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CROPGRIDS: a global geo-
referenced dataset of 173 crops
Fiona H. M. tang  1,2, Thu Ha Nguyen3, Giulia Conchedda4, Leon Casse  3,4, 
Francesco N. tubiello  4 & Federico Maggi  3,5 ✉

CROPGRIDS is a comprehensive global geo-referenced dataset providing area information for 173 crops 
for the year 2020, at a resolution of 0.05° (about 5.6 km at the equator). It represents a major update of 
the Monfreda et al. (2008) dataset (hereafter MRF), the most widely used geospatial dataset previously 
available, covering 175 crops with reference year 2000 at 10 km spatial resolution. CROPGRIDS builds 
on information originally provided in MRF and expands it using 27 selected published gridded datasets, 
subnational data of 52 countries obtained from National Statistical Offices, and the 2020 national-level 
statistics from FAOSTAT, providing more recent harvested and crop (physical) areas for 173 crops at 
regional, national, and global levels. The CROPGRIDS data advance the current state of knowledge 
on the spatial distribution of crops, providing useful inputs for modelling studies and sustainability 
analyses relevant to national and international processes.

Background & Summary
Detailed global geospatial information on the distribution of crop types over time is required to understand 
planetary boundaries and support decision-making at all scales, from land use change dynamics to the impacts 
of agricultural inputs on the environment. Geo-referenced crop information is particularly valuable for improv-
ing reporting and monitoring progress at sub-national scales under the Sustainable Development Goals (SDG), 
in particular Goal 2 indicators on the productivity and sustainability of agriculture1.

The most comprehensive geospatial product available today, covering 175 crops at a resolution of about 
10 km globally2—henceforth referred to herein as MRF from the initials of the authors—provides however dated 
information, limited to the year 2000, whereas significant changes in cropland extent have been documented 
over the past twenty years3,4. MRF was created by spatially disaggregating official national and sub-national 
harvested area information obtained from various sources, over a gridded cropland map derived from remote 
sensing. It has since been used in several published studies, most notably for assessing planetary boundaries 
with respect to food and agriculture5. Several crop type mapping efforts were made since the production of 
MRF (see ref. 6 for a comprehensive review). More recently, important initiatives such as those promoted by the 
European Space Agency (ESA)7,8, by the USA National Aeronautics and Space Administration (NASA)9, and by 
the G20 Ministers of Agriculture were launched and are already contributing considerable new information10–13. 
However, none of these efforts has matched the original MRF scope and crop coverage, so much so that many 
global assessments of agricultural impacts have continued to use MRF as a reference14–17.

To update the MRF information, we produced CROPGRIDS, a new global gridded harvested and crop (phys-
ical) area geospatial dataset for 173 crops for the year 2020. CROPGRIDS was produced using a similar approach 
as in ref. 13 with MRF data used as starting point and updated through hybridisation of more recent information, 
by merging all available, published and gridded datasets for periods more recent than 2000 and using a set of 
endogenous and exogenous data quality indicators, within a multi-criteria ranking scheme, to determine best-fit 
data by crop type and country. For some crop types and countries where gridded data more recent than 2000 
were not available, we spatialized recent subnational data obtained from National Statistical Offices (NSOs) 
following a similar algorithm used in MRF but with a new cropland agreement map circa 202018 as the cropland 
mask. The resulting CROPGRIDS is a novel synthesis of the most recently available information on harvested 
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and crop area maps for 173 crops, at a global spatial resolution of 0.05° (approximately 5.6 km at the equator). 
Crop type name, harvested area and crop area definitions used in CROPGRIDS are aligned to the relevant FAO 
commodities and land use definitions19.

Methods
The development of CROPGRIDS involves several steps that were carried out either sequentially or in parallel 
(Fig. 1) as follows: Step 1) input data harmonization; Step 2) computation of endogenous data quality indicators; 
Step 3) computation of exogenous data quality indicators; Step 4) assemblage of global maps; Step 5) gap filling 
of crop geographic distribution; and Step 6) data adjustment to FAOSTAT. These steps are described in detail in 
the next sections. While Step 1) to 3) are mostly data curation and pre-calculations for later steps, Step 4), at the 
core of the workflow, was achieved through a multi-criteria ranking scheme designed using the endogenous and 
exogenous data quality indicators to select, for countries and territories for which data were available from mul-
tiple input datasets, the one dataset best describing a specific crop. Similarly important, Steps 5) and 6) were next 
used to update missing information using existing independent subnational statistics and adjust the assembled 
data maps to the FAOSTAT reference year 2020.

Input data. We conducted a search for published peer-reviewed datasets providing geo-referenced 
crop-specific information, including, by grid cell: amount of harvested area (HA); amount of crop area (CA); 
fractional crop area (f, i.e., proportion of the grid cell area occupied by crop type); or binary values (w), specifying 
whether a grid cell was cultivated with a specific crop type or not. The following four criteria were applied for 
inclusion of a dataset: (1) reference year later than 2000; (2) at least one crop species also present in MRF; (3) 
geospatial coverage for at least one country (complete national extent); and (4) spatial resolution at least 0.083° 
(about 10 km at the equator). Based on these criteria, we created a library of 28 datasets, including 14 national, 8 
multinational/continental, and 6 global datasets (Table 1). Amongst the selected datasets, two provided both HA 
and CA, two provided HA, three provided f, and 21 provided w (see details in Table 1). The information collected 
to build CROPGRIDS spanned the period 2000–2021, with 25 out of the 28 input datasets referring to the period 
2015–2021. These datasets provided diverse variables and had different resolution from the target resolution of 
0.05° per grid cell for CROPGRIDS. Hence, a number of steps were undertaken to harmonize the input datasets 
as described in the section below.

