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ROSPaCe: Intrusion Detection 
Dataset for a ROS2-Based Cyber-
Physical System and IoT Networks
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Andrea Ceccarelli1

Most of the intrusion detection datasets to research machine learning-based intrusion detection 
systems (IDSs) are devoted to cyber-only systems, and they typically collect data from one architectural 
layer. Often the attacks are generated in dedicated attack sessions, without reproducing the realistic 
alternation and overlap of normal and attack actions. We present a dataset for intrusion detection by 
performing penetration testing on an embedded cyber-physical system built over Robot Operating 
System 2 (ROS2). Features are monitored from three architectural layers: the Linux operating system, 
the network, and the ROS2 services. The dataset is structured as a time series and describes the 
expected behavior of the system and its response to ROS2-specific attacks: it repeatedly alternates 
periods of attack-free operation with periods when a specific attack is being performed. This allows 
measuring the time to detect an attacker and the number of malicious activities performed before 
detection. Also, it allows training an intrusion detector to minimize both, by taking advantage of the 
numerous alternating periods of normal and attack operations.

Background & Summary
Intrusion Detection Systems1 (IDSs) are of critical importance to secure systems against attacks. They consist of 
two major components: a monitor and a detector. The first collects data from a running system, while the second 
analyses these data to discern between legitimate (normal) or malicious behaviors. While most commercial 
intrusion detectors rely on static rules, anomaly detection2 approaches based on machine learning constitute 
an attractive and widely researched alternative. They can develop complex decision criteria to classify each data 
point either as normal or attack, with also the ability to identify zero-days3, i.e., attacks never observed before and 
not yet described by static rules. An anomaly-based intrusion detector finds patterns in data that do not conform 
to the expected behavior of a system (or a network): these patterns, called anomalies2, are suspected attacks. 
Anomaly-based intrusion detectors are built under the assumption that ongoing attacks generate observable 
anomalies in the trend of the monitored performance indicators, or features, of the system4, network5, or both6.

To successfully train and test an anomaly-based intrusion detector, it is important to use realistic datasets 
specific to the operational domain and with analogous features and distribution concerning real-world data. The 
intrusion detection datasets available at the state-of-the-art mostly focus on cyber-only systems, while examples 
with cyber-physical systems are exceedingly scarce. In addition, these datasets are usually focused on monitor-
ing the network traffic, without providing useful data to observe the manifestation of anomalies in other archi-
tectural layers. Also, the network traffic in the absence of attacks is often generated by modeling user profiles 
and simulating the user’s behavior: the normal and the attack behavior are unrelated because they are collected 
separately, ultimately preventing the datasets from capturing the dynamics of transiting from an attack-free state 
to an under-attack state. These pitfalls evidence the lack of intrusion detection datasets that accurately describe 
the behavior of a cyber-physical system in a real execution environment.

In this paper, we introduce the ROSPaCe7 (Robot Operating System 2 for Smart Passenger Center) data-
set for intrusion detection, which is obtained by monitoring the SPaCe (Smart Passenger Center) embedded 
cyber-physical system. ROSPaCe7 aims to overcome the limitations stated above. Aside from the focus on the 
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SpaCe system, the ROSPaCe7 dataset offers significant utility for the research in intrusion detection in connected 
domains, for example when studying attacks against IoT networks and cyber-physical systems.

The SPaCe system orchestrates onboard and ground components of a tramline carriage to optimize public 
mobility. It collects data from onboard cameras and processes them to improve the quality of the service, for 
example facilitating fleet optimization, supporting passengers, and commanding maintenance intervention. The 
system is built using ROS2, a popular protocol for robotic and distributed systems8–12. The operational capabili-
ties of the SPaCe system impose the application of security solutions. While IDSs are particularly suitable for the 
context, they cannot be viably applied without relevant training data.

We perform attacks through the execution of discovery and DoS attacks, for a total of 6 attacks, with 3 of 
them specific to ROS2. We collect data from the network interfaces, the operating system, and ROS2, and we 
merge the observations in a unique dataset using the timestamp. We label each data point indicating if it is 
recorded during the normal (attack-free) operation, or while the system is under attack. The dataset is organized 
as a time series in which we alternate sequences of normal (attack-free) operations, and sequences when attacks 
are carried out in addition to the normal operations. The goal of this strategy is to reproduce multiple scenarios 
of an attacker trying to penetrate the system.

The final version of ROSPaCe7 includes above 30 million data points with 482 features, collected over 4 days 
of operation and for a total of approximately 38 GBs. We also present a simplified version of the dataset, which 
differs in the number of features and consequently has a reduced dimension of 14.5 GBs. We evaluate the per-
formances of the IDSs using the accuracy, ROC curve, and precision-recall curve. Also, we show how ROSPaCe7 
can be exploited to measure the attack latency at the cost of a maximum acceptable false alarm rate. In fact, in 
practice, a system developer is interested in minimizing the attack latency (identify an attacker as soon as possi-
ble), while maintaining false alarms reasonably low to avoid too many unnecessary attack responses. This is not 
achievable with most of the state-of-the-art datasets, because the dynamics of transiting from an attack-free state 
to an under-attack state are insufficiently captured.

In summary, the relevant features of ROSPaCe7 are: (i) it focuses on a cyber-physical system and IoT net-
works, being the first intrusion detection dataset targeting ROS2; (ii) it monitors multiple architectural layers, 
not being limited to logging network traffic; (iii) it is recorded from a real system under execution, so that there is 
no simulated traffic or simulated user’s profile; (iv) it is composed of multiple distinguishable scenarios, modeling 
an attacker attempting to penetrate a clean system while it is operating. The validation results suggest ROSPaCe7 
may become a valuable resource for training and evaluating IDSs for ROS2-based systems and, broadly, a useful 
dataset to develop and evaluate IDS solutions to embedded cyber-physical systems and IoT networks.

Noteworthy, the attacks successfully targeted the system and degraded the system’s performance: we remark 
that the SPaCe system has been successively modified to implement defenses, and the attacks are no longer 
effective against the deployed system.

