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Metagenomics datasets of 
water and sediments from 
eutrophication-impacted artificial 
lakes in South Africa
Grace Nkechinyere Ijoma  1 ✉, Henry Joseph Oduor Ogola1,2, Preenan Pillay1, 
Kalonji Abondance Tshisekedi3 & Memory Tekere1

We present metagenomes of 16 samples of water and sediment from two lakes, collected from 
eutrophic and non-eutrophic areas, including pooled samples enriched with phosphate and nitrate. 
Additionally, we assembled 167 bacterial metagenome-assembled genomes (MAGs). These MAGs 
were de-replicated into 83 unique genomes representing different species found in the lakes. All 
the MAGs exhibited >70% completeness and <10% contamination, with 79 MAGs being classified 
as ‘nearly complete’ (completeness >90%), while 54 falling within 80–90% range and 34 between 
75–80% complete. The most abundant MAGs identified across all samples were Proteobacteria 
(n = 80), Firmicutes_A (n = 35), Firmicutes (n = 13), and Bacteriodota (n = 22). Other groups included 
Desulfobacteria_I (n = 2), Verrucomicrobiota (n = 4), Campylobacterota (n = 4) and Actinobacteriota 
(n = 6). Importantly, phylogenomic analysis identified that approximately 50.3% of the MAGs could not 
be classified to known species, suggesting the presence of potentially new and unknown bacteria in 
these lakes, warranting further in-depth investigation. This study provides valuable new dataset on the 
diverse and often unique microbial communities living in polluted lakes, useful in developing effective 
strategies to manage pollution.

Background & Summary
South Africa has a significant number of artificial lakes primarily designed to manage water runoff from urban 
areas to prevent flooding. Many of these lakes, located in different areas, serve as recreational spaces for resi-
dents. Since the Gauteng province has the South Africa’s largest population1, direct and indirect interactions 
with these water bodies are extensive2. Internationally, lake ecosystems are known for their susceptibility to 
rapid and predictable changes in their microbiome structure and diversity, primarily due to their sensitivity to 
perturbations associated with urbanization-induced human inputs3,4. For example, lakes have been identified 
as reservoirs of pathogenic bacteria and ecologically harmful bacterial communities, often linked to eutrophi-
cation4. With the high population density in Gauteng, the runoff water from urban areas into these lakes poses 
a serious risk to the environmental ecology and human health. Therefore, gaining comprehensive insight into 
the diversity and distribution patterns of microbial communities within the largest lakes in Gauteng is crucial.

The emergence of metagenomics has brought a paradigm shift in the study of microbial communities 
within complex ecosystems. This powerful genetic approach allows for the discovery of unknown taxa, thereby 
enriching knowledge on diverse functional community molecular content across environmental gradients and 
compartments without the need for microbial culturing5. Shotgun metagenomic sequencing, in particular, 
offers several advantages over targeted amplicon analysis based on 16S rDNA or ITS gene, including enhanced 
detection of bacterial and fungal species, increased detection of diversity, and increased prediction of genes6. 
In recent years, various assembly and binning tools have been developed7, enabling a transition in microbi-
ome studies from gene-centric approaches to genome-resolved metagenomics. This evolution has given rise 
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to population-level genomics through metagenome-assembled genomes (MAGs)8–10. This strategy allows for 
adequate read coverage that enables the assembly of short sequence reads into contigs, which are then binned 
into MAGs, facilitating the reconstruction of genomes for both well-established species and uncultured taxa11. 
This expands our understanding of microbial phylogeny and metabolic diversity. This method has been exten-
sively employed to identify a large number of uncultured microbial communities from complex environmental 
samples12,13, including lakes affected by human activities3,9,14.

Unfortunately, our thorough literature search has revealed an apparent absence of documented metagenomic 
studies dedicated to South African lakes. A detailed and high-quality metagenomic record of such lake microbi-
omes will be pivotal in establishing a baseline for evaluating alterations and anthropogenic influences on water 
quality, providing crucial insights for the effective management of these vital water bodies. Moreover, such data 
can aid in the identification of microbial health hazards, and may serve as a foundation for future monitoring, 
utilizing the in-situ microbiomes as indicators of environmental health.

