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Transient dataset of household 
appliances with Intensive switching 
events
Dongyang Zhang   1,2, Xiaohu Zhang   1, Lei Hua   1, Jian Di1, Wenqing Zhao1,3 & Yumei Ma1 ✉

With the development of Non-Intrusive Load Monitoring (NILM), it has become feasible to perform 
device identification, energy consumption decomposition, and load switching detection using Deep 
Learning (DL) methods. Similar to other machine learning problems, the research and validation of 
NILM necessitate substantial data support. Moreover, different regions exhibit distinct characteristics 
in their electricity environments. Therefore, there is a need to provide open datasets tailored to 
different regions. In this paper, we introduce the Transient Dataset of Household Appliances with 
Intensive Switching Events (TDHA25). This dataset comprises switch instantaneous data from 10 typical 
household appliances in China. The TDHA dataset features a high sampling rate, accurate labelling, and 
realistic representation of actual appliance start-up waveforms. Additionally, appliance switching is 
achieved through precise control of relay switches, thus mitigating interference caused by mechanical 
switches. By furnishing such a dataset, we aim not only to enhance the recognition accuracy of existing 
NILM algorithms but also to facilitate the application of NILM algorithms in regions sharing similar 
electricity consumption characteristics to those of China.

Background & Summary
With the rapid advancement of Internet of Things (IoT) technology, there is a growing interest on its application 
in daily lives, particularly in the flourishing domain of smart home technology. However, the expense associated 
with implementing smart home solutions has remained a persistent challenge. The emergence of Non-Intrusive 
Load Monitoring (NILM) presents a promising solution to this issue. NILM technology enables the monitoring 
of device switches at the main power supply of a household, offering a stark departure from traditional invasive 
energy monitoring methods that require deploying one sensor per device. This eliminates the need for costly 
multi-sensor configurations and simplifies installation complexity. Consequently, NILM holds the potential to 
significantly reduce the overall cost of smart home technology1,2.

It is proved that significant reductions in energy waste can be achieved through strategic power-saving prac-
tices and management, potentially saving from 5% to 10%. Moreover, the promotion of home energy-saving 
renovations and efficient operational practices could yield even greater savings, ranging from 10% to 20%3,4. 
Most residential users find it difficult to accurately estimate the energy consumption of household or personal 
appliances, as indicated by studies. Commonly, residents tend to underestimate energy usage for heating while 
overestimating consumption from perceptually prominent devices such as lights and televisions. Effective 
power-saving strategies and retrofitting efforts necessitate a thorough analysis of appliance power load con-
sumption, which in turn, relies on the monitoring and identification of energy usage. Hence, the monitoring on 
appliance power consumption by NILM is crucial for informed household appliance usage planning and energy 
consumption reduction5.

At present, NILM technologies primarily fall into two categories: event-based detection and appliance energy 
consumption-based method. Event-based detection focuses on identifying appliance activation and deactivation 
events, while appliance energy consumption-based approaches concentrate on decomposing energy consump-
tion patterns6. Event-based detection technology investigates transient fluctuations in total power states to discern 
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switch activations. Conversely, appliance energy consumption-based methods rely on analysing steady-state 
characteristics of total power to identify appliance activations through energy consumption decomposition.

Datasets of NILM are typically classified based on their sampling frequencies, with those below and above 
1 kHz are considered low and high frequencies, respectively7. High-frequency datasets provide more data 
observation points compared to their low-frequency counterparts, enabling the detection of subtle changes 
in load waveforms and the identification of additional appliance load characteristics. However, acquiring 
high-frequency datasets require equipment with higher sampling frequencies, which tends to be more expensive 
than low-frequency acquisition equipment. Moreover, real-time capabilities and accuracy of the acquisition sys-
tem is necessary for the high-frequency data acquisition. imposes stricter requirements on real-time capabilities 
and accuracy of the acquisition system.