Additionally, we used the following datasets for data processing: a cropland agreement map (CAM) circa 
year 2020 at 30 m resolution18; the MODIS land use maps for year 2020 at 500 m resolution20; the FAO Global 
Administrative Unit Layers (GAUL) dataset21 (FAO, 2015); subnational statistics from various NSOs (see 
Supplementary Table S1) and FAOSTAT national statistics of harvested area19. CAM provides geospatial statis-
tics of cropland areas, generated based on six open-access high-resolution remote sensing products18.

Input data harmonization (Step 1). We first determined HA and CA for each crop type by grid cell for 
each input datasets listed in Table 1 as follows.

Fig. 1 Workflow of the development of CROPGRIDS. Step 1: Input data harmonization; Step 2: computation 
of endogenous data quality indicators; Step 3: computation of exogenous data quality indicators; Step 4: 
assemblage of global maps; Step 5: gap filling of crop geographic distribution; and Step 6: data adjustment.
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When only HA data are given (i.e., MRF and GAEZ + 2015, Table 1), we imputed CA = HA for perma-
nent crops and CA = min{HA, LA, CAM95} for temporary crops (see list of permanent and temporary crops in 
Supplementary Table S3), with LA being the area of land available for cropping, i.e., grid cell area (GA) excluding 
water bodies, wetlands, urban and built-up lands, permanent snow and ice, and barren land following land 
use classification in MODIS20, and CAM95 being the 95th percentile surface area calculated from CAM. When 
only f was provided (i.e., GEOGLAM, AFCAS, and AU), we calculated crop area as CA = f × GA and imputed 
HA = CA. Next, the computed and original georeferenced maps of HA and CA in MRF, SPAM, GAEZ + 2015, 
and SPAMAF datasets were harmonized to a common spatial resolution of 0.05° (approximately 5.6 km at the 
equator) using the imresize function22 in Matlab with bilinear interpolation and pychnophylactic methods to 
ensure areal conservation, and a bounding box of −180° to 180° longitude and −90° to 90° latitude using the 
WGS-84 coordinate system (World Geodetic System 1984).

When only w was provided, we first derived corresponding f values and then made the same imputations as 
above. Specifically, since datasets providing w for individual crops had typically high spatial resolution (ranging 

Acronym Description Reference

1 MRF Global gridded HA [ha] for 175 crops at a resolution of 0.0833 degree (~10 km at the equator) in 2000. 2

2 SPAM Global gridded HA and CA [ha] for 38 crops at a resolution of 0.0833 degree (~10 km at the equator) in 2010. 
Only 30 crops considered for this work.

29

3 GAEZ + 2015 Global gridded HA [ha] for 26 crops at a resolution of 0.0833 degree (~10 km at the equator) in 2015. Only 
20 crops considered.

30

4 GEOGLAM Global gridded f [%] for 4 crops at a resolution of 0.05 degree (~5.6 km at the equator) in 2020. 13,31

5 OIPA Global gridded w [−] for oil palm at a resolution of 0.0000898 degree (~0.01 km at the equator) in 2019. 32

6 RAP Global gridded w [−] for rapeseed at a resolution of 0.0000898 degree (~0.01 km at the equator) in 2019. 33

7 EU Gridded w [−] for 28 countries in EU for 17 crops at a resolution of 0.0000898 degree (~0.01 km at the 
equator) in 2018. Only 12 crops considered.

34

8 SPAMAF Gridded HA and CA [ha] for Africa for 42 crops at a resolution of 0.0833 degree (~10 km at the equator) in 
2017. Only 34 crops considered.

35

9 AFCAS Gridded f [ha km−2] for Africa for cassava at a resolution of 0.00833 degree (~1 km at the equator) in 2014. 36

10 SASOY Gridded w [−] for South America for soybean at a resolution of 0.00025 degree (~0.03 km at the equator) in 
2018.

37

11 MYSTHA Gridded w [−] for Malaysia, Indonesia, and Thailand for oil palm at a resolution of 0.0002695 degree 
(~0.03 km at the equator) in 2017.

38

12 ASIARICE Gridded w [−] and cropping intensity for 21 countries in Asian monsoon region for rice at a resolution of 
0.0045 degree (~0.5 km at the equator) in 2020.

39

13 CIVGHA Gridded w [−] for Cote d’Ivoire and Ghana for cocoa at a resolution of 0.0000898 degree (~0.01 km at the 
equator) in 2019.

40

14 UZBTJK Gridded w [−] for Uzbekistan and Tajikistan for 38 crops distributed as shapefile at a resolution of 0.0001 
degree (~0.01 km at the equator) in 2015 to 2018. Only 20 crops considered.

41

15 USA Gridded w [−] for USA for 105 crops at a resolution of 0.0000898 degree (~0.01 km at the equator) in 2021. 
Only 64 crops considered.

42

16 CA Gridded w [−] for Canada for 52 crops at a resolution of 0.00027 degree (~0.03 km at the equator) in 2021. 
Only 31 crops considered.

43

17 AFG Gridded w [−] for Afghanistan for 6 crops at a resolution of 0.0000898 degree (~0.01 km at the equator) in 
2020. Only 3 crops considered.

44

18 DEU Gridded w [−] for Germany for 24 crops at a resolution of 0.0000898 degree (~0.01 km at the equator) in 
2019. Only 15 crops considered.