Related Works: Intrusion Detection Datasets
In this section, we report on the most used public datasets for intrusion detection with the help of Table 1, and 
we elaborate on the differences from ROSPaCe7.

The table reports (i) the name of the dataset, (ii) the release year, (iii) the target environment, distinguishing 
from real systems or virtual networked systems, (iv) if the normal (attack-free) operativity corresponds to the 
nominal activities of the deployed system (conventional) or is stimulated with synthetic user profiles (simu-
lated), (v) the type of features collected, identifying the architectural layers that are monitored, (vi) the number 
of features monitored, (vii) the number of data points, (viii) the availability of attacks specific to the system, 
software, and application, in contrast to attacks to common network services, (ix) if the dataset provides alter-
nating patterns of normal behavior and periods under attack, to model the advent of an attacker in an attack-free 
system, or if the normal and attack behaviors are collected separately, and (x) the accuracy of state-of-the-art 
supervised algorithms, obtained from past research works (accuracy of KDD Cup9913, NSL-KDD13, ISCX14, 
CICIDS1715, and IOT-IDS16 is from Thakkar et al.17, the accuracy of CICIDS1815 is from Leevy et al.1, the accu-
racy of ADFA-LD18 is from Khandelwal et al.19, the accuracy of InSDN20 is from Negera et al.21, and the accuracy 
of ADFA-WD18 is from Khraisat et al.22).

dataset name year environment normal traffic
features 
type

number of 
features

millions of 
data points

application-
specific attacks

attacker 
dynamics accuracy

KDDCup9913 1999 real conventional network 41 4.9 no yes 0.85

NSL-KDD13 2009 real conventional network 41 4.9 no yes 0.84

ADFA-LD18 2014 real conventional Syscall 3 792 2.7 yes no 0.90

ADFA-WD18 2014 real conventional syscall 4 801 205.6 yes no 0.91

ISCX14 2012 real simulated network 20 0.6 no yes 0.87

CICIDS1715 2017 real simulated network 80 0.2 no yes 0.89

CICIDS1815 2018 virtualized simulated network 80 162 no yes 0.98

InSDN20 2020 virtualized simulated network 56 0.2 yes no 0.95

IoT-IDS16 2019 real simulated IoT 8 0.3 no yes 0.96

ROSPaCe7 2023 real conventional network, 
OS, ROS2 60–482 30.2 yes yes ?

Table 1.  Summary of the most famous dataset for intrusion detection, and comparison with ROSPaCe7.
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Different from all the reviewed datasets, ROSPaCe7 provides features from multiple architectural layers 
(Linux, ROS2, network), and it is the first intrusion detection dataset that monitors ROS2 features. This focus 
on ROS2 stands also for the attack selection because we provide 3 different attacks specific to the exploitation of 
known ROS2 vulnerabilities. Furthermore, the dataset collects all traffic during the system’s nominal execution, 
rather than simulating the normal usage of the system with a synthetic user profile.

Lastly, the ROSPaCe7 dataset describes the dynamic of an attacker trying to exploit the system, by provid-
ing observation in a time-series form where periods of normal execution and a single attack are alternated. 
By marking the start of attacker operations, we can measure the shortest time an attacker is discovered once it 
starts its attack sequence. This allows assessing IDS detection capabilities not only based on accuracy but also 
on a broader understanding of how fast the detector can recognize an attack. For example, notorious datasets 
like CICIDS17 are composed of long periods of normal operativity, followed by long periods where different 
attacks are injected. In this way, the scenario of an attacker entering the system and performing actions on an 
“attacker-free” system is insufficiently captured.

SPaCe system and ROS2
The SPaCe system is designed to orchestrate and optimize public mobility, improving the user experience and 
preventing security violations. It performs surveillance of tram carriages using on-board cameras, to determine 
the operative conditions of the tram carriage in real-time. SPaCe analyses the video stream from cameras to 
establish the occupation of the vehicles and notify users and administrators. It also provides detection capabili-
ties to request intervention in case of damage to the vehicle and its equipment.

The SPaCe system is structured into 3 basic components. A remote server orchestrates the fleet and dis-
patches information to the users and the administrators. The onboard architecture of each tram carriage collects, 
processes, and anonymizes the data from the onboard cameras so that it can be sent to the remote server for 
fleet optimization and coordination. Finally, user devices show the information to the end users, with different 
interfaces based on the user privileges.

In this paper, we focus on the tram carriage and its onboard architecture. We describe the architecture of the 
onboard system with the aid of Fig. 1. A camera provides a video stream to the In Camera Track module. This 
module, in turn, makes the first processing of the video stream. The In Camera Track identifies the relevant 
elements within the scene and reconstructs their space-time consistency. This module is composed of a set of 
microservices: (i) the image manager implements the data flow management: it interacts with the camera sen-
sors by extrapolating the raw data and normalizing the data structure; (ii) the detector allows the extraction of 
features relevant to the analysis of the status of vehicles and stations, e.g., the presence of people, object classifi-
cation, and position assessment; (iii) the tracker tracks a target object or person in successive frames.

The In Camera Track sends the elaborated information to the Track Analyzer Service. This module extrapo-
lates the information useful to the SPaCe system, for example, if there are lost objects, broken items, dangerous 
situations, as well as status information on the capacity of the vehicle. More precisely, the Track Analyzer Service 
implements a set of microservices that provide insight into the traces detected by the trackers. Its main role is to 
reconstruct the information necessary for a posteriori analysis of the track. This module includes the following 
microservices: (i) the face and clothes attributes extract the biometric information needed for facial recogni-
tion, and profiles users based on their clothes; (ii) the human keypoints analyses the passenger movements a 
posteriori differentiating between legit or forbidden behavior; (iii) the object attributes extract the attributes 
from the objects, to allow the subsequent recognition in a completely anonymous way. The information is then 
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Fig. 1  The SPaCe architecture, with a focus on the on-board architecture. It is a cyber-physical embedded 
system where video cameras monitor the tram carriage, and the information is locally processed through 
machine learning algorithms. Elaborated and anonymized information is then transmitted to the remote server.
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transmitted to the remote server. Lastly, the Sensor Control module encrypts and stores the raw data from the 
camera, which is available upon request.

