: s)

Average Distance 
(unit: m)

FrameNum of 
Silhouette Subset

Average 
IOU

1 12 887 0.034 17610 0.86

2 9 720 0.032 34878 0.85

3 5 373 0.028 4478 0.79

4 13 1068 0.030 13718 0.86

5 7 420 0.029 6124 0.85

Total 46 3468 0.031 76808 0.85

Table 2. Detailed data and evaluation metrics for the five horses: includes sequence counts, total data lengths, 
and frame numbers of silhouette subsets for each horse; evaluations report average 3D distances and average IOU.
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Number Description Labels Landmarks For Marker Placement

1 Poll Centre Nuchal crest.

2 Forehead Centre Frontal bone between the eyes.

3 Temple Left/Right Zygomatic arch.

4 Cheek Left/Right Rostral part of facial crest.

5 Jaw Left/Right Ventral part at the angle of mandibula.

6 Chin Left/Right Ventral part of mandibula at the location of the tooth P2/at the chin groove.

7 Neck_1 Left/Right Wing of Atlas vertebrae.

8 Neck_2 Left/Right Transverse process of cervical vertebrae of C3.

9 Neck_3 Left/Right Transverse process of cervical vertebrae of C5.

10 Back_1 Centre Dorsal spinal process of thoracic vertebrae of TH5(6) (withers).

11 Back_2 Centre Dorsal spinal process of thoracic vertebrae of TH12.

12 Back_3 Centre Dorsal spinal process of thoracic vertebrae of TH18.

13 Back_4 Centre Dorsal spinal process of lumbar vertebrae of L4.

14 Back_5 Centre In between the two tuber sacrale.

15 Back_6 Centre Dorsal spinal process of sacral vertebrae of S5.

16 Tail_1 Centre Placed at the dorsal spinal process of the caudal vertebrae at the first third part of the distance 
from Marker15 to Marker18.

17 Tail_2 Centre Placed at the dorsal spinal process of the caudal vertebrae at the second third part of the distance 
from Marker15 to Marker18.

18 Tail_3 Centre Dorsal spinal process of the last of the caudal vertebrae (C15-C21).

19 Chestpoint Centre Dorsal part of cartilage of manubrium.

20 ShoulderBlade Left/Right Tubercle of spine of scapula.

21 ShoulderJoint Left/Right Caudal part of greater tubercle of humerus.

22 ElbowJoint Left/Right Lateral collateral ligament over the joint space of the elbow joint.

23 CarpalJoint Left/Right Ulnar carpal bone.

24 Foreleg_FetlockJoint Left/Right Lateral collateral ligament over the joint space of the fetlock joint on the fore leg.

25 Pelvis_1 Left/Right Dorsal cranial part of the coxial tuberosity of pelvis.

26 Pelvis_2 Left/Right Caudal part of the ischiatic tuberosity.

27 HipJoint Left/Right Greater trochanter of the femur.

28 StifleJoint Left/Right Lateral collateral ligament over the joint space of the stifle joint.

29 PointOfHock Left/Right Dorsal part of tuber calcaneus.

30 HockJoint Left/Right Tarsal bone IV.

31 Hindleg_FetlockJoint Left/Right Lateral collateral ligament over the joint space of the fetlock joint on the hind leg.

32 Ear_Base Left/Right Base of the ear.

33 Ear_Top Left/Right Top of the ear.

34 Ear_ Side Left/Right Lateral side of the middle part of the ear.

35 Nostril_In Left/Right Medial wing of the nostril.

36 Nostril_Out Left/Right Lateral wing of the nostril.

37 Neck_Top_1 Centre In the main dorsally on the neck of the first third part from the distance of Marker1 to Marker10.

38 Neck_Top_2 Centre In the main dorsally on the neck of the second third part from the distance of Marker1 to 
Marker10.