45

19 CHNWH Gridded w [−] for China for winter wheat at a resolution of 0.0003 degree (~0.03 km at the equator) for 
2018.

46

20 CHNMZ Gridded w [−] for China for maize at a resolution of 0.005 degree (~0.56 km at the equator) in 2017. 47

21 CHNMZWHRI Gridded w [−] of single, double, triple cropping for China for rice, maize, and wheat at a resolution of 0.005 
degree (~0.56 km at the equator) in 2020.

48

22 BGDRICE Gridded w [−] of 3 growing seasons for Bangladesh for rice at a resolution of 0.0000898 degree (~0.01 km at 
the equator) in 2017.

49

23 BRA Gridded w [−] for Brazil for sugarcane at a resolution of 0.0003 degree (~0.03 km at the equator) in 2019. 50

24 SEN Gridded w [−] for Senegal for 22 crops at a resolution of 0.00009 degree (~0.01 km at the equator) in 2018. 
Only 17 crops considered.

51

25 AU Gridded f [−] for Australia for 25 crops at a resolution of 0.0833 degree (~10 km at the equator) in 2015. 
Only 6 crops considered.

52

26 FR Gridded w [−] for France for 11 crops at a resolution of 0.0001 degree (~0.01 km at the equator) in 2021. 
Only 5 crops considered.

53

27 JP Gridded w [−] for Japan for rice at a resolution of 0.0000833 degree (~0.01 km at the equator) in 2020. 54

28 CHNMZSOY Gridded w [−] for China for maize and soybean at a resolution of 0.0000833 degree (~0.01 km at the 
equator) in 2019.

55

Table 1. CROPGRIDS input datasets. Variables provided in datasets are: HA, harvested area; CA, crop 
(physical) area; f, fractional crop area; and w, binary value for a crop existence in a grid cell. Aggregated crops 
that cannot be matched against the crop list in MRF were excluded. The full list of crop name matching is 
provided in Supplementary Table S2.
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10–550 m at the equator), we performed pixel counting of w values to derive f values at the required 5.6 km res-
olution (i.e., 0.05° per grid cell). Additionally, for datasets providing w values of a specific crop over multiple 
growing seasons s, the annual CA of that crop was computed as CA = max{CA1, CA2, …, CAs} across the seasons 
s; while HA was computed as = ∑ =HA CAi

s
i1 . Alternatively, when the geo-referenced cropping intensity CI was 

provided (i.e., ASIARICE, Table 1), then we calculated HA = CA × CI.
Finally, we set a threshold for CA and HA values, i.e., both were set to zero whenever CA < 100 m2. This lower 

bound corresponds to the finest spatial resolutions of all input datasets and was set to prevent from accounting 
of unrealistically small agriculture parcels. Consistency diagnostics checked that CA ≤ HA, CA ≤ LA ≤ GA, and 
CI ≤ 3 (i.e., CI commonly less than 323) were satisfied in all grid cells for individual crops.

In building CROPGRIDS, we also harmonized crop names in the input datasets, including performing aggre-
gations where needed, to correspond to the crop names in MRF, thus ensuring internal consistency and align-
ment with FAO crop classifications following the Indicative Crop Classification (ICC) of the World Programme 
for the Census of Agriculture24 (Supplementary Table S2).

Compute endogenous data quality indicators (Step 2). Endogenous data quality indicators assessed 
both quantitative and qualitative features of a dataset that do not depend on external information. These endog-
enous features included: synchrony (Qy), administration (Qa), data source (Qs), validation (Qv), resolution (Qr), 
maturity (Qm), and type of dispatch (Qd). All endogenous features were assigned an indicator value ranging 0–1, 
with the end points corresponding to the lowest and highest quality, respectively. Endogenous features were not 
expressed as geo-referenced maps, but rather we used them to tag individual input datasets regardless of crop 
type.

Qy described the level of synchrony between the year of reference Yr of a dataset and the year of reference of 
CROPGRIDS, which was set to 2020. Specifically, datasets with Yr departing from 2020 were assigned a lower 
rank than those in 2020 as
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Qa described the administrative domain of a dataset (i.e., national to global). A national dataset was assigned 
a higher Qa value than global datasets, under our assumption that national datasets are constructed using better 
information from direct local knowledge. Qa was defined as:

=
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Qs described the primary data source used to develop a dataset. We assumed that datasets developed using 
survey data (i.e., field survey and censuses) have higher quality than those based on satellite imagery, with data-
sets constructed using modelling techniques having the lowest quality. We used Qs to also account for hybrid 
methods, assigning in such cases intermediate quality scores, as follows:

Q

1 survey, satellite, model integration
0 8 survey and satellite integration
0 7 survey and model integration
0 5 satellite and model integration
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0 2 model only (3)
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Qv was used to rank the level of validation of a dataset, against ground truth, users’ feedback, statistical data, 
satellite images or other sources. We ranked the validation level from high to low based on the presence of field 
observations, the number of sources used for validation, and the separation between calibration and validation 
sets. Qv was defined as:

=
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Q
1, if validated using groundtruth data with sound statistical approaches
0 5, if validated using statistics, users’ feedback or satellite images
0, if no attempt of validation (4)

v

Qr described the spatial resolution r of a dataset. A higher rank was given to a dataset with finer resolution:
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where rmin = 0.0000833° and rmax = 0.0833° were the finest and coarsest resolutions across input datasets.
Qm was used to assess the level of maturity of a dataset, depending on the frequency of revisions, updates, or 

releases:

Q
1 if annual
0 5 if every some years
0 if never (6)

m =







.
.