The prototype of the SPaCe onboard architecture we are using is installed and operated at Mermec premises. 
The implementation relies on ROS210–12, an open-source software platform for developing robotic applications. 
ROS2 is largely applied in embedded cyber-physical systems8,9, thanks to its ability to deploy and coordinate 
distributed microservices. ROS2 applications consist of independent computing processes called nodes that 
communicate in a publish/subscribe fashion, passing messages via a topic: a node publishes a message to a topic, 
and topic subscribers can utilize the message11. ROS2 also provides a communication paradigm alternative to 
publish/subscribe: a node can expose a service that can be exploited directly by another node, in a remote pro-
cedure call fashion. Unlike ROS, which relies on a centralized master process to handle communications, ROS2 
exploits the standard Data Distribution Service12 (DDS) which is completely distributed. The DDS introduces 
procedures to optimize the Quality-of-Service (QoS), especially to optimize the application for the available 
bandwidth and latency and to increase guarantees on message delivery. In SPaCe, the ROS2 foxy version is avail-
able as a middleware service on top of the Linux Ubuntu 20.04 operating system.

Methods
We present the experimental setting and the steps to compose the dataset. The discussion is divided into three 
parts. First, we define our system and its setting, including the monitoring system, the data collection method, 
and the attacks towards the on-board architecture. Second, we present the data processing and labeling to create 
a unique dataset from traces collected by different monitors. Third, we describe the resulting datasets, and we 
reduce the set of features to provide a lighter version of the dataset.

Part 1: Experimental Set Up.  We describe the experimental setup with the aid of Fig. 2. Our experimental 
set-up is composed of (i) the onboard architecture, which is a server running Linux Ubuntu 20.04 and ROS2 foxy, 
(ii) a camera connected via LAN cable to the server, and, (iii) the attacker machine, which is an Ubuntu 20.04 
laptop connected to the onboard architecture through a switch.

Monitors are installed on the server, to observe features from the network layer, the operating system layer, 
and ROS2. The data collection system requires the contribution of the attacker machine, and the server as will 
be discussed later.

Attacks.  We represent a scenario where an attacker can launch attacks towards the server: we assume the 
attacker is aware of the IP address of the Ubuntu server. This could happen, for example, if the attacker can 
exploit the communication channels between SPaCe components. To run and implement the attacks, we rely on 
different tools installed on the attacker’s machine, namely Nmap, Metasploit, and custom scripts we developed. 
The network mapper Nmap23 is a free and open-source utility for network discovery and security auditing. 
Nmap uses raw IP packets to determine the available network hosts, the services (application name and version) 
and operating systems being executed on the target hosts, the type of packet filters and firewalls in use, and 
many other characteristics. We run Nmap version 7.93. Metasploit24 relies on a large central repository of known 
exploits. The user can select an exploit from the central repository, and the payload to run after the breach. We 
rely on the PyMetasploit25 library to integrate and run Metasploit in a Python program. Lastly, we select scripts 
from the Robot Hacking Manual26 that are specific to attack ROS2, and we customize them to fit our experimen-
tal setting. These scripts rely on Scapy27, a powerful interactive packet manipulation library in Python. Scapy 
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Fig. 2  The setting of our experimental campaign. The Ubuntu 20.04 Server runs ROS2, and it is connected 
to one camera sensor via a LAN cable. The attacker operates from an Ubuntu 20.04 laptop connected via a 
switch. The attacker tools are Metasploit, Nmap, and custom scripts implemented using the Scapy library. The 
software probes monitor data from three architectural layers: the network, the operating system, and the ROS2 
middleware and microservices.
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can forge or decode packets of a wide number of protocols, send them on the wire, capture them, and match 
requests and replies.

We select attacks using as reference an existing ROS2 threat model28. Consequently, we focus on attacks 
that exploit the external network, especially the network and the ROS2 DDS as they are highlighted among the 
main entry points. The attacks are from two categories, usually termed discovery, and denial of service (DoS). 
A discovery attack consists of collecting information about the target system, rather than exfiltrating sensible 
data or directly damaging the system. While they do not directly compromise the system, these attacks provide 
information that can be used by attackers to breach system defenses. Instead, DoS is aimed at reducing or inter-
rupting the availability of a service exposed by the target system. An attacker can implement a DoS in multiple 
ways, targeting different parts of the system stack, still making the system’s services unavailable.

Overall, we select 2 discovery attacks and 4 DoS attacks. Three attacks are generic and provided by 
state-of-the-art tools, and 3 are specific to the ROS2 DDS.

Discovery attacks.  Nmap Discovery is mainly used to extrapolate the version of the operating system of the tar-
get machine. It relies on an internal database of fingerprints collected from a large variety of operating systems. 
It builds a fingerprint of the unknown system by analyzing the responses to crafted TCP and UDP requests. Then 
it searches for a complete or a partial matching of the fingerprint in the database. We use the Nmap OS Detection 
script23 to run the attack with the command nmap -O –osscan-guess.

ROS2 Reconnaissance is a discovery attack specific to ROS2 that extrapolates information about the running 
nodes and their services. When the usage of a simple ROS2 query is not possible, it tries to exploit the vulner-
abilities of the DDS by sending a specifically forged package. A vulnerable DDS will respond with a service 
message that lists the running nodes on the ROS2 architecture. We exercise the attack relying on the code from 
the Robot Hacking Manual26.

DoS attacks.  Flooding Meta is the Metasploit implementation of the common network-level SynFlood attack. 
It consists of sending many packets with the SYN bit = 1 to request a new connection to the target machine. 
The target system replies with SYN-ACK packets, allocates resources to handle the connection, and waits for 
an ACK packet that confirms the connection. The attacker ends the interaction in this state causing the system 
to waste computational and memory resources. The script that implements the attack is auxiliary/dos/tcp/syn-
flood24 available in Metasploit.