Continued

Fig. 6 Marker placement measurement on real horses. (a) Marker placement and corresponding proportion on 
the horse’s body. (b) A measuring tape was used for marker placement on the barrel.
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Mocap data. The motion capture data was collected using Qualisys Track Manager (QTM) version 2020.3. The 
collected 2D data were combined into 3D trajectories using the tracking algorithms in QTM, and the trajectories 
were then labeled. The labeled data has been exported to c3d and fbx format. Since markers might fall off or be 
occluded during a capture, the number of labeled trajectories might vary slightly for the same horse. In the No.8 
trial capture of Horse No.5, some miscommunication with the camera system resulted in a lot of short gaps in 
the data. Therefore, linear interpolation of the marker position has been used to fill single frame gaps in this one 
measurement. In the other measurements, no gap fill has been used. The camera calibration information was 
exported from QTM, including the extrinsic and intrinsic parameters.

2D keypoints and silhouette extraction. For 2D joint extraction, the 3D mocap data was projected onto each 
image frame from every camera view. This process utilizes the corresponding camera parameters, which are 
exported from Qualisys, and aligned the first frame of the mocap files to the initial video frame. Considering the 
differing framerates between the c3d files and videos, a downsample of the c3d files was performed to synchro-
nize the c3d and video frames.

For silhouette extraction, Track Anything53, one of the state-of-the-art segmentation models, was employed 
to extract the 2D silhouettes of each horse in each video frame. The method operated as follows: every five 
frames within each video, Segment Anything (SAM)54 extracted the horse’s mask for the first frame, using the 
bounding box calculated from 2D key points. Track Anything then applied the results from SAM as a template 
mask to guide the five-frame segmentation. To ensure the quality of the segmentation, we selected 130 video 
sequences and manually excluded instances with occlusion or incomplete body visibility.

Number Description Labels Landmarks For Marker Placement

39 Neck_Bottom_1 Centre Ventrally on the neck of the first third part from the distance of Marker5 to Marker19.

40 Neck_Bottom_2 Centre Ventrally on the neck of the second third part from the distance of Marker5 to Marker19.

41 Neck_Up_1 Left/Right An approximate site in the central part of the area shaped by the markers of 1, 7, 8 and 37.

42 Neck_Up_2 Left/Right An approximate site in the central part of the area shaped by the markers of 8, 9, 37 and 38.

43 Neck_Up_3 Left/Right An approximate site in the central part of the area shaped by the markers of 9, 10, 20 and 38.

44 Shoulder_1 Left/Right An approximate site between the markers of 9, 20 and 21.

45 Shoulder_2 Left/Right In between the markers of 20 and 22.

46 Chest Left/Right At an approximate site in the central part of the area shaped by the markers of 19, 21 and 22.

47 Foreleg_Front_1 Left/Right Cranial side of the tibia bone in between the markers of 22 and 23.

48 Foreleg_Front_2 Left/Right Dorsal side of the metacarpal bone III of the foreleg in between the markers of 23 and 24.

49 Belly_1 Centre Ventral part of the belly at the opposite location of Marker10.

50 Belly_2 Centre Ventral part of the belly at the opposite location of Marker11.

51 Belly_3 Centre Ventral part of the belly at the opposite location of Marker12.

52 Belly_4 Centre Ventral part of the belly at the opposite location of Marker13.

53 Barrel_1 Left/Right At the first fourth part of the distance from Marker10 to Marker49.

54 Barrel_2 Left/Right At the first fourth part of the distance from Marker11 to Marker50.

55 Barrel_3 Left/Right At the first fourth part of the distance from Marker12 to Marker51.

56 Barrel_4 Left/Right At the second fourth part of the distance from Marker10 to Marker49.

57 Barrel_5 Left/Right At the second fourth part of the distance from Marker11 to Marker50.

58 Barrel_6 Left/Right At the second fourth part of the distance from Marker12 to Marker51.

59 Barrel_7 Left/Right At the second fourth part of the distance from Marker13 to Marker52.

60 Barrel_8 Left/Right At the third fourth part of the distance from Marker10 to Marker49.

61 Barrel_9 Left/Right At the third fourth part of the distance from Marker11 to Marker50.

62 Barrel_10 Left/Right At the third fourth part of the distance from Marker12 to Marker51.

63 Barrel_11 Left/Right At the third fourth part of the distance from Marker13 to Marker52.

64 Croup_1 Left/Right At an approximate site in the central part of the area shaped by the markers of 14, 15, 25 and 27.

65 Thigh_1 Left/Right At the first third part of the distance from Marker25 to Marker28.

66 Thigh_2 Left/Right At the second third part of the distance from Marker25 to Marker28.

67 Stifle_Back Left/Right Caudal side of the leg at the height level of Marker28.

68 Croup_2 Left/Right In between the markers of 26, 27 and 67.

69 Hindleg_Front_1 Left/Right Cranial side of the tibia bone in between the markers of 28 and 30.

70 Hindleg_Front_2 Left/Right Dorsal side of the metacarpal bone III of the hind leg in between the markers of 30 and 31.