Qd was used to assess the level of officiality, i.e., whether a dataset was the result of an official government 
or non-government dispatch, assuming that official government dispatches have higher reliability than those 
conducted by non-government entities. It was defined as

‐
=




 . .

Q
1 if government
0 5 if non government (7)

d

All endogenous data quality indicators values are reported in Table 2 below.

Compute exogenous data quality indicators (Step 3). Exogenous data quality indicators were defined 
to describe the quality of a dataset against independent external information. They included QCAM, comparison 
against the cropland agreement map (CAM)18, and QFAO, comparison against FAOSTAT harvested area19 in the 
year 2020. Unlike the endogenous indicators, exogenous data quality indicators were evaluated for each input 
dataset by crop and country.

Specifically, QCAM was used to measure the level of agreement of the crop spatial distribution in a dataset 
against CAM, which is a 2020-updated, statistically robust cropland mask integrating six independent cropland 
data products. We first converted the CA maps of each dataset and the cropland area map of CAM into binary 
maps, where a grid cell was assigned a value of one for non-zero crop area or zero otherwise. We then calculated 
QCAM for crop i in country j as:

Dataset Synchrony Qy Administration Qa Source Qs Validation Qv Resolution Qr Maturity Qm Dispatch Qd ∑ Qk k
(a)MRF 0 0.5 0.5 0.5 0 0 0.5 2

SPAM 0.667 0.5 0.7 0.5 0 0.5 0.5 3.367

GAEZ + 2015 1 0.5 0.5 0.5 0 0 0.5 3

GEOGLAM 0.867 0.5 0.5 0.5 0.400 0 0.5 3.267

OIPA 1 0.5 0.5 1 1.000 0 0.5 4.5

RAP 1 0.5 0.3 0.5 1.000 0 0.5 3.8

EU 1 1 0.8 1 1.000 0 0.5 5.3

SPAMAF 1 1 0.7 0 0.004 0.5 0.5 3.704

AFCAS 0.933 1 0.5 0 0.901 0 0.5 3.834

SASOY 0.933 1 0.8 1 0.998 0 0.5 5.231

MYSTHA 1 1 0.3 0.5 0.998 0 0.5 4.298

ASIARICE 1 1 0.3 0.5 0.947 0 0.5 4.247

CIVGHA 1 1 0.8 1 1.000 0 0.5 5.3

UZBTJK 1 1 0.5 1 1.000 0 0.5 5

USA 0.933 1 0.8 1 0.998 1 1 6.731

CA 1 1 0.8 1 0.998 1 1 6.798

AFG 1 1 0.8 1 1.000 0 0.5 5.3

DEU 1 1 1 0.5 1.000 0 0.5 5

CHNWH 1 1 0.8 1 0.997 0 0.5 5.297

CHNMZ 1 1 0.3 1 0.937 0 0.5 4.737

CHNMZWHRI 1 1 0.3 1 0.941 0 0.5 4.741

BGDRICE 1 1 0.8 1 1.000 0 0.5 5.3

BRA 1 1 0.8 0.5 0.998 0 0.5 4.798

SEN 1 1 0.8 1 1.000 0 0.5 5.3

AU 0.733 1 0.7 0 0.975 0.5 1 4.908

FR 0.933 1 0.3 1 1.000 1 0.5 5.733

JP 1 1 0.8 1 1.000 0.5 1 6.3

CHNMZSOY 0.95 1 0.8 1 1.000 0 0.5 5.25

Table 2. Endogenous dataset quality indicators of all input datasets. (a)Endogenous qualities in MRF datasets 
are used for overall data quality but not for multi-criteria selection ranking (Step 4) when other datasets are 
available for the construction of CROPGRIDS.
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where NCA (i, j) is the number of grid cells identified as crop i in country j in a given dataset and Noverlap is the 
number of grid cells where both CAM and the given dataset have non-zero values.

QFAO was used to measure the relative error of the input dataset crop harvested area against FAOSTAT19. For 
crop i in country j, QFAO,i,j was defined as:

= −





− 




.Q
HA i j HA i j

HA i j
1 min 1,

( , ) ( , )
( , ) (9)

FAO i j
FAO

FAO
, ,

where HA(i,j) is the total harvested area of crop i in country j in a dataset, and HAFAO is the corresponding 
FAOSTAT value for the year 2020. QFAO ranges between 0 and 1, with QFAO = 1 representing a perfect match 
against FAOSTAT. For specific crops where some countries and territories were not included in FAOSTAT, we 
set QFAO = 0.

Assemblage of global harvested and crop area maps (Step 4). Assemblage of geo-referenced har-
vested and crop area maps for individual crops and countries was conducted along two alternative pathways 
of availability: (1) only MRF data is available; or (2) multiple input datasets are available. In the first case, we 
proceeded to Step 5 (described later). In the second case, we used the multi-criteria ranking scheme based on 
endogenous and exogenous data quality indicators described above to select and use data from the dataset with 
the highest combined quality scores, Qk,i,j, defined in relation to input dataset k for crop i in country j as:

Q
Q Q Q Q Q Q Q Q Q1

3

( )

7 3 3 (10)k i j
y a s v r m d k i j CAMk i j FAOk i j

, ,
, , , , , ,= ×

+ + + + + +
+ + .

The best-fit datasets kbest for crop i in country j are provided in Supplementary Table S3. In this case, the MRF 
dataset was excluded from the ranking. Hence, if only one dataset other than MRF is available, it will be auto-
matically selected as the best dataset.