Flooding Nmap is the Nmap implementation of a network-level DoS attack, that we exercise relying on the 
ipv6-a-flood.nse23 script.

ROS2 Node Crashing exploits known vulnerabilities of some versions of the DDS which cause incorrect han-
dling of ROS2 messages that do not respect the declared length. Like in buffer overflow attacks, the attacker can 
cause the execution of a piece of code hidden in the packet or can lead to a crash of the target ROS2 node. This 
attack is implemented with a custom Python script provided by the Robot Hacking Manual26 and written using 
Scapy.

ROS2 Reflection exploits a vulnerability of the communication protocol used by the DDS. It consists of mod-
ifying the multicast address of a ROS2 node by sending a purposely crafted message. If successful, the attacker 
can redirect the node to listen to messages from a malicious server. The server produces continuous traffic to 
saturate the resources. The attack is implemented using Python and Scapy and the implementation is provided 
by the Robot Hacking Manual (RHM)26.

Monitors.  We describe the software probes that we set up to monitor the system execution. The probes are 
installed on the server as shown in Fig. 2.

Tshark29 is a well-known tool for monitoring network activity. It targets the network layer, and it is configured 
to collect all the packets transiting the network interface. The collected packets are logged in.pcap files for later 
processing. The list of the 451 monitored features is not described here for brevity, but it is available as a.xlsx file 
in the dataset repository (feature_list.xlsx).

The OS Monitor is a monitoring software we built to target the OS layer of a Linux machine. It collects all the 
information provided by the /proc virtual filesystem30, such as memory usage, kernel configuration, installed 
devices, the status of the CPU cores, and information specific to each process running on the OS. The OS moni-
tor operates with a period of 200 milliseconds. In Table 2, we list the 25 features that we monitor from the oper-
ating system, along with their description.

The ROS Monitor is a custom node that we developed to monitor the ROS2 layer. The node subscribes to each 
topic published by the active nodes. The ROS Monitor scans periodically for new nodes to monitor changes in 
the system that may occur over time. The lists of monitored nodes include the /rosout node which is the default 
logger of the ROS2 architecture and collects logging data from the active nodes. Implementing the ROS Monitor 
node avoids directly using the /rosout logging operation, which would create a bag file to save every ROS2 mes-
sage. Producing a bag file is invasive and burdensome, meaning that it is too intrusive for monitoring purposes. 
This limits the number of features we get from the ROS Monitor. However, we believe that these metrics are 
semantically relevant to describe the behavior of the ROS microservices. In particular, they quantify information 
about the communication patterns and the interactions observed in the ROS publisher/subscriber paradigm. 
The ROS monitor operates with a period of 200 milliseconds. In Table 3 we report the 5 features obtained from 
the monitor along with their descriptions.
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Experimental campaign.  Once the onboard server and the monitors are up and running, we execute a custom 
Python script on the attacker machine, to coordinate and automate the experimental campaign. The script, sche-
matized in Fig. 3, iteratively performs the following actions, for the number of attacks:

	 1.	 Select an attack x that was never selected before.
	 2.	 Wait 30 seconds, without performing any action. In this period, the target system is behaving normally, in 

an attack-free scenario.
	 3.	 Inject the attack x, for a maximum temporal duration t.
	 4.	 Stop injecting x and keep the system in a hiatus state for 10 seconds. This period is set to allow the system 

to restore a clean state. We expect that after this period, the effect of the attack will no longer manifest on 
the monitored features. In case services are crashed or unable to recover, the system is rebooted, and the 
experimental campaign restarts from step 2.

	 5.	 Repeat steps 2, 3, and 4 for 400 iterations. This means that 400 sequences of normal operations and succes-
sive injections of attack x will be logged.

	 6.	 Wait 90 seconds to restore a clean system state, then restart from 1.

We set the temporal duration t = 60 seconds for Flooding Meta and Flooding Nmap attacks, after which the 
attack is interrupted. The duration of the other attacks depends on many factors and can change at each run, 
with a timeout of t = 60 seconds. The waiting time of steps 4 and 6 is introduced to allow system recovery after 
an attack, such that the value of the monitored features is no longer altered by the attack.

All the steps above are commanded by the attacker machine, and locally timestamped and logged.

Indicator Name Description

MemFree The amount of RAM, in kilobytes, left unused by the system.

Buffers The amount of RAM, in kilobytes, used for file buffers.

Cached The amount of RAM, in kilobytes, used as cache memory.

Active The total amount of buffer or page cache memory, in kilobytes, that is in active use. This is memory that has been 
recently used and is usually not reclaimed for other purposes.

Inactive The total amount of buffer or page cache memory, in kilobytes, that are free and available.

SwapFree The total amount of swap-free memory, in kilobytes.

Pgpgin Number of pageins (since the last boot).

Pgpgout Number of pageouts (since the last boot).

pgalloc_dma Number of page allocations per zone (since the last boot).

Pgfree Number of pagesfrees (since the last boot).

Pgactivate Number of page activations (since the last boot).

Pgdeactivate Number of page deactivations (since the last boot).

Pgfault Number of minor page faults (since the last boot).

Pgmajfault Number of major page faults (since the last boot).

Disk_Read read operations executed on disk since the last observation.

Disk_Write write operations executed on disk since the last observation.

Net_Received Bytes of data received from the network since the last observation.

Net_Sent Bytes of data sent through the network since last observation.

Tcp_Listen Number of listening TCP sockets.

Tcp_Established Number of active TCP sockets.

Tcp_Syn Number of synchronized TCP sockets.

Tcp_TimeWait Number of waiting TCP sockets.

Tcp_Close Number of closed TCP sockets.

nr_active_file Number of active files

nr_inactive_file Number of inactive files

Table 2.  Monitored features of the virtual filesystem /proc/.