Here, we present 58.6 Gb (average 3.7 Gb) shotgun metagenome datasets of 16 water and sediment samples 
from Boksburg and Alberton Lakes (Fig. 1a,b), including eutrophic and non-eutrophic areas, as well as pooled 
samples enriched with phosphate and nitrate (Table 1). The sample information, sequencing quality metrics, 
and assembly statistics of the shotgun metagenomic data are shown in Table 1. Taxonomic annotation with 
Kracken2/Bracken15 identified 94.0%, 4.6% 1.37, and 0.026% of the classified sequences across all samples as 
Bacteria, Archaeal, Fungal, and Viral taxa, respectively. Among the bacterial sequences, 39 phyla were identi-
fied, with Proteobacteria (59.3%), Actinobacteria (28.8%), Bacteroidetes (4.2%), Planctomycetes (2.2%), and 
Firmicutes (1.8%) being the most abundant (>1% relative abundance). The relative abundance of bacterial phyla 
across the samples is provided in Fig. 2.

Using metaSPAdes v3.15.3 pipeline16, we reconstructed 167 metagenome-assembled genomes (MAGs) from 
the shotgun metagenomes generated in this study. The assembly quality metrics of the MAGs is summarised in 
Supplementary Information Table S1. All the MAGs had completeness of >75% with a contamination <10%), 
meeting the medium quality of the minimum information about a metagenome-assembled genome (MIMAG) 
standard17. Within the MAGs, 80 (48%) were near complete (completeness >90%), 54 (32%) were between 
80%–90% completeness, and 34 (20%) were between 75%–80% completeness. Notably, 159 (95%) MAGs had 
<5% contamination, and 8 (5%) MAGs showed no contamination. The assembly quality was also high, as a 
total of 109 MAGs (64%) had an N50 length of greater than 10,000 bp, with the longest value reaching 1.85 
Mbp (Supplementary Information Table S2). The genome size of the MAGs ranged from 1.10 to 5.79 Mbp, 

Fig. 1 Sample Collection and Metagenomic Analysis. (a) Geographical location of the sample sites. (b) The 
sampling area within each lake. (c) Schematic representation for the metagenomic analysis conducted.

https://doi.org/10.1038/s41597-024-03286-0


3Scientific Data |          (2024) 11:456  | https://doi.org/10.1038/s41597-024-03286-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

with an average value of 2.94 Mbp (Supplementary Information Table S2). Overall, Verrucomicrobiota had 
the highest GC content (average 69.8%), while Campylobacterota had the lowest GC content (26.7%) (Fig. 3c, 
Supplementary Information Table S2). However, no significant correlation was observed between genome size 
and N50 length, as well as the completeness and contamination (Fig. 3a,b).

In total, all the MAGs were phylogenomically classified into 167 bacteria based on the Genome Taxonomy 
Database (GTDB-Tk)18 (Figs. 4, 5; Supplementary Information Table S2). Nine phyla were identified, with the 
most abundant being Proteobacteria, including class Gammaproteobacteria, (n = 70) and Alphaproteobacteria 
(n = 10), Firmicutes_A (n = 35), and Bacteriodota (n = 22) (Fig. 4a). The distribution of the MAGS at phy-
lum in the different samples of the two lakes is illustrated in Fig. 4b and Supplementary Information Table S2. 
Examining sampling locations, the microbial community of Alberton samples was predominantly characterized 
by the Proteobacteria phylum, accounting for a significant 50.79% of the identified bacteria. Other abundant 
taxa included the Firmicutes_A and Firmicutes phyla at 17.46% and 15.87% relative abundance, respectively. 
Bacteroidota also had a notable presence, capturing 11.11% of the community. A similar trend, with subtle 
variations in microbial landscape influenced by sample type, enrichment and eutrophic state, was observed 
in Boksburg (Fig. 4b). Proteobacteria remained dominant, representing 47.17% of the total MAGs. However, 
Firmicutes_A occupied a larger proportion compared to Alberton, making up 22.64% of the microbial diversity. 