For each crop, we then compiled an Arlecchino map (mosaic) of HA and CA from best-fit datasets into 
one global map including all countries. The result of the multi-criteria analysis was that 27 out of the 28 
geo-referenced datasets were included in CROPGRIDS (MYSTHA was not selected).

Data gap filling with NSOs (Step 5). In the first case of Step 4 when MRF is the only dataset availa-
ble for a specific country-crop pair, we used NSOs subnational data to update HA (see list of available NSO in 
Supplementary Table S1). Specifically, we spatially disaggregated the subnational-level data following the same 
principle used in MRF2, i.e., by spreading tabulated harvested areas over an assigned agricultural region. For a 
given crop i in subnational unit j, we iteratively calculated the harvested area in each grid cell g belonging to sub-
national unit j using the CAM percentile p as,

=
∑

∈
∈

∈

HA NSO
CAM

CAM (11)
i g j p i j

g j p

g j g p
, , ,

,

,

with NSOi,j being the tabulated NSOs values and CAMg,p being the total cropland area in a grid cell g reported by 
CAM crop mask at p percentile. Note that HA in Eq. (11) is not uniformly distributed over the subnational unit 
j, but it follows the distribution of the percentile maps in CAM. We used up to 5 percentiles (2.5%, 5%, 10%, 25% 
and 50%), which correspond to a sequence of maps ranging from the smallest to the median agricultural land 
area, respectively. We stopped the iteration over the percentiles p when we first found some grid cells in which 
HA fell below the lower bound of 100 m2. In those grid cells, HA was adjusted to 100 m2, consistent with the 
lower bound used in Step 1. The spatialized harvested areas for crop i in subnational unit j (HAi,j,g) were hence 
determined. Finally, we calculated =CA HA LA CAMmin{ , , 95 }i g i g g g, , , and we updated HAi,g = CAi,g (i.e., we 
assume CI = 1). When NSOs subnational data are not available for a specific country-crop pair, we repeated the 
spatial information of MRF.

Note that for all datasets, including NSO-updated data, the quality calculated in Eq. (10) is outputted and 
distributed with this data product in the form of maps (see Table 3). The endogenous quality indicators for 
NSOs datasets are reported in Supplementary Table S4. However, specifically for NSOs, data quality in Eq. (10) 
excluded QCAM as CAM was used for spatialization.

Data adjustment to FAOSTAT 2020 (Step 6). After the assemblage of georeferenced maps, HA of indi-
vidual crop types in individual countries were scaled to the corresponding country data in FAOSTAT in year 
202019. Scaling was performed with an iterative scheme minimizing the distance in harvested area HA from 
FAOSTAT with two constraints - the lower bound (100 m2) and the upper bound LA. Adjustment of CA was 
conducted simultaneously to HA by retaining the crop intensity ratio CI in any specific grid cell. When scaled 
values of CA∑  exceeded LA (upper bound), the excess crop area was redistributed uniformly to all other grid cells 
within that country where each of the individual crops are present. Similarly, when the individual scaled values of 
HA became smaller than 100 m2 (lower bound), excess area was uniformly removed from all other grid cells 
within that country containing that crop. We limited the number of iterations to 60 or when the total crop area 
adjusted in all crop types in a country was less than 0.5% different than in FAOSTAT in an iteration or when the 
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relative change in total crop area was smaller than 0.01% in an iteration. These thresholds used to limit adjustment 
iterations were empirically chosen to ensure a balance between data quality and computational efficiency. 
Adjustment of CROPGRIDS to FAOSTAT was only carried out for all crops and countries that existed in both 
datasets (153 crops and 185 countries). For a given country-crop pair, a same adjustment factor was applied to all 
the grid cells containing that crop in that country. Only less than 7% of country-crop pairs required adjustment 
by a factor smaller than 0.1 or greater than 10 (Supplementary Figure S1). Specifically, the median adjustment 
factors are not significantly different across crops except for blueberry, mushrooms and triticale, which also show 
the largest spread across countries (Supplementary Figure S2). Similarly, the median adjustment factors of indi-
vidual crops are not significantly different across countries, with a few countries showing a large spread (i.e., 
Afghanistan, Algeria, Iraq, Malta and Qatar, Supplementary Figure S3).

In this step, we simultaneously checked and verified again that the sum of CA across all crops is always 
smaller than or equal to LA in each grid cell and that, for individual crops, CA ≤ HA, and CI = HA/PA ≤ 3 were 
always satisfied.

We presented examples of harvested area maps for the top four crops experiencing major changes since 2000, 
i.e., oil palm, soybean, cassava, and maize (Fig. 2).

Data Records
CROPGRIDS dataset distributes global georeferenced maps of harvested and crop (physical) areas and corre-
sponding data quality for 173 crops (refer to Supplementary Table S3 for the list of crops, where coir and gum 
originally available in MRF are not included in CROPGRIDS) for the year 2020 at a resolution of 0.05° (~5.6 km 
at the equator) with a bounding box of −180° to 180° longitude and −90° to 90° latitude using the WGS-84 
coordinate system. The georeferenced maps are distributed as NetCDF files, which also provides detailed legend 
of values. This dataset is available for public download from the figshare repository25 at https://doi.org/10.6084/
m9.figshare.22491997. The files included in this distribution are described in Table 3.