71 Hoof_Front_ForeLeg Left/Right Dorsal and proximal part of the hoof wall on the front leg.

72 Hoof_Back_ForeLeg Left/Right Palmar and proximal part of the hoof bulb on the front leg.

73 Hoof_Side_ForeLeg Left/Right Lateral and proximal part of the hoof wall on the front leg.

74 Hoof_Front_Hindleg Left/Right Dorsal and proximal part of the hoof wall on the hind leg.

75 Hoof_Back_Hindleg Left/Right Plantar and proximal part of the hoof bulb on the hind leg.

76 Hoof_Side_Hindleg Left/Right Lateral and proximal part of the hoof wall on the hind leg.

Table 3. Description and placement of marker setup on the horse’s body.
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3D shape and pose modeling. The body model. The 3D shape and pose of the horse are modeled and repre-
sented through the parameters of the hSMAL body model. As a horse-specific version of SMAL38, the hSMAL 
model41 defines a 3D horse mesh, consisting of 1,497 vertices, 2,990 faces, and 36 body segments. hSMAL can be 
described as a function ξ β θ γ( , , ), where β is the shape parameter; θ is the 3D pose parameter; γ is the model 
translation. The model is learned from 37 horse toys using the procedure described in38. More specifically, a 
purchased 3D mesh of a horse, created by an artist, is used to create a Global/Local Stitched Shape model 
(GLoSS)38 for horses. The GLoSS model is fitted to each toy scan such that scans have the same mesh topology. 
To de-correlate body and tail shapes, tails among different toy horses are interchanged to generate a broader 

Name Frame Num Detected Marker Motion Description

20201128_ID_1_0001 19200 131 Walking a few steps backward, forward, and side to side.

20201128_ID_1_0002 19200 131 Standing still. Moving head side to side.

20201128_ID_1_00031,3 19200 131 Standing still. Moving head side to side.

20201128_ID_1_0004 19200 131 Walking on straight lines. Walking in curves.

20201128_ID_1_0005 19200 131 Eating from the ground.

20201128_ID_1_0006 19200 131 Walking and trotting in small circles. Walking a few steps backward.

20201128_ID_1_0007 19200 131 Walking, trotting, and canter in small circles.

20201128_ID_1_00083 19200 131 Trotting in straight lines and in curves.

20201128_ID_1_0009 1680 131 Walking, trotting, and cantering in circles.

20201128_ID_1_0010 19200 131 Cantering in circles. Gait transitions.

20201128_ID_1_00113 19200 131 Totting in straight lines. Gait transitions. Walking a few steps backward.

20201128_ID_1_00123 19200 131 Cantering in straight lines. Walking a few steps backward.

20201128_ID_2_0005 19200 132 Walking a few steps backward, forward, and side to side. Moving head side to side and down.

20201128_ID_2_0006 19200 132 Walking in a straight line and with turns.

20201128_ID_2_0007 19200 132 Eating from the ground.

20201128_ID_2_0008 19200 132 Walking with many turns.

20201128_ID_2_00093 19200 132 Trotting and cantering in big circles.

20201128_ID_2_0010 19200 132 Walking and trotting in curves and in big circles.

20201128_ID_2_0011 19200 131 Trotting and cantering in big circles.

20201128_ID_2_0012 19200 132 Trotting and cantering in big circles. Gait transitions. Walking a few steps backward and forwards.

20201128_ID_2_0013 19200 132 Walking and trotting in curves.

20201128_ID_3_00012 32116 116 Walking and trotting in big circles.

20201128_ID_3_0002 14400 116 Walking a few steps backward, forward, and side to side. Moving head up.

20201128_ID_3_0003 14307 117 Moving head side to side. Walking and trotting in circles.