ROS2 Feature Name Description

src_topic Indicates the source node of a specific message.

subscribers_count Number of subscribers to a topic.

publisher_count Number of publishers to a topic.

msg_type Type of a ROS2 message.

msg_data The header of a ROS2 message.

Table 3.  Monitored features of the ROS Monitor Node. It collects information from each topic including /
rosout which is the default logging system in ROS2.
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Part 2: Data Processing and labeling.  At the end of the experimental campaign, we obtain three logs 
from our three monitors for a total of 27.3 GB. The ROS monitor and the OS monitor log in CSV format, while 
Tshark records.pcap files. We export the.pcap files collected from Tshark in a.json format, generating multiple files 
of about 10 GB each, and then we process the.json files with the Pandas31 library to obtain CSV files.

To merge the CSV files from the 3 different monitors, we use the timestamp as a key, and as a reference the 
CSV file obtained from Tshark. The reason is that Tshark, differently from the other monitors which logs with a 
period of 200 milliseconds, is not configurable with a sampling interval and collects any packet. Consequently, 
the Tshark CSV file contains observations at much shorter intervals compared to the other monitors. We con-
catenate each row from the Tshark CSV file with rows of the OS monitor and ROS monitor, if their timestamps 
differ by less than 100 milliseconds (ms). Conversely, if the difference between the timestamps is greater than 
100 ms, the rows are not concatenated. This algorithm works given the logging period of 200 ms for both the 
ROS Monitor Node and the OS monitor, with some exceptions related to the ROS Monitor Node due to suc-
cessful attacks that crash the entire ROS2: in such cases, there are no data from the ROS Monitor Node. Due 
to computational constraints and the file size, we perform this operation by splitting the CSV file into batches.

To label each data point (each row) of the resulting CSV file, we rely on the log of the attacker machine. The 
attacker machine locally logs a timestamp at each step of the experimental campaign. We use these timestamps 
to identify (i) the start of the 30 seconds of normal operation; (ii) the start of the successive attack period; and 
(iii) the termination of the attack period. This way, we can identify data points produced in the absence of 
attacks, that we label as normal, and data points produced when a specific attack is exercised, that we label with 
the name of the attack. Data collected during the restoration periods are discarded.

Figure 4 schematizes the labeling procedure. We label the observations between the “observe” and the “start” 
timestamps as normal, and we label the observations between the “start” and the “end” timestamps with the 
name of the attack. We discard the observations between the “observe” and “start” labels because they are col-
lected after an attack, while we are allowing the system to recover. With this procedure, we identify observations 
collected during the temporal execution of the attacks, with the only approximation of time synchronization 
between the two nodes, which are synchronized to a global time server using the Network Time Protocol32.

We remark that we do not indicate when the effect of a given attack manifests on the monitored features, but 
we indicate when the attack session starts. In other words, while we can identify when the first attack packet is 
launched, we cannot tell when (or if) the attack will affect the value of the monitored features and consequently 
may be visible to anomaly detection.

Last, we observe that the features of the data points logged by Tshark may differ, depending on the traffic. 
This means that the number of features logged may vary from one data point to another, with some features 
that can be observed only in very few messages. To facilitate its usage by machine learning algorithms and avoid 
empty fields, we select only the features that are in common between all files, by concatenating the CSV file 
batches using an inner join operation on the columns. Further, we delete: (i) features whose values are linear 
indexes, that simply identify the order of data points; (ii) duplicate features; (iii) features with only 1 value. At 
the end of this process, the number of features is 482, excluding the label. The recorded.pcap files from Tshark 
are available on the repository7.

Data Records
ROSPaCe dataset.  The ROSPaCe7 dataset has been deposited and is freely available. The final shape of the 
ROSPaCe7 dataset is 30 247 050 data points and 481 columns excluding the label. The features are 25 from the OS 
monitor, 5 from the ROS Monitor Node, and 452 from Tshark. The dataset is encoded in the ROSPaCe_complete.
csv file for a total of 38 GB. The dataset contains about 23 million attack data points and above 6.5 million normal 
data points (78% attacks, 22% normal). We specify in Fig. 5 the number of observations collected. Reasonably, 
DoS attacks have the highest number of attack data points. Instead, the low number of data points of ROS2 
Reflection and ROS2 Node Crashing is because the attacks lead to the failure of one or more ROS2 nodes, in some 
cases including the monitors. Note that these cases required a complete restart of the system and an interruption 
of the experimental campaign. This is also confirmed in Table 4, where the left part describes the temporal dura-
tion of the attack sequence, for each attack type, in terms of average, minimum, and maximum duration, while 
the right part describes the average, minimum, and maximum number of data points in the attack sequence.

ROSPaCe reduced dataset.  We provide a lightweight version of the ROSPaCe7 dataset by selecting the 
best-performing 60 features (aside from the timestamp and the label). This includes the 30 features from the OS 
monitor and the ROS monitor and the 30 best-performing features from Tshark. The reduced dataset is smaller 
than the ROSPaCe dataset only in terms of the number of columns, while the data points are the same.

400 iterations

Select attack Monitor
System

 for 30 seconds

Run the attack
for duration t

Wait 10 seconds
for System to recover

Fig. 3  The script that automates the execution of the experimental campaign.
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We proceed by inspecting the dataset to identify and remove those that may reduce the model’s ability to 
generalize, potentially leading to a degradation in detection performance. For example, these are features that 
specify the source or destination at different layers of the protocol stack. Then, we reduced the Tshark features by 
selecting the 30 most important ones using Extremely Randomized Trees33 meta-estimator. This meta-estimator 
fits a fixed number of randomized decision trees on a subset of samples of a dataset and uses averaging to select 
the features that contribute the most to the classification, i.e., identifies the features that are mostly used to make 
classification decisions.