Technical Validation
The majority of the datasets listed in Table 1 included certain level of validation, which are summarized in 
Supplementary Table S5. Among the 28 input datasets, 17 included validation against ground truth data. In 
this work, we independently evaluated data on HA and CA in CROPGRIDS against (1) official national and 
subnational statistics of crop-specific harvested area (full references provided in Supplementary Table S1); (2) 
FAOSTAT land areas under temporary and permanent crops by country26; and (3) the grid cell-level crop-
land areas calculated from CAM4,18. In addition to independent validations, we conducted uncertainty analysis 
to test the robustness of the multi-criteria selection ranking and provided comparison of the national-level 
crop specific HA in CROPGRIDS against corresponding FAOSTAT data for 2020, which was used to construct 
CROPGRIDS.

Folder Name File Name Description

Variable

Name Description Unit

CROPGRIDSv1.08_NC_maps.zip
CROPGRIDSv1.08_YYYY.nc Contains globally gridded data for 

crop YYYY.

harvarea Harvested area hectares

croparea Crop (physical) 
area hectares

qual Data quality —

set Best-fit dataset 
used —

Countries_2018.nc Contains GAUL21 country mask 
(level 0) used in this study. country Country name 

and code —

CROPGRIDSv1.08_PNG_maps.zip CROPGRIDSv1.08_YYYY.png
Images of harvested and crop areas 
of crop YYYY, and corresponding 
data quality and best-fit datasets.

Table_CROPGRIDS1.08_COU.xlsx Excel table of areas for each 173 
crops in each country.

Harvested area Harvested area hectares

Crop (physical) area Crop (physical) 
area hectares

CODES.zip

MAIN.m, Aggregate_REMAP.m, Correct_
REMAP.m, BUILD_PATCH.m, BUILD_
PATCH_fun10.m, ADDNSO_RAW.m, 
CORRECT_RAWNSO.m, ADJUST_
CORRECTED.m

MATLAB scripts used to construct 
CROPGRIDS (Steps 1 to 6 in Fig. 1).

CROPS_matching_v17.xlsx Excel table of crop name aggregation 
and matching.

DATASET_qualities_v10.xlsx Excel table showing the endogenous 
qualities of gridded input datasets.

DATASET_NSO_qualities_v1.xlsx Excel table showing the endogenous 
qualities of NSOs data.

FAOSTAT_ALL_2020_edited.xlsx National-level harvested areas for 
year 2020 obtained from FAOSTAT.

Table 3. CROPGRIDS data distribution files and variables. All files are publicly available from figshare 
repository25.
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Validation of CROPGRIDS with official national and subnational data. We compiled a library 
of independent datasets of national and subnational harvested area by crop from 36 NSOs (Supplementary 
Table S1), covering 71 countries and territories and 861 subnational units. Of these, 40 countries and territories 
reported subnational-level data and 35 reported more than 20 crops each, resulting in a total of 1,852 points 
available at national-level and 12,149 points at subnational-level. Among the subnational-level data points, 4,832 
points were used to construct CROPGRIDS, leaving 7,317 points available for independent validation. In total, 
evaluations of 106 crop data were conducted against these independent crop statistics from NSOs.

We matched and aggregated crop types in each NSO dataset to match those reported in CROPGRIDS. We 
used the GAUL21 dataset (level 1) to identify subnational units and perform relevant aggregations from pixel 
level to administrative level 1. The calculations were conducted for 106 crops and were quantified using the coef-
ficient of determination R2 (analogue to Nash–Sutcliffe efficiency, NSE27) and normalized root mean squared 
errors (NRMSE) as

= −
∑ −

∑ −
R

HA i j HA i j

HA i j HA i j
1

[ ( , ) ( , )]

[ ( , ) ( , )]
,

(12)
i

j NSO

j NSO NSO

2 ( )
2

( )
2

=
−

∑ −

HA i HA i
NRMSE

[ ( ) ( )]
,

(13)
i

HA i j HA i j

n

NSO max NSO min

[ ( , ) ( , ) ]

, ,

j NSO( )
2

where HA(i,j) and HANSO(i,j) are the harvested area of crop i in administrative unit j reported by CROPGRIDS 
and NSOs, respectively, HANSO is the average of all NSOs data points, HANSO,max and HANSO,min are the corre-
sponding maximum and minimum crop harvested areas of NSOs, and n is the number of data points.

Among the 106 crops suitable for comparison, the harvested area of 81 crops in CROPGRIDS agreed rela-
tively well with data from NSOs (R2 > 0.5, NRMSE < 0.2, Fig. 3 and Supplementary Figure S4). Specifically, the 
comparisons for important crops such as wheat, maize, rice, soybean, barley, rapeseed, cotton, cassava, sun-
flower, sugarcane, and oil palm had R2 > 0.95 and NRMSE ≤ 0.05, showing very good agreement with officially 
reported national and subnational statistics (Fig. 3).

Validation of CROPGRIDS with FAOSTAT land area under temporary and permanent 
crops. The crop (physical) area in CROPGRIDS refers to FAO land use classes ‘temporary’ or ‘permanent’ 
crops, depending on crop type28. Here, we compared crop areas with FAOSTAT land areas under temporary 
and permanent crops for 2020 in more than 180 countries. We first classified the 173 crop types included in 
CROPGRIDS into temporary and permanent crops following the ICC classification24 (see Supplementary 
Table S3 for details). We used the GAUL21 dataset (level 0) to identify country boundaries and perform relevant 
aggregations from pixel level to national level. The goodness of comparison was evaluated using R2 and NRMSE as

Fig. 2 Harvested area maps in CROPGRIDS for the top four crops experiencing the largest expansion since 
2000. (a) Soybean, (b) maize, (c) oil palm, and (d) cassava.
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where CA(i,j) and CAFAO (i,j) are the crop area of either temporary or permanent crops (indicated as i) in coun-
try j reported by CROPGRIDS and FAOSTAT, respectively, CAFAO is the average of all FAOSTAT data points, 
CAFAO,max and CAFAO,min are the corresponding maximum and minimum temporary or permanent crop areas of 
FAOSTAT, and n is the number of data points.