The event detection and appliance energy consumption share two fundamental steps: signal measurement 
and feature extraction. Signal measurement forms the cornerstone of NILM, making publicly available datasets 
crucial in this field. Such datasets aid researchers in reproducing and refining existing research results, and the 
quality of the dataset significantly influences the performance of decomposition algorithms7. Obtaining data 
specific to a particular country is essential for testing the performance of algorithms since different countries 
utilize different appliances and exhibit distinct usage patterns due to cultural variations. Over the past decade, 
numerous NILM datasets have been released, starting with the pioneering REDD dataset by researchers at MIT 
in 2011. Subsequently, researchers from various countries including the United States, Canada, India, France, 
and the United Kingdom have contributed additional datasets. Table 1 summarizes the available information on 
high-frequency datasets, while Table 2 provides an overview of low-frequency datasets.

Methods
Data acquisition environment.  The dataset is collected in a typical family life scenario of China, where the 
alternating current phase voltage is standardised at 220 volts with a frequency of 50 Hz. The majority of in-home 
power sources in this region operate on single-phase power. Consequently, the collected dataset primarily con-
sists of data obtained from single-phase power supplies.

Data acquisition equipment.  Overall design.  As depicted in the comprehensive structure of the data 
acquisition system outlined in Fig. 1, the principal components utilised within the acquisition system are delin-
eated in Table 3. The acquisition device comprises a home electricity environment simulation component, a fil-
tering and amplification component, a data acquisition component, and a data storage component. The details of 
each component are:

•	 The home electricity environment simulation component is tasked with replicating the circuit wiring found 
in a typical home environment. Its primary function is to ensure that the acquired data closely simulates real-
world conditions, thus facilitating meaningful comparisons and analyses.

•	 The filtering and amplification component serves the crucial role of scaling the waveforms of current and 
voltage from the real environment proportionally to fit within the acquisition range of the ADC chip.

Dataset

Frequency

Duration CountryAggregate Appliance

BLUED16 12 kHz N/A 8 days USA

UK-DALE17 16 kHz 1/6 Hz 3–17 months UK

SustData18,19 8 kHz 1 min 5 years Portugal

WHITED20 44.1 kHz N/A — Around the world

COOLL21 100 kHz N/A 6 s France

PLAID22 30 kHz 30 kHz — USA

BLOND23 50 k-250 kHz 6.4 k-50 kHz 7–32 weeks Germany

EMBED24 12 kHz 1 Hz 27 days USA

DSUALMH25 15.625 kHz N/A — Spain

Table 1.  Commonly used high-frequency data sets.

Dataset

Frequency

Duration CountryAggregate Appliance

REFIT26 8 s 8 s 2 years UK

MEUD27 1 min N/A 1 year Canada

RAE28 1 Hz N/A 10.3 weeks Canada

IDEAL29 1 Hz 1 Hz 22 months UK

QUD30 3 s to 30 min 3 s to 30 min 1 year Qatar

IEDL31 1 min 1 min 1 year India

Table 2.  Commonly used low-frequency data sets.
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•	 The data acquisition component is responsible for operating the external ADC chip to precisely sample the 
current and voltage waveforms. It then transmits the acquired data to the PC, providing accurate raw data for 
subsequent analysis.

•	 The data storage component receives data transmitted from the data acquisition component to the PC and 
archives the collected data into a database, which facilitates subsequent retrieval, analysis, and comparison 
tasks.

Through the seamless integration of these four components, the device is able to effectively simulate the 
home power environment, precisely collect and securely transmit waveform data of current and voltage.

Fig. 1  The overall structure of the data acquisition system, (a) Component setup for data collection, (b) Logic 
diagram: the system mainly consists of four components (1) Home electricity environment simulation component; 
(2) Filtering and amplification component (3) Data acquisition component (4) Data storage component.
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In a typical household setting, electricity is distributed to various sockets and appliances throughout the 
home. To simulate this setup in a laboratory environment, multiple power sockets were utilised to emulate the 
wiring found in homes. Household appliances are directly plugged into these sockets, while acquisition equip-
ment is connected to the power input of the main socket. As depicted in Fig. 2, each socket on the receptacle is 
managed by an analogue device switching system comprising a relay and a controller. The relay’s functionality 
is governed by the output of the controller pins, and the switching data from the relay are transmitted to a com-
puter via a serial port for monitoring and analysis purposes.