20201128_ID_3_0004 14400 117 Trotting and cantering in circles. Walking a few steps backward.

20201128_ID_3_00053 14400 117 Trotting and cantering in straight lines and circles. Stop from cantering.

20201129_ID_4_0002 19200 130 Walking a few steps backward, forward, and side to side. Moving head side to side.

20201129_ID_4_0003 19200 131 Moving head down and up. Walking.

20201129_ID_4_0005 19200 130 Standing still. Eating from the ground.

20201129_ID_4_0006 55845 132 Standing still. Eating from the ground. Walking and trotting in small circles. Pirouetting.

20201129_ID_4_0007 20663 132 Trotting in small circles around a human. Walking a few steps backward. Pirouetting and rearing.

20201129_ID_4_0008 19200 132 Piaffing/passage (collected trotting). Rearing. Standing still.

20201129_ID_4_0009 14400 131 Piaffing. Rearing.

20201129_ID_4_0010 14400 131 Rearing. Pirouetting. Standing still.

20201129_ID_4_0011 14400 132 Trotting. Kicking with both hindlegs in trotting. Cantering. Rearing. Pirouetting.

20201129_ID_4_0012 14400 129 Spanish walk. Passage. Standing still. Trotting.

20201129_ID_4_0013 14400 130 Pirouetting. Trotting. Kicking with both hindlegs in trotting. Standing still. Cantering.

20201129_ID_4_00193 14400 111 Lying. Standing up. Walking. Lying down.

20201129_ID_4_0020 16799 109 Sitting. Standing up.

20201129_ID_5_0003 14400 116 Walking, trotting and cantering in small circles.

20201129_ID_5_00043 14400 117 Rearing. Walking. Trotting.

20201129_ID_5_00073 14400 116 Rearing. Walking. Trotting.

20201129_ID_5_00083 14400 115 Standing. Moving head side to side, down and up. Walking.

20201129_ID_5_00093 14400 115 Trotting and cantering in circles and in straight lines.

20201129_ID_5_00113 14400 115 Trotting in circles and in straight lines. Walking over the obstacle.

20201129_ID_5_00123 14400 115 Walking. Jumping over an obstacle in trotting.

Table 4. File lists and motions in the files. 1Later parts of all videos are missing. 2Later part of the video from 
Camera “23348” is broken. 3Sometimes markers are out of detection.
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range of data. After a process of pose-normalization, the mean template Vmean is computed by averaging the data. 
The vertex-based residuals between the data and the mean template are modeled by principle component anal-
ysis (PCA). β represents the coefficients of the learned low dimensional linear space, while Bs defines the shape 
deformations. More specifically, under the template pose, the shape is given as:

β= + .V V B (1)mean s
T

The learned shape space of the model is shown in Fig. 7a, where the first three components mainly capture 
the model’s sizes of the body, the tail, and the neck, respectively. θ represents the relative rotation of each joint 
with respect to its parent joint in the axis-angle representation according to the skeleton tree defined in the 
model. The θ parameter is a vector of dimension × =3 36 108. The skeleton joint positions are manually 
defined (Fig. 7b) to better represent the animal anatomy similar to45. The final mesh is then posed with Linear 
Blend Skinning (LBS)30,38 and shifted with translation parameter γ. More details are in the original papers38,41. 
We used the first 10 PCA coefficients of the shape space as the shape parameters.

Model fitting. The parameters of a 3D articulated shape model can be estimated from mocap markers using 
the MoSh52 and MoSh++31 methods. These methods consider the fact that markers cannot be attached to fixed 
positions on the human body, especially when the human is moving or the markers are on soft tissues and solve 
not only for model parameters, but also for the marker position on the body surface. MoSh++, the updated 
version of MoSh, has been applied to different human mocap datasets to create a unified dataset, AMASS, which 
includes markers and aligned SMPL model parameters.

Following MoSh++31, we use two stages to capture the 3D shape and pose of the horse using the hSMAL 
model from mocap data. We use a similar notation as in MoSh++. Please check for more details in the original 
paper31,52.