Fig. 3 Validation of crop harvested areas in CROPGRIDS against data from National Statistical Offices at 
national and subnational levels. The colours of the markers refer to the georeferenced datasets selected to use in 
CROPGRIDS. “Squared” markers represent national-level data, while “circled” markers represent subnational-
level data. This figure shows only the validation for the top 15 crops with the largest global harvested area. The 
validations for the other 91 crops are shown in Supplementary Figure S4.
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In CROPGRIDS, the 2020 world total permanent crop area was 167 million ha, consistent with but approx-
imately 8% lower than the 181 million ha reported by FAOSTAT. At national-level, the permanent crop 
areas determined from CROPGRIDS matched well with values reported by FAOSTAT with R2 = 0.98 and 
NRMSE = 0.01 (Fig. 4a). Additionally, temporary crops in CROPGRIDS covered 1.22 billion ha of global crop-
land area, and overestimated by approximately 13% the temporary crop area reported in FAOSTAT for 2020, 
which is 1.08 billion ha. The comparison of temporary crop areas at national-level showed a relatively good 
match to FAOSTAT data, with R2 = 0.87 and NRMSE = 0.04 (Fig. 4b). The overall overestimation of temporary 
crop area by CROPGRIDS may arise from multiple cropping of different crops, i.e., we may have counted the 
cropland area more than once if the same piece of land was cultivated with more than one type of crop in a year.

Comparison of CROPGRIDS crop area with CAM. We next validated the CA of all crops included in 
CROPGRIDS geo-spatially against the cropland area in CAM. Firstly, we calculated the sum of the CA of all crops 
in each grid cell g in CROPGRIDS, CATOT(g). Next, for each grid cell g, we calculated the 5th, CA g( )CAM

th5 , and 95th, 
CA g( )CAM

th95 , percentile cropland area based on CAM dataset18. For each grid cell, we then determined if CATOT(g) 
calculated based on CROPGRIDS falls within CA g( )CAM

th5  and CA g( )CAM
th95 .

About 97% of grid cells identified as cropland (i.e., total CA across all crops in a grid cell >0) in CROPGRIDS 
were also identified as cropland in CAM. Globally, the crop areas of about 93% of grid cells identified as cropland 
in CROPGRIDS fall within CACAM

th5  and CACAM
th95 , with less than 1% falling below the lower bound (Fig. 5). Those 

grid cells that have crop area greater than CACAM
th95  were majorly found in African countries (e.g. Nigeria, Ghana, 

Cote d’Ivoire) where the six land cover layers used to build CAM are characterized by very high uncertainty.

Comparison of crop harvested area in CROPGRIDS against FAOSTAT. We compared global-level 
and national-level crop-specific harvested areas of year 2020 obtained from FAOSTAT19 against the corresponding 
values computed from CROPGRIDS. We used the GAUL21 dataset (level 0) to aggregate harvested areas of each 
crop in CROPGRIDS from pixel level to national level. This comparison does not represent a fully independent 
validation as these FAOSTAT data were used in Step 6 to adjust the HA and CA values in CROPGRIDS. Rather, 
this comparison serves to provide an estimation of percent error (%∆) between FAOSTAT and CROPGRIDS at 
national-level, determined as

i j
HA i j HA i j

HA i j
% ( , )

( , ) ( , )
( , )

100
(16)

FAO

FAO
∆ =

−
×

where HA(i,j) is the harvested area of crop i in country j in CROPGRIDS and HAFAO is the corresponding 2020 
FAOSTAT value.

The global crop-specific harvested area in CROPGRIDS matched well with those reported in FAOSTAT 
with an R2 ≈ 1.00 and NRMSE < 0.01 (Fig. 6, red markers), with 115 crops having a difference less than ±10% 
(Supplementary Figure S5). Comparison of CROPGRIDS against national-level crop-specific harvested areas 
of FAOSTAT also shows good matching with an R2 ≈ 1.00 and NRMSE < 0.01 (Fig. 6a, grey markers). About 
84% of data points (out of a total of 7,697 pairs) had differences less than ±20%, while only less than 1% had a 
difference greater than ±100% (Fig. 6b).

Uncertainty in the multi-criteria selection ranking. The endogenous and exogenous data quality indi-
cators used in the multi-criteria selection were assigned meaningfully but with arbitrary values. We conducted 
a Monte-Carlo analysis to quantify the uncertainty associated to such arbitrary choices, by introducing random 
weights, in the range 0–1, to each data quality indicator, that is: {wc, wa, ws, wv, wr, wm, wd} for endogenous and 
{wC, wF} for exogenous indicators—whereas we implicitly had used unity weights in Eq. (10). We extracted 10,000 
values of each of the nine weights from independent Gaussian probability distribution functions with a mean 

Fig. 4 Validation of permanent (a) and temporary (b) crop (physical) area in CROPGRIDS against FAOSTAT 
of year 2020. Each circle representing one country.
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equal to 1 and a standard deviation equal to 0.1 and we limited their values within the range between 0.7 and 1.3, 
that is three times the standard deviation. We next counted the frequency of occurrence of a selected dataset dif-
ferent than when using the default weight values. This uncertainty analysis was only conducted for combinations 
of countries and crops where more than one dataset was available.