Hardware type Hardware Model Manufacturer

Microcontroller Unit (MCU) STM32F407IGTx STMicroelectronics

External ADC AD7606 Analog Devices Inc. (ADI)

Current Transformers (CT) SK-MCT224 Shenke (SNK)

Potential Transformer (PT) SKPT225A-B Shenke (SNK)

Operational Amplifiers AD8052 Analog Devices Inc. (ADI)

SRAM IS61LV51216 Integrated Silicon Solution, Inc. (ISSI)

Ethernet PHY Ethernet PHY 8720 A Microchip

Table 3.  Information on the main components of the acquisition system.

Fig. 2  Detailed internal structure of the controller.

Fig. 3  Schematic diagram of filter amplifier circuit.
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The filtering and amplification component, as shown in Fig. 3 of the schematic diagram, scales the current to 
be tested within the range of ±10 V through a current transformer, sampling resistor, and operational amplifier. 
As the current and voltage waveforms are synchronized, the test voltage, which is scaled to the range of ±10 V, 
is generated through a potential transformer and operational amplifier. The voltage after amplification is con-
nected to the corresponding pins of an external ADC chip.

The data acquisition component, which is depicted in the schematic diagram of the data acquisition circuit 
in Fig. 4, employs an external ADC chip as an analogue-to-digital converter to facilitate the direct conversion of 
AC current and voltage waveforms into digital signals. Controlled by the MCU, the external ADC chip reads the 
data into a buffer, which is then cached through the FSMC using interrupts. This buffered data is subsequently 
encapsulated into a customised data frame format and transferred to the data storage section via Ethernet uti-
lizing the LWIP protocol (Lightweight TCP/IP Protocol). This framework enables the data acquisition section 
to efficiently capture current and voltage waveform data and convert it into digital signals for further processing 
and transmission. The integration of interrupts and buffering mechanisms ensures the accuracy and stability of 
data collection, while leveraging Ethernet and the LWIP protocol enables rapid data transfer and processing.

The data storage component, illustrated in the overall structure of Fig. 5, the establishment of a TCP con-
nection with the data acquisition component by monitoring the corresponding port. Once the connection is 
established, the data storage module parses the received data frame (as outlined in Table 4) and stores the parsed 
data in the database. Given that the data acquisition component transmits data every current and voltage cycle 
(approximately every 20 ms), precautions are taken to prevent potential data loss resulting from the data storage 

Fig. 4  Printed Circuit Board(PCB) of data acquisition circuit.

Fig. 5  Overall structure of the data storage component.
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component’s processing speed being lower than the transmission speed of the data acquisition component. To 
mitigate this risk, the data storage component implements internal buffering, multi-threading, and database 
resource pool methods to effectively buffer and store the received data. Furthermore, the data storage compo-
nent is tasked with receiving device switch information from either the serial port or LoRa transmission on the 
console. These delivery results, along with their corresponding timestamps, are stored in the database.

The communication between the data acquisition component and the data storage component involves 
two distinct frame formats: the data frame outlined in Table 4(a) and the retransmission frame delineated in 
Table 4(b). These frame formats serve crucial roles in the overall communication process. Firstly, data frames are 
pivotal in communication as they primarily carry the entirely of actual data acquired from the data acquisition 
component. It is the responsibility of these data frames to efficiently transfer acquired data to the data storage 
component for subsequent processing, analysis, and storage. Conversely, retransmission frames serve a different 
purpose, primarily focusing on ensuring the integrity and reliability of data transmission. In cases of data loss 
or corruption during communication, the data storage component can utilize retransmission frames to request 
the retransmission of data from the data acquisition component. This data retransmission mechanism serves to 
uphold the accuracy and integrity of the transmitted data. The combination of these two frame formats estab-
lishes a robust communication framework between the data acquisition and data storage components, aiming to 
ensure timely data transmission and reliability. Through the synergy of data frames and retransmission frames, 
the communication system effectively meets the requirements of data acquisition, transmission, and storage, 
thereby providing a solid foundation for data processing and analysis.