Sample Source/ Enrichment Pollution state Quality reads (Millions) Bases (G) Size (Gbp) NCBI SRA accession

Alberton

SEA Sediment Eutrophic 16.251 4.9 2.8 SRX23132301

SNA Sediment Non-eutrophic 13.416 4 2.1 SRX23132302

PNNA Pooled/Nitrate Non-eutrophic 26.081 7.8 4.3 SRX23132309

PPEA Pooled/Phosphate Eutrophic 21.163 6.3 3.4 SRX23132310

PPNA Pooled/Phosphate Non-eutrophic 24.427 7.3 3.9 SRX23132311

WNA Water Non-eutrophic 25.022 7.5 3.9 SRX23132304

WEA Water Eutrophic 19.864 6 3.1 SRX23132305

PNEA Pooled Eutrophic 20.24 6.1 3.3 SRX23132308

Boksburg

PNEB Pooled/Nitrate Eutrophic 29.586 8.9 4.8 SRX23132312

PNNB Pooled/Nitrate Non-eutrophic 25.784 7.7 4.1 SRX23132313

PPEB Pooled/Phosphate Eutrophic 22.295 6.7 3.5 SRX23132314

PPNB Pooled/Phosphate Non-eutrophic 24.472 7.3 3.8 SRX23132315

SEB Sediment Eutrophic 20.681 6.2 3.3 S RX23132316

SNB Sediment Non-eutrophic 20.717 6.2 3.3 SRX23132303

WNB Water Non-eutrophic 27.06 8.1 4.4 SRX23132306

WEB Water Eutrophic 28.146 8.4 4.6 SRX23132307

Table 1. Accession numbers, sequencing information, and assembly statistics of shotgun metagenomes of 
sediment and water samples from Lake Alberton and Boksburg in Gauteng Province, South Africa. The average 
Phred score and read length for all samples was 36 and 150 bp, respectively.

k__Bacteria|p__Proteobacteria

Pooled/PPooled/NWater

k__Bacteria|p__Bacteroidetes
k__Bacteria|p__Planctomycetes
k__Bacteria|p__Firmicutes
k__Bacteria|p__Acidobacteria
k__Bacteria|p__Gemmatimonadetes
k__Bacteria|p__Verrucomicrobia
k__Bacteria|p__Cyanobacteria
Other phyla (<0.5%)

SE
A

SE
B

SN
A

SN
B

W
EA

W
EB

W
N
A

W
N
B

PN
EA

PN
EB

PN
N
A

PN
N
B

PP
EA

PP
EB

PP
N
A

PP
N
B0

20

40

60

80

100

Samples

R
el
at
iv
e
ab
un
da
nc
e
(%
)

Sediment

Fig. 2 Relative abundance of bacterial phyla in the lake sediment and water samples based on Kraken2/ 
Bracken classification.
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The representation of Bacteroidota was consistent with Alberton, constituting a significant 14.15% (Fig. 4b; 
Supplementary Information Table S2).

For pooled samples, Proteobacteria also emerged as the predominant phylum, constituting 50.72% of the 
total. Firmicutes_A and Firmicutes followed representing 18.84% and 14.49% respectively. Bacteroidota was 
also an abundant taxon, accounting for 8.69%. In the sediment samples, Proteobacteria occupied 40.35%, but 
the Firmicutes_A phylum took precedence as the dominant taxa, representing 38.60% of the microbial content 
(Supplementary Information Table 2). Bacteroidota was also substantial, making up 10.53%. In contrast, water 
column samples were dominated by Proteobacteria at 55.81% relative abundance, followed closely Bacteroidota 
at 23.26%. Other significant taxa included Actinobacteriota and Verrucomicrobiota, which constituted 11.63% 
and 9.30% of the microbial population, respectively. Interestingly, a significant number of MAGs could not be 
classified at order (n = 2; 1.2%), family (n = 15; 8.98%), genus (n = 33; 19.8%) and species level (n = 82; 48.5%), 
suggesting that the majority of these MAGs could represent novel taxa and should be investigated further 
(Figs. 4c, 5).