Stage I: Stage I focuses on estimating the shape and marker positions. A marker parameterization denoted as 
β θ γ∼m m( , , , )i t t  is utilized to estimate marker positions considering the body’s shape, pose and location. More 

specifically, the latent markers mi
∼  are mapped to the world by accounting for the model parameters β θ γ( , , )t t  at 

a particular frame t for marker i. To do this, F frames are randomly selected from subject-specific mocap 
sequences. The goal is to optimize the model parameters (β, θΘ = { }F1: , { }F1:γΓ = ) and latent marker positions 

= ∼∼M m{ }i , based on the observed marker positions M m M{ }i t t F, 1:= ∈ . More specifically, an objective func-
tion is defined as:

β λ β λ β λ β λ β λ θΘ Γ = Θ Γ + + + +∼ ∼ ∼ ∼
β β θ θE M E M E M E M E E( , , , ) ( , , , )) ( , ) ( , ) ( ) ( ) (2)D D R R I I

where ED measures the distance between the parameterized markers m m( , , , )i t tβ θ γ∼  and the observed markers 
mi t, , ER ensures the markers are at an appropriate distance from the model surface (here we set 10 mm). EI main-
tains the parameterized markers close to their initial positions. Eβ and EΘ are regularizers related to shape and 
pose prior to the hSMAL model defined in41. Finally, a four-staged approach is performed to help avoid getting 
stuck in local optima. Here we randomly selected F 12=  frames from sequences where the horse was in more 
static poses, as it allowed for better optimization. It was worth noting that some markers may not be visible in 
these selected sequences. We used specific values for d105 0Dλ = . × , 10300 0Rλ = . , λ = .250 0I , 14 5λ = .β , 

7 5λ = .θ  and a scaling factor d n50/= , to deal with varying numbers of markers, where 50 was the marker 
number of the skeletal model and n was the observed mocap marker number in a frame.

Stage II: Stage II focuses on optimizing the 3D poses from all subject-based sequences. The body shape β and 
latent marker positions of each subject in Stage I are determined and kept fixed during Stage II. More specifically, 
we minimize:

θ γ λ θ γ λ θ λ θ= + +θ θE E E E( , ) ( , ) ( ) ( ) (3)D D u u

where ED and Eθ are the same as in Stage I, measuring the alignment of the model with the observed data and 
maintaining specific constraints. Eu is a temporal smooth term, ensuring the 3D poses changed over time are 

Fig. 7 The hSMAL model. (a) The hSMAL model and its skeleton. (b) The first four principal components in 
the hSMAL shape space. The arrow width shows from the first to the fourth component. All components are 
shown with ±2std.
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natural and smooth. Here we set λ = . × d480 0D , q2 3λ = . ×θ , λ = .2 5u . A variable = + ∗ .
| |( )q 1 2 5x
M

 
was introduced based on the number of missing markers x. The more markers were missing, the higher the pose 
constrained in every given frame.

Hyper-parameter search. Certain hyperparameters λ during the two-stage optimizations were determined 
by line search on a synthetic dataset, as inspired by MoSh++. The synthetic dataset was first created using the 
toy shapes from the training data of the hSMAL model. We placed 38 synthetic markers on the model with toy 
shapes and animated the model. We divided this data into a training set, consisting of 32 toys and five anima-
tions and a validation set with five toys and two animations.

The searching process was adjusting one parameter while keeping other parameters fixed, both in Stage I and 
Stage II fitting, using different random seeds on training and validation datasets. In Stage I, we initialized the 
marker positions by randomly placing them near the true position. The goal was to find a better combination of 
( , , , , )D R Iλ λ λ λ λβ θ  in Eq. 2. We aimed to find the values that provide the relatively lower distance between the 
estimated markers and the synthetic true markers within the selected 12 frames in both training and validation 
sets. In Stage II, the process was to find a better combination of ( , , )D uλ λ λθ  in Eq. 3. Here we aimed to mini-
mize the error on all vertices of the model between the estimated results and the true results in both the training 
and validation set.