The ROSPaCe reduced dataset is split in 15 CSV files of 913 Mb each for a total of 14.5 GB (ROSPaCe_
reduced.tar.gz7).

date,timestamp,attack,event

Thu Mar 16 15:22:23 CEST 2023,1678976543.858823,nmap_discovery,observe

Thu Mar 16 15:22:23 CEST 2023,1678976573.886846,nmap_discovery,start

Thu Mar 16 15:22:23 CEST 2023,1678976598.569672,nmap_discovery,end

Thu Mar 16 15:22:23 CEST 2023,1678976608.580045,nmap_discovery,observe

Thu Mar 16 15:22:23 CEST 2023,1678976638.606884,nmap_discovery,start

Thu Mar 16 15:22:23 CEST 2023,1678976661.722355,nmap_discovery,end

The observations between the
"observe" label and "start" refers to the

normal behavior of the system

The observations between the "start"
label and "end" refers to the behavior

of the system under attack.

The observations between the "end"
label and "observe" are discarded.

Fig. 4  The observations between “start” and “end” are labeled with the attack name, while the observations 
between “observe” and “start” are labeled as normal. We discard the observations between the “observe” and 
“start” labels because they are collected while the system is recovering to a clean state.

0,001 0,01 0,1 1 10 100 1000 10000 100000

ROS2 reflection
ROS2 node crashing

ROS2 recognaissance
nmap discovery

normal
flooding nmap
flooding meta

Thousands of data points

Fig. 5  Number of attack data points and normal data points. The x-axis is in logarithmic scale.

attack
average 
duration

minimum 
duration

maximum 
duration

average 
length

minimum 
length

maximum 
length

flooding meta 60.97 59 160 43 303 812 171 799

nmap discovery 22 20.45 24.66 1 377 1 180 8 248

flooding nmap 29.86 29.80 29.95 398 655 467 044 40 534

ROS2 node crashing 1.05 0 40.23 51 2 150

ROS2 reconnaissance 13.14 9.36 60.16 1 907 1 295 4 873

ROS2 reflection 3.69 0 40.20 24 1 99

Table 4.  Left: average, minimum, and maximum temporal duration of attack sequences, in seconds. Right: 
average, minimum, and maximum number of data points in an attack sequence.
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ROSPaCe no-periodicity dataset.  We generate a modified version of the dataset where sequence dura-
tions are randomly adjusted, and timestamps are not absolute values (clock readings) but are relative to each 
sequence. This methodology preserves the dynamics between normal behavior and attacks within sequences 
while preventing time series models like LSTM34,35 from exploiting timestamp periodicity as a label, to detect 
attacks. In particular, we operate as follows:

	 1.	 We identify each sequence in the dataset.
	 2.	 For each sequence, we cut the initial data points, to an amount between 1% and 35% of the normal data 

points in the sequence. The value is chosen randomly for each sequence.
	 3.	 For each sequence, we cut the final part of the sequence, i.e., the attack data points, to an amount be-

tween 1% and 70% of the attack data points in the sequence. Again, the value is chosen randomly for each 
sequence. The percentage is higher concerning normal data points, to reflect the overall balance between 
normal and attack data points in the dataset.

	 4.	 We offset the timestamp features of the sequence, to make the sequence start at 01-01-23 00:00:00. This 
way, the timestamps are relative to each sequence rather than to the complete dataset.

The no-periodicity dataset ROSPaCe_complete_noperiodicity.csv is given as an additional resource7. Further, 
we realize a reduced version of the no periodicity dataset, namely ROSPaCe_reduced_noperiodicity.tar.gz7 apply-
ing the same methodology reported for the ROSPaCe reduced dataset. The ROSPaCe_reduced_noperiodicity.tar.
gz archive contains and compresses the ROSPaCe_reduced_noperiodicity.csv file, which is split into 10 files, each 
with a size of 1 GB.

Technical Validation
In this section, we show that the dataset is well-formed and can be used for intrusion detection purposes. We 
use the reduced dataset (ROSPaCe_reduced.tar.gz7) as it is easier to manage. First, we apply the feature ranking 
technique to quantify the correlation between features and labels. Then, we apply visualization techniques to 
graphically understand if the distribution of normal data points and attacks is different and if there is a tangible 
partitioning between the classes. Last, we execute machine learning algorithms leveraging the two methodolo-
gies proposed in the Usage Notes.

Feature ranking and data visualization.  We compute the importance of features on the reduced dataset 
through mutual information36,37 and chi-square38,39 feature ranking strategies. Feature rankers quantify the cor-
relation of each feature with the label: this allows identifying the features that are most informative to the label. 
Notably, these strategies are model-agnostic, ensuring unbiased assessment across machine learning models.

In Table 5 we show the results for the mutual information and the chi-square statistics. Interestingly, the 
two analyses produce separate lists of the top 5 features, some of which overlap but are ranked differently. The 
best features for the mutual info analysis are pgpgout, src_topic, and layers.ipv6.ip.version for respectively, the 
OS Monitor, the ROS Monitor Node, and Tshark. The best features selected by the chi2 statistic are pgfree (OS 
Monitor), src_topic (ROS Monitor Node), layers.ip.ip.flags (Tshark). Overall, the analysis demonstrates that the 
features included in the dataset have consistent power in differentiating normal behavior from attacks.

Then, we apply t-SNE40 to visualize the high-dimensional data in two dimensions (Fig. 6). We launch t-SNE 
on the dataset by targeting the multi-label and using the chi 2 best-ranked feature from each of the 3 monitors: 
layers.ipv6.ip.version (Tshark), pgpgout (OS), and src_topic (ROS). To overcome computational limitations, we 
use 1% of data points, downsampled maintaining a uniform distribution. The t-SNE visualization shows some 

feature name chi 2 feature name mutual info

OS

Pgpgout 8.807 × 106 Pgfree 1.15303

Net_Received 7.155 × 106 Pgfault 1.15301

MemFree 6.427 × 106 Pgpgout 1.15199

Tcp_TimeWait 5.050 × 106 Pgactivate 1.15098

Pgfault 4.750 × 106 Active 1.14925

ROS

src_topic 4.793 × 106 src_topic 0.30932

msg_type 2.066 × 106 subscribers_count 0.25884

publishers_count 1.547 × 106 msg_type 0.24204

subscribers_count 1.047 × 106 publishers_count 0.24142

msg_data 2.400 × 105 msg_data 0.20714

Tshark

layers.ipv6.ip.version 2.150 × 107 layers.ip.ip.flags 0.84398

layers.icmpv6.icmpv6.type 2.077 × 107 layers.tcp.tcp.stream 0.81332

layers.ip.ip.flags_tree.ip.flags.df 1.369 × 107 layers.tcp.tcp.window_size 0.79519

layers.tcp.tcp.flags_tree.tcp.flags.syn 1.240 × 107 layers.tcp.tcp.window_size_value 0.78927

layers.tcp.tcp.flags_tree.tcp.flags.syn_tree 1.240 × 107 layers.ip.ip.checksum 0.75566