Data Records
The TDHA dataset is uploaded to Science Databank (https://doi.org/10.57760/sciencedb.13172)8. The TDHA 
dataset consists of 23 files by the time of this paper is published. Its directory structure is shown in Fig. 6.

The Aggregate folder records the instantaneous current and voltage data when the 7 sets of aggregated 
household appliances are switched on and off, which are stored in separate files named Aggregation_N.csv 
(N = {1,2…7}), respectively. The labelling of the switching times of these seven sets of aggregated household 
appliances is stored in the Event folder.

The SocketRecord.xlsx file records information about the appliances that were accessed during the measure-
ment of the 7 sets of aggregated appliance data. This file contains 7 worksheets, each of which is corresponding 
to a set of aggregated household appliance data.

The Background folder records background current and voltage data in the absence of household appli-
ances being connected. It is mainly used to record the background noise of current and voltage in the absence 
of household appliances. The folder contains two files: background_5Relay.csv and background_NoRelay.csv.

•	 The background_5Relay.csv file records the data in the case where there are no household appliances con-
nected and only relays are connected.

•	 The background_NoRelay.csv file records the data in the case where there is no household appliance access 
and no relay access.

The remaining folders record instantaneous current and voltage data for various household appliances when 
switched individually in different on/off states. The names of these folders are a combination of the name of the 
household appliance and the setting (if the appliance has only one setting, the folder name is the name of the 
household appliance). Take the folder named “Displayer” as an example:

•	 Displayer_N.csv (N = {1,2…7}): Records the instantaneous current and voltage data file when the displayer 
is switched on/off individually.

•	 Displayer_sign_N.csv (N = {1,2…7}): A labelled file that records the switching time of the displayer.

For data files (such as Displayer_1.csv), each record represents one cycle (20 ms) of current and voltage, as 
depicted in Fig. 7. Each record includes the raw values (Value) of 1024 data points collected for the current and 
voltage within that cycle. Additionally, the records contain timestamp markers (RecvTime) shared by the collec-
tion and labelling system. The remaining columns are the number of sampling points per cycle (Rate = 1024), 
the sampled channel (Channel = 1 for voltage, Channel = 2 for current), the room identifier (HomeID, which is 

(a)

Frame header Year Month Day Hour Minute Second

32 bit 16 bit 8 bit 8 bit 8 bit 8 bit 8 bit

Internal number Room Number Sampling channel Samples per period Sampling value End of frame CRC

8 bit 8 bit 8 bit 16 bit 16 bit 16 bit 32 bit

(b)

Frame header Internal number Room number Sampling channel Samples per period operation End of frame CRC

32 bit 8 bit 8 bit 8 bit 16 bit 8 bit 16 bit 32 bit

Table 4.  Communication frame format diagram. (a) Data frame format of the data acquisition component and 
the data storage component (b) Retransmission frame and acknowledgement format of the data acquisition 
component and the data storage component.
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a simulated household electricity environment number based on the setup), and the microcontroller RTC time 
(DeviceTime, this attribute holds no specific meaning and is solely used to check the integrity of the data files).

The annotations for the dataset are stored in other CSV files, such as Displayer_sign_1.csv. Whether it’s for 
multi-device measurements or single-device measurements, the format of the annotation file remains consistent, 
as shown in Table 5. Each record in the file consists of a system-level timestamp (RecvTime, timestamp accurate 
to milliseconds) and a device switching event (event, for individual device labelling format: room number - appli-
ance switch; for aggregated data labelling format: socketx:0/1). Due to the differences in transmission speeds, the 
annotation times in these files may experience a delay of 20 ms approximately after the appliances are activated.