Data Records
The datasets are available at Harvard Dataverse51. The data is organized by subject folder with [Subject ID]. The 
name of files for each trial starts with [Record Date]_[Subject ID]_[Trial Number], indicated as [Trial Name]. 
Each subject folder stores six sub-folders with complete trials:

•	 C3D_DATA: One C3D file per trial, exported from the QTM software, referenced as [Trial Name].c3d.
•	 FBX_DATA: One FBX per trial, with the whole scenario including all information of cameras and 3D posi-

tion of the subject, exported from the QTM software, referenced as [Trial Name].fbx.
•	 VIDEO_DATA: Each folder per trial named as [Trial Name], with videos from ten camera views, references 

as [Trial Name]_[Camera Code].avi.
•	 SEGMENT_DATA: Selected segmentation subsets for evaluating the fitting results, referenced as [Trial 

Name]_[Camera Code]_seg.mp4.
•	 MODEL_DATA: NPZ files, referenced as [Trial Name]_hsmal.npz includes the hSMAL parameters per trial. 

Another NPZ file, reference as [User ID]_stagei.npz contains the latent representation of the markers.
•	 KP2D_DATA: Each folder per trial named as [Trial Name], with 2D keypoints projected from 3D mocap data 

into video frames with ten camera views, referenced as [Trial Name]_[Camera Code]_2Dkp.npz.
•	 CAM_DATA: The camera parameters from ten camera views, referenced as Camera_Miqus_Video_[Cam 

ID].npz.

The correspondences are as follows:
[Record Date]: Recording date (e.g. 20201128 or 20201129)
[Subject ID]: Subject ID (e.g. ID_1, ID_2, ID_3, ID_4, ID_5)
[Trial Number]: Trial number (e.g. 0001, shown in Table 4)
[Camera Code]: Camera code (e.g. Miqus_65_20715)
[Camera ID]: Camera ID (e.g. 20715, 21386, 23348, 23350, 23414, 23415, 23416, 23417, 23603, 23604)

technical Validation
In this section, we first provide calibration errors from QTM software and quantitative and qualitative results of 
the reconstructed 3D model.

Mocap data. The motion capture system was calibrated three times over the two days of data capture. The 
standard deviation of the wand length varies from 1.0–1.9 mm for the calibrations, with an average camera 
residual between 2.6–2.9 mm during calibration. For the different captures, the average camera residual varied 
between 1.5–3.1, with higher residuals when the horse moves close to the edge of the covered volume.

3D model evaluation. Qualitative Results. We show the optimized shape and marker positions in Fig. 8. 
The positions of the markers (in red) have been optimized to fit different shapes, starting from their initial guess 
positions (in blue) on the template shape. Additionally, some markers (in gray) represent markers not visible 
during Stage I, which could be either the exclusion of attaching certain markers or fail marker detection during 
the data recording process.

Examples of the captured 3D model are displayed in Fig. 9 with corresponding motions illustrated in Fig. 3. 
The 3D shape and pose representations, derived from mocap data, effectively capture the horse’s real motions, 
even in challenging poses, like prancing and kicking. However, room for improvement remains in capturing 
more complex poses, such as sitting and lying down, especially when the limbs are in unusual positions.

Figure 10 provides results for the five horses. The images on the left side display the fitting results and the 
mocap frame, while the images on the right side provide a view of the reconstructed model as seen from ten differ-
ent camera views. This visual comparison highlights the precision of the captured 3D shape and pose of the horses.
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Shape Visualization. We provide the visualization of the estimated 3D horse shapes. Figure 12b shows the 
UMAP visualization of the components of the shape parameters from our five subjects, together with those of 
all the hSMAL toy training data. We can observe that Horse No. 3, the smallest pony, is quite distinct from the 
other four horses (Fig. 12a).

Quantitative Results. 3D Mocap Error.  To evaluate the accuracy of the model in capturing the shape and 
pose information from the mocap data, we analyze the Euclidean distance between the observed markers and 
the estimated virtual markers in each frame. As failed markers and noisy labels are inevitable, we focus on 
frames where more than 23 markers are detected. The results, detailed in Table 2, show results per horse across 
all trials and the average between different horse subjects is 0.031 meters.