Table 5.  Chi 2 score (chi 2) and mutual info score (mutual info) feature ranking. We report for the Os Monitor 
(OS), ROS Monitor Node (ROS), Tshark the best 5 features ranked based on the chi 2 score (on the left) and the 
best 5 features based on mutual info score.
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distinction between the normal data points (normal label in blue) and the attack data points, with some areas 
that are occupied exclusively by normal data points. However, many normal data points are covered by attack 
data points in the figure.

Last, we plot a pairwise feature scatterplot matrix using Seaborn41. This visualization is useful for exploring 
relationships between pairs of features. We analyze the same features observed using t-SNE. In Fig. 7, we report 
the grid of scatterplots with 3 rows and 3 columns. The diagonal plots show the distribution of each variable 
individually. The plots above the diagonal show the relationship between different pairs of variables. For exam-
ple, the plot at row 1, and column 2 shows how the layers.ipv6.ip.version feature relates to the pgpgout feature. 
The plots below the diagonal show the same relationships as above but are reversed (how pgpgout relates to the 
layers.ipv6.ip.version).

The scatterplot confirms the t-SNE analysis evidencing some overlapping between the normal data points 
distribution and the attacks distribution, but there is evidence of some distinction especially when the layers.
ipv6.ip.version and the src_topic are considered jointly (upper right corner and, inversely, lower left corner). 
Figure 6 and Fig. 7 convey a similar message: attacks are often difficult to distinguish as they are crafted to hide 
within the nominal internet traffic for complicating detection.

Validation with Usage Notes - A.  We validate the dataset with a machine learning evaluation that follows 
the steps in the section Usage Notes – A.

As intrusion detectors, we train and run two different popular machine learning algorithms, namely, the 
unsupervised Isolation Forests42, and the supervised XGBoost43,44.

Given True Positives (TP) and True Negatives (TN) as the correctly predicted values, and False Positives (FP) 
and False Negatives (FN) as the misclassified events, the accuracy measures the correct predictions in a classifi-
cation task, and it is defined as A = (TP + TN) / (TP + TN + FP + FN). We evaluate the performance using the 
accuracy, the Receiver Operating Characteristic curve (ROC), and the precision-recall curve. The ROC curve 
plots the probability that the model will correctly rank a randomly chosen positive instance higher than a ran-
dom negative one45,46: it represents the trade-off between recall and False Positive Rate, where recall is R = TP / 
(TP + FN), and the false positive rate is FPR = FP / (TP + FP). Further, we use the Precision-Recall curve which 
calculates the trade-off between precision and recall for different detection thresholds, where precision is P = TP 
/ (TP + FP). In Table 6, we report the performance of the Isolation Forest and XGBoost obtained by applying the 
methodology described in Usage Note A.

In Fig. 8, we detail the ROC curve and the precision-recall curve for Isolation Forest and XGBoost. Their 
capability to detect attacks validates the usability of our dataset: attacks have a visible effect on the monitored 
system features, and the dataset can be used to train an anomaly-based intrusion detector. In addition, we 
observe that the ROC and precision-recall curves show opposite and regular trends, assuring that the accuracy 
result is not biased by inter-class imbalance.

Validation with Usage Note – B.  In this section, we report the results of the machine learning validation 
we perform by leveraging the sequence structure of the dataset as detailed in the section Usage Notes - B.

Fig. 6  t-SNE visualization of normal or attack classes (painted in different colors) using layers.ipv6.ip.version, 
pgpgout, and src_topic as features.
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We take advantage of the ROSPaCe7 characteristics to evaluate the attack latency, i.e., measure how long an 
attack will be perpetrated in the system before being detected. The metrics from Usage Note - A may present a 
misleading understanding of the actual capability to defend from attacks. For example, accuracy seems satis-
factory, but the detector may have missed the initial part of the attack, which still might be sufficient to reach 
determined attack goals.

We resort to the organization in blocks of the test set produced in Usage Note-B. For each block, we keep 
track of two data points: (i) the first attack data point, and (ii) the first attack data point that is correctly classified. 
The attack latency is the distance between the two data points: it can be measured as a time interval, or as the 
number of data points that occurred between the two attack data points.

In addition, we also are interested in understanding the number of false positives, which is identified by 
the FPR. A high FPR means many false alarms, which ultimately make the system unusable: consequently, we 
decide on a maximum acceptable FPR, and we compute the recall and the attack latency. In this paper, we set the 
maximum FPR = 10−4, which means that during the normal operativity, one data point every 104 data points is 
erroneously classified as an attack. We are aware that, in practice, the FPR threshold should be agreed upon with 
SPaCe engineers and security managers, but the deployment of an IDS is outside the scope of the paper.

As an algorithm, we use XGBoost to classify each data point in a block. Time series algorithms, like long 
short-term memory (LSTM34) recurrent neural networks, could also be exploited; however, a comparison of the 
most suitable algorithm for ROSPaCe7 is outside the scope of the paper.