The dataset primarily includes high-sampling-rate raw voltage and current waveforms from household elec-
trical circuits and appliances. It also encompasses voltage and current waveforms of the same appliance under 
various operating conditions, as well as during random on/off transitions. Additionally, it contains voltage and 
current waveforms when no appliances are connected to the electrical circuit.

To facilitate waveform analysis, the sampling frequency for both current and voltage waveforms is set to 
51.2 kHz, resulting in 1024 samples per cycle for each current and voltage waveform. Additionally, household 
appliances are systematically switched on and off at regular intervals of every 10 seconds, ensuring a high infor-
mation density in the dataset.

NILM has categorised appliances into four types based on the nature of their operation9:

•	 Type I: Appliances with only two operating states (on/off) such as cell phone chargers, incandescent lamps, etc.
•	 Type II: Multi-state appliances with a limited number of operating states, e.g., hair dryers, electric drills, etc.

Fig. 6  Directory structure of TDHA dataset files.
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•	 Type III: Appliances with continuously variable operating states with a variable number of states, e.g., humid-
ifiers, stereos, etc.

•	 Type VI: Devices that operate in a constant number of states over a period of weeks or days, e.g., routers, 
refrigerators, etc.

Raw voltage and current waveforms of household circuits and appliances.  We compiled a list 
of common household appliances typically found in Chinese households and meticulously recorded the switch-
ing events of each appliance individually. This was accomplished using a data acquisition system alongside an 
analogue equipment switching system. Table 6 provides a detailed description of the appliances utilised in the 
setup. Additionally, we categorized these appliances based on their characteristics, classifying them into capac-
itive, inductive, and resistive loads. Each type of load serves a distinct role in electrical circuits, with their phase 
difference characteristics enable the distinction among the types of appliances load for the researchers10. Figure 8 
illustrates the load types of the appliances used in our simulated environment and shows their phase differences.

Current and voltage waveforms of the same appliance under different operating condi-
tions.  Based on the classification of appliance operation characteristics, Type I appliances exhibit only two 
operating states, requiring consideration of just one state. Conversely, Type II and Type III appliances, such as 
humidifiers and variable-speed fans, operate in multiple distinct modes. We collected current and voltage wave-
forms for these two types of appliances across various operational states, aiming to improve identification accu-
racy. Figure 9 illustrates the current and voltage waveforms of a fan starting in first and third level of speed.

Current-voltage waveforms at random switch of household appliances.  This segment of data 
collection requires the use of a home environment simulation component, which is used to simulate the on/off 
states of household appliances in a home environment. For the simulation of equipment switch, the household 
appliances keep their behaviour unchanged during the operations of other existing appliances, i.e., the appliances 
operate independently. For smart devices whose operating states cannot be directly controlled by relays, we use 
power metering modules to measure such devices, and a jump in the measured current value indicates that the 
device is turned on or off. Table 7 shows the appliances used in the simulated aggregated home environment. The 
current waveforms of an aggregated appliance at a given time of appliance switching are illustrated in Fig. 10.

Technical Validation
Data storage.  Due to the high sampling frequency of the data collection equipment, a large volume of data 
is generated within a short period. Therefore, it is essential to minimize the generation of unnecessary datasets. 
Experimental results based on the setup indicate that the input current and voltage of most appliances remain 
stable within a 10-second interval. Hence, we regulated the switching of appliances within a 10-second timeframe. 
As a result, there are 360 appliance switch events per hour. The dataset does not account for user usage patterns 

Fig. 7  File format diagram for data files.
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and the collected data is not continuous. Instead, it focuses mainly on identifying appliances based on their intrin-
sic characteristics, by which the generalizability of the dataset is enhanced.