2D Silhouette Error. We measure the accuracy of the captured 3D shape and pose by calculating the intersec-
tion over union (IOU) (Eq. 4) to measure the overlapping (Fig. 11c) between the extracted segmentation S 
(Fig. 11a) and the silhouette S� (Fig. 11b), obtained by projecting the corresponding 3D model with the camera. 
We calculate the IOU of frames that are inside the selected silhouette subsets with more than 23 markers 
detected. Table 2 shows results over the selected silhouette subset per horse, with an average IOU of 0.85 across 
different horse subjects. Intersection over union is defined as:

�

�
∣ ∣
∣ ∣

IOU S S
S S (4)

∩
∪

=

Current limitations. Our current dataset has some limitations, as in Fig. 13, where the motion is not well cap-
tured. While the mocap system is precise, occasional irregularities may appear. For example, Fig. 13a shows 
a case where some of the markers are undetected, leading to misalignment of the model with the silhouette. 
Another limitation is the hSMAL model itself, which is learned from toy scans, and cannot perfectly represent 
real-world horses. As seen in Fig. 13b,c, certain body parts like the shape of the cheek and the back cannot be 
accurately captured, indicating the need for a more precise model.

Fig. 8 Optimized shape and markers. (a) Initial guess of markers (in blue) on the template shape. (b) Optimized 
shape and optimized marker locations (in red) of five horses. Markers (in gray) are non-observable labels in 
observed frames in Stage I.

Fig. 9 Visualization of different motions. (a) Standing. (b) Neck bending. (c) Walking. (d) Trotting. (e) 
Cantering. (f) Piaffing. (g) Rearing. (h) Kicking. (i) Jumping. (j) Lying down. (k) Sitting. (l) Lying.
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Fig. 10 Visualization of example frames in different horses. Left: The 3D model and the corresponding mocap 
data (purple). Right: Project the 3D model in the same image frame in ten views. Left body (in yellow) and right 
body (in lightgray). (a) Horse No. 1. (b) Horse No. 2. (c) Horse No. 3. (d) Horse No. 4. (e) Horse No. 5.

Fig. 11 3D model evaluation with intersection over union (IOU). (a) The video frame and the silhouette 
extracted from video. (b) The image and the silhouette obtained from projecting the model into the image 
plane. (c) The overlap of the two silhouettes.
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Usage Notes
The provided FBX files can be imported into different animation applications, including Blender and any other 
application that supports loading fbx files. The provided c3d files can be processed using Python.

Researchers should be aware of certain anomalies in the data. Despite our meticulous data collection, a 
small number of irregularities may appear as we mentioned in the previous section, including missing markers, 
swapped marker labels, and noisy marker positions. This results in weird poses of the reconstructed model when 
too few correct markers are visible within a given frame. To mitigate this, we set a threshold requiring more than 
23 visible markers for pose evaluation. However, these potential issues may influence the final results.

The silhouettes generated through deep learning methods are not fully infallible but can be considered as 
pseudo-ground truth. Even when we carefully select a subset manually comprised of relatively complete silhou-
ettes, it’s important to note that potential errors remain.

Additionally, discrepancies in response times among different camera sensors exist, despite all cameras being 
synchronized. In our current setup, we align the first frame of the mocap files with the first video frame of the 
corresponding videos, which may still result in minor inaccuracies. Users should be cognizant of this small 
margin of error during data analysis and interpretation.

Code availability
We make available functions for users to use our datasets:

• Loading c3d files and the hSMAL model with the captured parameters to visualize the mocap data and the 
fitted results.

• Projecting the reconstructed model in image planes with provided camera information.
• Quantitative evaluation using the mocap data and silhouette subsets. Further detail about environment set-

tings and code usage can be found in https://github.com/Celiali/PFERD.git.

Received: 3 October 2023; Accepted: 25 April 2024;
Published: xx xx xxxx

Fig. 12 Shape visualization of the five PFERD horses and UMAP analysis with the first two components of 
the shape parameters of these five horses and all the training toy data. (a) The shape of the PFERD horses as 
reconstructed in hSMAL. (b) UMAP visualization.

Fig. 13 Imperfect capture. (a) Missing mocap markers. From left to right: original video frame, the overlapping 
model with the image, overlapping silhouette, visualization of the model and mocap markers in two different 
views. (b) and (c) are two examples of model limitations in real-world representation. Example 1 (b), where the 
model did not capture the shape of the neck and back well. Example 2 (c), where the model did not capture the 
shape of the neck and the shoulder well.
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