We report the performances of XGBoost in Table 7, Table 8, and Table 9. Table 7 describes the attack latency 
in terms of seconds elapsed from the start of the attack until the first detection. Table 8 presents the number of 

Fig. 7  Seaborn scatterplot for the layers.ipv6.ip.version, pgpgout, and src_topic features. The diagonal plots 
show the distribution of each variable individually. The plots above the diagonal show the relationship between 
different pairs of variables.

model A FPR R P

Isolation Forests 0.875 0.057 0.895 0.942

XGBoost 0.996 0.0018 0.997 0.998

Table 6.  Performance metrics for Isolation Forest and XGBoost obtained by applying the Usage Notes-A. We 
report on the accuracy (A), the False Positive Rate (FPR), the Recall (R), and Precision (P).
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consecutive false negatives (misclassified attack data points) from the start of the attack sequence until the first 
detected attack. Table 9 reports the number of blocks where there is at least one detected attack.

Aggregating the results from the different tables, is evident that we can detect Flooding meta, Nmap discov-
ery, and Flooding nmap, while we show a very low capability in detecting the three ROS2 attacks. These attacks 
are less represented in the dataset having shortest sequences with a smaller number of packages, because they 
lead the system in a failed state.

We observe that all the Flooding nmap blocks are detected (Table 9), with a very short detection latency: 
the average latency is 0.18 seconds (Table 7), during which 906 packets are received (Table 8). Somehow good 
results are obtained with nmap discovery, where we can detect at least one attack data point in 99% of the attack 
sequences. However, attack latency is significantly higher (6.74 seconds), but it is a direct consequence of the dif-
ferences between the two attacks. The other attacks are more difficult to detect, and especially the ROS2-specific 
attacks, which have a very low detection ratio in Table 9. This suggests that the effect of ROS2 attacks on the 
monitored features is rather different from one block to another, and XGBoost is not able to generalize suffi-
ciently to capture this difference. While this may look like a concern for the development of efficient intrusion 
detectors, these insights can serve as a foundation for developing a new approach for training and fine-tuning 
an intrusion detection system.

Usage Notes
The steps delineated in this section are aimed at arranging the data into a structure that is well-suited for efficient 
and effective utilization. The steps are implemented in two Jupyter notebooks available in our software reposi-
tory47, and they can be executed straightforwardly only at the cost of setting the correct path to the dataset file.

First, we reduce to numeric all the features with mixed data types (e.g., alphanumeric, and numeric values). 
Second, we replace nan values and infinite values with −1 as they are usually not accepted by ML algorithms. 
Then, we map attack labels to numeric values: to distinguish between normal data points and attack data points, 

Fig. 8  ROC curve and Precision-Recall curve of XGBoost and Isolation Forest on the ROSPaCe7 reduced 
dataset.

attack average detection latency standard deviation minimum detection latency maximum detection latency

flooding meta 13.08 19.58 0.18 126.80

nmap discovery 6.74 4.14 0 13.16

flooding nmap 0.18 0.09 0.04 0.35

ROS2 node crashing 0.05 0.04 0.01 0.09

ROS2 reconnaissance 5.63 2.58 2.33 8.46

ROS2 reflection 20.10 28.38 0.03 40.17

Table 7.  Attack latency, in seconds. We provide the minimum value, the maximum value, and the standard 
deviation.

attack average detection index standard deviation minimum detection index maximum detection index

flooding meta 2 111 3 196 14 16 245

nmap discovery 167 350 0 3 613

flooding nmap 906 3 4 229 1 637

ROS2 node crashing 29 11 16 37

ROS2 reconnaissance 943 424 397 1 420

ROS2 reflection 22 6 18 27

Table 8.  Attack latency, in terms of the number of data items that occurred before detection. We provide the 
minimum value, the maximum value, and the standard deviation.

https://doi.org/10.1038/s41597-024-03311-2


13Scientific Data |          (2024) 11:481  | https://doi.org/10.1038/s41597-024-03311-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

we just need binary classification and consequently, we transform each attack label to 1 and each normal label to 
0. Third, we convert string values to numbers using categorical encoding. This technique assigns a unique num-
ber to each unique string value of a feature. After implementing this preprocessing, the dataset can be used for 
two purposes: to measure the ability to distinguish between normal and attack data points and to measure the 
attack latency. Each approach relies on the application of additional preprocessing steps, described respectively 
in the Usage Notes-A and Usage Notes-B below.

Usage notes – A.  Our focus is to distinguish between normal and attack data points: therefore, we drop 
all the time- and sequence-related features, and we shuffle the dataset. Timestamps or time-related data in the 
dataset can inadvertently serve as labels, potentially leading to misleading results. Very practically, the steps are:

	 1.	 Drop all columns containing timestamps or that may contain information on data sequences.
	 2.	 Shuffle the dataset.
	 3.	 Divide the dataset into train and test sets by applying a 60/40 split.
	 4.	 Train and test a binary classifier, compute the appropriate metrics (see the Technical Validation below), and 

visualize results.

Usage notes – B.  In this scenario, we shift our focus to investigate how long an attacker is undetected. The 
notion of time, in this case, is central: we want to train the ML detector to make decisions based on system evo-
lution through time rather than deciding on individual data points. Therefore, the time-related features must be 
included in the dataset to relate subsequent data points. As the dataset is already organized in alternating blocks 
of normal behavior and attack scenarios, the only steps needed are the following:

	 1.	 Identify all the pairs (normal sequence, attack sequence) in the dataset. We call each of these pairs a block.
	 2.	 60% of randomly selected blocks are assigned to the train set, and the remaining 40% to the test set. This 

way we train the ML detector with blocks of ordered data points, each block containing approximately 
30 seconds of normal data, that are followed by a variable amount of attack data.

	 3.	 Train and test a binary classifier, compute the appropriate metrics (see the Technical Validation below), and 
visualize results.

Code availability
The software code to run the entire experimental campaign can be downloaded from the codes folder of our open 
software repository47. Each subfolder corresponds to a specific activity of the dataset creation procedure reported 
in this paper.

The ROSPaCe proposed versions are available in a public repository and can be freely downloaded. The repos-
itory contains a folder for each of the datasets, and an additional CSV file that enlists the features included.
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