The presented study has uncovered a diverse array of novel microbial genomes within artificial lakes in 
South Africa, identified in both water and sediment samples. Furthermore, our datasets will be used to gener-
ate novel hypotheses regarding the connections between lake microbiomes and human activities in the water-
shed. Thereby, creating an understanding of the microbial species diversity, structure, and function, within these 
South African lakes, which can be leveraged for the implementation of advanced monitoring and environmental 
management strategies.

Methods
Sampling sites and sample collection. In 2022, during the month of February (Summer), we collected 
water column and sediment samples from two urbanization-impacted artificial lakes (Boksburg, 26° 13′15.24″ S, 
28°14′51.36″ E & Alberton, 26°18′30.8″ S, 28°05″30.0″ E) within Gauteng, South Africa (Fig. 1a,b). In each lake, 
runoff and central samples were identified based on topography (Fig. 1b) and collected from locations indicated 

c)

a)
Genomic Size versus N50 length of MAGs Completeness versus Contamination of MAGs

b)

Fig. 3 Overview of the MAGS. (a) The relationship between genomic size and N50 length among MAGs. (b) The 
relationship between the completeness and contamination of MAGs. (c) Boxplots compare the distribution of 
genomic size and GC content among MAGs at the phylum level.
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in Fig. 1c (Boksburg (Runoff: 26° 14′00″ S, 28°14′14″ E, Central: 26° 14′10″ S, 28°14′21″ E), Alberton (Runoff: 
26°18′28″ S, 28°05″31″ E, Central: 26°18′28″ S, 28°05″28″ E)). At each sampling site, triplicate samples of water 
(10–15 cm depth) and sediment samples (at the lake bottom) were colle were collected in sterile 5 L sodium bot-
tles (Corning® Gosselin™, NY, USA) and plastic bags, placed on ice and immediately transported to the labora-
tory for processing to maintain DNA quality.

Shotgun metagenomics and data analysis. Metagenomic sequencing. The DNA sample process-
ing involved several key steps, starting with DNA extraction and purification, followed by library preparation 
and high-throughput shotgun sequencing. Initially, environmental DNA was purified from water and sedi-
ment samples using the DNeasy® PowerSoil Pro Kit (Qiagen, Germany) as per the manufacturer’s instructions. 
Subsequently, DNA libraries were prepared following the MGIEasy Universal DNA Library Prep Set User Manual 
v1 Protocol (MGI Tech Co., Shenzen, China). This involved fragmenting the genomic DNA using the Covaris 
M220 Focused-Ultrasonicator (Covaris, Brighton, UK), followed by end repair and A-tailing of the sheared DNA. 
Following this, adapters were ligated following the protocols outlined in the MGIEasy DNA Adapters kit, and the 
ligated DNA was purified using DNA Clean Beads provided in the kit. PCR amplification was then performed on 
the purified, adapter-ligated DNA, followed by a second round of purification using magnetic beads. The quality 
of the PCR products was assessed using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, 
MD, USA). Subsequently, the PCR products underwent another round of purification, followed by denaturation 
and ligation to produce single-strand circular DNA libraries. Barcode libraries were combined in equal pro-
portions to create DNA Nanoballs (DNB), which were sequenced using DNBSEQ-G400 sequencer technology 
(MGI Tech Co., Shenzen, China), following the manufacturer’s guidelines. This sequencing was carried out at the 
Biotechnology Platform, Agricultural Research Council in Pretoria, South Africa. The raw data can be accessed 
at the NCBI database under the Bioproject ID PRJNA102258619 and Sequence Read Archive (SRA) accession 
number SRP48250520.
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Fig. 4 Taxonomic annotation and novelty of MAGs. (a) Phylogenomics-based taxonomic classification of the 
167 MAGs dataset at the phylum level. The phylum Proteobacteria have been split at class level. (b) Stacked 
bar plot of the relative distribution of MAGs at phylum level across different samples. The top bars represent 
the number of MAGs in each sample. (c) Stacked bar plot for novelty quantification of 167 MAGs at different 
taxonomic ranks.
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Quality control and assembly. Figure 1c illustrates the workflow for bioinformatic analysis of the generated 
NGS data. Raw sequence reads underwent a quality assessment utilizing FastQC v0.12.121 (parameters: default) 
and MultiQC v1.1522 (parameters: default). Subsequent data processing involved the eliminating adapter 
sequences, human reads and the exclusion of sub-par quality reads. Specifically, Trimmomatic V0.3623 (param-
eters: default) was used to remove reads that fell short of 30 bp or exhibited an average quality score below 
20. Initially, the unmapped high-quality reads were taxonomically classified using Kraken2 v2.1.115 (parame-
ters: default) with the standard database (which includes all bacterial, archaeal, and viral genomes from NCBI; 
accessed December 1, 2024). Abundances were re-estimated at the species level using Bracken v2.6.224 using 
default parameters. The retained high-quality reads were also co-assembled using metaSPAdes v3.15.316 (param-
eters: default). The resultant assembly’s integrity and standard were evaluated with QUAST v5.2.025.