Data accuracy.  The voltage and current transformers, along with the operational amplifiers used in the filter-
ing and amplification section, possess the following characteristics:

(a)

id Time Event

1 2023/05/26 10:06:01.721198 1-0

2 2023/05/26 10:06:11.717067 1-1

3 2023/05/26 10:06:21.726447 1-0

4 2023/05/26 10:06:31.724428 1-1

5 2023/05/26 10:06:41.723452 1-0

6 2023/05/26 10:06:51.722633 1-1

7 2023/05/26 10:07:01.726876 1-0

8 2023/05/26 10:07:11.718271 1-1

9 2023/05/26 10:07:21.721194 1-0

10 2023/05/26 10:07:31.728876 1-1

(b)

1 2023/07/06 17:01:22.041947 Socket0: 1,Socket1: 1,Socket2: 0,Socket3: 1,So…

2 2023/07/06 17:01:32.055121 Socket0: 1,Socket1: 1,Socket2: 1,Socket3: 1,So…

3 2023/07/06 17:01:42.059638 Socket0: 1,Socket1: 0,Socket2: 1,Socket3: 1,So…

4 2023/07/06 17:01:52.065095 Socket0: 0,Socket1: 0,Socket2: 1,Socket3: 1,So…

5 2023/07/06 17:02:02.071342 Socket0: 1,Socket1: 0,Socket2: 1,Socket3: 1,So…

6 2023/07/06 17:02:12.077631 Socket0: 1,Socket1: 0,Socket2: 1,Socket3: 0,So…

7 2023/07/06 17:02:22.072417 Socket0: 1,Socket1: 0,Socket2: 1,Socket3: 1,So…

8 2023/07/06 17:02:32.077027 Socket0: 1,Socket1: 0,Socket2: 1,Socket3: 1,So…

9 2023/07/06 17:02:42.095289 Socket0: 1,Socket1: 1,Socket2: 1,Socket3: 1,So…

10 2023/07/06 17:02:52.088197 Socket0: 1,Socket1: 0,Socket2: 1,Socket3: 1,So…

Table 5.  Annotation file format diagram with (a) event annotations for single appliance switch measurements 
and (b) event annotations for aggregated switch measurements for multiple appliances randomly opening and 
closing.

Serial number Device type Brand Number Rated power State type Load type

1 Table Lamp FSL 1 25 W Type I Resistive loads

2 Mobile Phone VIVO 1 33 W Type I Capacitive loads

3 Display AOC 1 — Type I Inductive loads

4

Large Humidifier Quarter Power

RONG SHENG 1 50 W Type III

Inductive loads

Large Humidifier Half Power Inductive loads

Large Humidifier Three Quarters Power Inductive loads

Large Humidifier Max Power Inductive loads

5
Small Humidifier Half Power

Midea 1 Type III
Capacitive loads

Small Humidifier Max Power Capacitive loads

6
Fan 3rd-speed

—— 1 30 W Type II
Capacitive load

Fan 1st-speed Inductive load

7 Electric Kettle Midea 1 1800W Type I Resistive loads

8 Router MIUI 1 20 W Type VI Inductive load

9
Hairdryer 1st-Speed Cool Wind

MIUI 1 1800W Type II
Capacitive load

Hairdryer 1st-Speed Low Temperature Wind Capacitive load

10

Microwave Defrosting

Midea 1 600W-900W Type II

Inductive loads

Microwave High Heat Inductive loads

Microwave Low Heat Inductive loads

Microwave Medium Heat Inductive loads

11 Egg Boiler Joyoung 1 360 W Type I Resistive loads

Table 6.  List of household appliances used in the TDHA dataset, the table provides the brand, rated power, 
device type, and load type of the household appliances.
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Potential transformer

Primary rated current Ib mA( ) 2 ,=

Secondary rated current mA2 ,=

Secondary load 80= Ω

Linearity 99 6%, and≥ .

Phase Difference12 19′ ≤ ≤ ′

Current transformers

=Primary rated current Ib A( ) 5 ,

=Secondary rated current mA2 ,

= ΩSecondary load 10 ,

= =CT transformation ratio A
mA
5

2
2500,

≥ .Linearity 99 8%,

Phase Difference 15 ,≤ ′

Operational amplifiers

High slew rate V s145 / ,µ=

Linearity 99 91%,≥ .