Binning of metagenomic data and its refinement. The process of metagenomic binning employed tetranucleo-
tide frequencies, coverage, and GC content as criteria. This analysis was conducted using the MetaWRAP v1.326 
pipeline in its default mode, which include tools like MaxBin v2.027, metaBAT228, and CONCOCT v1.0.07. To 
improve bin quality, the MetaWRAP-Bin_refinement module was applied with settings -c 70 and -x 10. These 
settings helped to filter out low-quality segments and potential contaminants. The completeness and possible 
contamination of the binned segments were then assessed using CheckM v1.2.229, which is integrated into the 
MetaWRAP pipeline. Subsequently, the bins were reassembled using the MetaWRAP-reassemble_bins module 
with parameters -c 70 -x 10. This step further improved the quality and contiguity of the assembled genomes. 
Finally, the polished bins were dereplicated using dRep v2.6.230 to ensure that only unique genomes were 
included in the final analysis. De-replication was performed based on a 95% average nucleotide identity (ANI) 
benchmark, resulting in a final set of 167 distinct MAGs.

Phylogenetic assessment and MAGs taxonomy. To assign taxonomic classifications to the MAGs, the classify_wf 
function of GTDB-Tk v3.4.218 with the reference database GTDB release207 v2, all in their default settings. This 
tool utilizes 120 bacterial marker genes to construct a phylogenetic tree, which visually represented the evolu-
tionary relationships between the 167 identified bacterial MAGs. For easier visualization and interpretation, the 
tree was annotated with iTOL v531.

Data records
The raw shotgun sequencing datasets and the sequence data for 167 MAGs have been deposited in the National 
Center for Biotechnology Information (NCBI) database under the Bioproject ID PRJNA102258619 and Sequence 
Read Archive (SRA) accession number SRP48250520. Additionally, the sequence data of 167 MAGs have been 
deposited in Figshare32.

Known
Unknown

Actinobacteriota
Bacteroidota
Bdellovibrionota
Campylobacterota
Desulfobacterota

Species

Phylum

Firmicutes
Proteobacteria
Verrucomicrobiota

Phylogenetic analysis of MAGs

Fig. 5 Phylogenetic tree of bacteria at species-level MAGs (n = 167). The colors within the circle at the ends of 
the phylogenetic branches represent known (green) and unknown (black) species. The outer ring represents the 
various phyla of the MAGs as per the labels in the legend.
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Technical Validation
Before analyzing the data, we conducted quality checks on the purified environmental DNA. We used a 
NanoDrop 2000 spectrophotometer to measure the DNA concentration and an A260:A280 ratio (which assesses 
the purity of the DNA). Only samples with a ratio between 1.8 and 2.0 and a concentration of 20–150 ng/μl were 
used for library preparation and sequencing. These libraries were then quantified using a Qubit 4 fluorometer 
and the Qubit™ dsDNA HS Assay Kit. Quality distribution showed Q30 aggregated percentage of bases to be 
higher than 89 for all metagenomes. PHRED score was 36 for all samples (Supplementary Table S1). CheckM29 
v1.2.2 was used to assess the completeness and potential contamination of the draft genomes.

Code availability
Custom-designed scripts were not used to generate or process any data presented. The publicly available software 
was used in their default settings unless stated otherwise within the text.
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