�µ=Low offset voltage drift V C10 / ,

The ADC chip used for data set acquisition is the AD7606, its characteristics under ±10V acquisition con-
ditions are shown in Table 8, which is set to oversample the ADC chip twice, and the data set is sampled at a 
frequency of is sampled at a frequency of 51.2 kSPS. The ADC has the following characteristics:

=Resolution 16

SNR k No oversampling V range f kHz90; ; 10 ; 1 ,k IN= = ± =

SNR k Oversampling by V range f Hz95 5; 16; 10 ; 130 ,k IN= . = ± =

= .Linearity 99 9848%,

=Conversion Time us4 ,

The overall linearity of the acquisition device is then:

≥ ∗ ∗ = . ∗ . ∗ . ≈ .−Linearity Linearity Linearity Linearity 99 8% 99 91% 99 9848% 99 6950%I tot CT OA ADC

Linearity Linearity Linearity Linearity 99 6% 99 91% 99 9848% 99 4952%,U tot PT OA ADC≥ ∗ ∗ = . ∗ . ∗ . ≈ .−

Because the acquisition device has a linearity of up to 99.4952% and 99. 6950% for voltage and current, 
respectively, the acquisition device is able to accurately capture subtle signal changes in voltage and current.

The correspondence between the ADC chip sampling value and the actual value is shown in Eq. (1)

https://doi.org/10.1038/s41597-024-03310-3


1 1Scientific Data |          (2024) 11:493  | https://doi.org/10.1038/s41597-024-03310-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

=
= .

∗ ∗ .VIN
REF

ADRange ADC CODE
REF

2 5,
2 5

2 * (1)15

Integrity detection.  Transport integrity.  In order to ensure the stability of data transmission, the data 
acquisition component of the data acquisition system adopts the lightweight TCP/IP (LWIP) protocol, the staging 
buffer, CRC checksum, and retransmission mechanism. The LWIP protocol is mainly responsible for sending the 
data frames, and at the same time detecting whether the data are sent successfully. The CRC checksum is mainly 
responsible for checking the data frames to ensure the accuracy of data transmission. The buffer temporarily 
stores the data that have been sent and deletes the corresponding records from the temporary storage area upon 
receiving the confirmation frame for the received data. The retransmission mechanism retransmits the corre-
sponding data frames through the staging buffer when LWIP detects a transmission failure or a CRC check error. 
If the retransmission fails three times, the retransmitted data frames are stored in the SD card and marked in 
the LWIP transmission log. Meanwhile, the data acquisition component detecting whether the TCP connection 
is disconnected, and attempting to re-establish a connection with the data storage buffer if a disconnection is 
detected. After the data acquisition section finishes running, the failed data is manually written to the database 
by the SD card.

Fig. 8  Appliance load type chart, with the load states (capacitive, inductive and resistive loads) presented by 
some household appliances at the moment of start-up labeled by phase differences.

Fig. 9  Comparison of different settings of the fan, Starting current waveforms of the fan in first and third speed 
level.
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Document integrity.  Before uploading the dataset to the website, we have checked each dataset file in detail 
to make sure that the dataset uploaded to the website have no missing records due to perturbations in the col-
lection process. The integrity checking process is shown in Fig. 11. First, the number of records per second is 
checked as the calculation of the number of dual-channel records per second should be greater than or equal to 
100 records per second, the number of records per minute is greater than or equal to 6000 records. At the same 
time, we also check whether the internal numbering in each second is continuous.

Usage Notes
This dataset is provided by CSV files which contains two formats of CSV files as raw dataset waveform file 
format and event annotation file format, respectively, which can be extracted by using common programming 
languages and libraries (e.g. Python, MATLAB, etc.). The V2 version of the dataset presented in this paper is 
released in 2023. The types of appliances, time of collection, amount of data, and the size of aggregated data in 
this dataset keep updating and releasing over time.

The electrical appliances connected to the power strip in aggregated data 1

Socket Device 0 1 2 3 4 Notes

Table Lamp √

Mobilephone √

Displayer

Large humidifier √ Quarter Power

Small humidifier

Water Heater √

Fan √ 1st Speed

Hairdryer

Router

Egg Boiler

Microwave

The electrical appliances connected to the power strip in aggregated data 7

Table Lamp

Mobilephone

Displayer

Large humidifier √ Three Quarters Power

Small humidifier √ Max Power

Water Heater

Fan √ 1st Speed

Hairdryer

Router

Egg Boiler √

Microwave √ High Heat

Table 7.  Information on appliances used in the simulated home environment.

Fig. 10  Aggregate current vs. voltage plot, shown at Aggregate 1 (Socket0: 1,Socket1: 1,Socket2: 1,Socket3: 
0,Socket4: 0 → Socket0: 1,Socket1: 1,Socket2: 1 Socket0: 1,Socket1:1,Socket2:1, Socket2:1).
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The waveform of current and voltage in this dataset is the original data collected by ADC without any pro-
cessing, if it is necessary to convert the raw data into actual current and voltage data, he/she need to map the 
original data, and it is recommended to refer to Eqs. (2, 3):
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The overall flow of using the dataset is shown in Fig. 12. Starting with reading all the CSV files, the data files 
and labelling files are sorted with respect to their time and internal indexes. Then, the sampled values in the data 
files are converted to real values according to Eqs. (2) and (3). Subsequently, the data file is segmented according 
to the time information in the labelled file. By processing the segmented data, the waveforms of the current and 
voltage can be plotted or analysed using a programming language such as Python or MATLAB. Further, recogni-
tion algorithms can be designed and recognition models can be trained11, such as Decision Trees7, Naive Bayes, 
Support Vector Machine (SVM), K-Nearest Neighbors (KNN)7, infinite factorial Hidden Markov Model (iFHM-
MCC)12, Long Short-Term Memory (LSTM) network13, Sequential Point Learning Algorithm with Bidirectional 
Expansion Convolution (BitcnNILM)14, and inception structure algorithm of multiple overlapping sliding win-
dows combined with CNNs15 to obtain the final recognition results.

+FS MIDSCALE –FS LSB

±10 V RANGE +10 V 0 V –10 V 305μV

Table 8.  Transmission Characteristics of the AD7606 with a Sampling Range of ±10 V.

Fig. 11  File Integrity Detection Flowchart.
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Known issues

•	 For combinations of multiple household appliances, there are various types of combinations. This dataset only 
collects data for instances where one combination of household appliances is activated at a time.

•	 Due to the difference in transmission rates between electrical signals and marker information, there is an 
approximate deviation of one current-voltage cycle (20 ms) in the timestamps of marked household appliance 
switch events.

Code availability
We used Python to write programmes to process and validate the dataset. Here are some of the programmes we 
used:

• Check.py: This programme is used to validate and check the accuracy of the dataset.
• ShowWave.py: This file is used to view the waveform of the current when the appliance is started.
• ShowWaveFFT.py: This file is used to perform a Fast Fourier Transform on the current and voltage waveforms.
�• LWIP_NILMF417IGT_MakeFile_CRC_new: This folder contains the embedded programme used in the 
data acquisition section.
�• Upper_computer_monitoring_system.mp4: This file is the video of the monitoring programme of the upper 
computer during the aggregation data collection.

These programmes are helpful in efficiently processing and validating the datasets to ensure the correctness 
and usability of the data. The source code of this programme has been posted on https://github.com/TagEnd/
TDHA-Acquisition-System-Submit and the TDHA dataset has been posted both on the Science Databank https://
www.scidb.cn/en/detail?dataSetId=876623ff38634ccb8426b07146720914&version=V2 and on our custom plat-
form http://f-lab.ncepu.edu.cn/TDHA.
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