Results of the Monte-Carlo analysis on the endogenous and exogenous characteristics of the multi-criteria 
selection ranking scheme suggested that the method of best-fit dataset selection was highly robust. Specifically, 
for the 78 crops and 187 countries with multiple datasets, the probability that the selection of the best-fit dataset 
would change with randomized characteristics was highly unlikely (white tiles in Supplementary Figure S6). 
In a minor fraction of crops and countries, the probability was greater than 10%, with only 40 out of 3352 
assessed pairs of crops and countries having a probability ≥40% and only 3 pairs having a probability ≥50% 
(Supplementary Figure S6).

Known limitations and uncertainties. CROPGRIDS inherits uncertainties and errors embedded in the 
input datasets and these uncertainties can stem from a variety of sources. Datasets constructed based on cen-
suses surveys (e.g., MRF and SPAM) can have uncertainties stemming from the methods used to spatialize crop 
area statistics at administrative-level 2 and the imperfection in statistical reporting of harvested and crop areas. 
Datasets constructed using remote sensing approaches can suffer from the inherent uncertainties in remote sens-
ing data, such as, atmospheric interference and limitations in spatial resolution. More generally, these datasets 
also carry forward uncertainties underlying in the cropland layer maps used as their input and can be limited by 

Fig. 5 Comparison of the total crop area of all crops included in CROPGRIDS against the cropland area in 
CAM. The colours in the map illustrate if the total crop area estimated in CROPGRIDS in each grid cell falls 
within the lower (5th percentile) and upper (95th percentile) bounds of cropland area calculated from CAM.

Fig. 6 Comparison of crop harvested area in CROPGRIDS with FAOSTAT values for 2020. (a) scatter-plot 
between harvested areas in CROPGRIDS against FAOSTAT, and (b) probability distribution of percent error 
%∆. In total, there were 7,697 pairs of comparisons at national-level and 153 pairs for global crop-specific 
harvested areas.

https://doi.org/10.1038/s41597-024-03247-7


1 2Scientific Data |          (2024) 11:413  | https://doi.org/10.1038/s41597-024-03247-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

the availability of ground truth data in certain regions for validation purposes. These uncertainties can propa-
gate through the mapping process and affect the accuracy of the resulting harvested and crop area estimates in 
CROPGRIDS.

In addition to inherited uncertainties, the construction of CROPGRIDS also suffers from known limitations. 
Firstly, the imputation of CA for temporary crops by taking the minimum value between HA, LA, and CAM95 
as described in Methods may lead to an overestimation of CA, particularly for those crops that undergo multiple 
harvests. While we have accounted for cropping intensities greater than 1 for crops with multiple harvests (e.g., 
rice), we have not explicitly accounted for dual and multi-layered cropping systems when more than one crop 
are grown in the same cultivated area. Information about dual cropping systems across the available datasets is 
limited, with only the datasets for USA and Canada providing this information. Information on multi-layered 
cropping systems (e.g., barley below olive trees in some Mediterranean systems or coffee plantations under 
natural trees) is entirely lacking. The lack of information on cropping practices and irrigation management 
may contribute uncertainties to crop distribution mapping, potentially leading to both underestimations and 
overestimations in HA and CA for some countries and some crops, leaving a knowledge gap that may be filled 
in future releases of CROPGRIDS. In addition, we did not account explicitly for protected agriculture. The esti-
mation of LA excluded urbanization area, which may encompass protected agriculture, and hence, may lead to 
underestimation of HA and CA of some horticultural crops. These knowledge gaps highlight the importance of 
expanding the spatial coverage and frequency of ground monitoring and data collection for agricultural prac-
tices to enhance crop distribution mapping.

The approach employed in developing CROPGRIDS involves the integration of crop area data from vari-
ous years, with the majority of the datasets used having reference years between 2015 and 2020. However, this 
approach can introduce uncertainties due to potential annual variations in the crop types cultivated in specific 
regions, influenced by factors such as climatic suitability and market demand.

At a spatial resolution of 0.05°, a grid cell has a size of approximately 5.6 km × 5.6 km, corresponding to 
about 3000 ha. This leads to uncertainties in the estimated harvested and crop areas for some crops typically cul-
tivated at smaller scales except under intensively managed systems, often monocultures. It furthermore creates 
uncertainty at the border between two countries and affects in particularly the calculation of the exogenous data 
quality indicator QFAO that compares a dataset against national-level crop harvested area reported by FAOSTAT. 
This border effect impacts estimates mostly in small countries in two ways. The first is when a country has zero 
harvested and crop areas for a crop across all datasets because border grid cells fall in the neighbouring coun-
try, whereas FAOSTAT reports non-zero values. In this case, no selection is performed. The second is when, 
in contrast, a country has a harvested area greater than zero when grid cells of other neighbour countries fall 
within a country and FAOSTAT returns zero value. In this case, datasets will still be ranked and the best-fit will 
be selected according to other quality indicators. This known bias is difficult to detect and correct, especially 
for small countries, because whether a border grid cell belongs to one or another country cannot be estimated 
correctly at the given resolution. Specifically, this bias is scale-dependent and its occurrence decreases with 
increasing resolution and data quality, including of the layer of administrative boundaries used to extract coun-
try statistics. Due to constraint in spatial resolution, CROPGRIDS excludes a few small countries and territories 
(i.e., Falkland, Faroe Islands, French S.A.T., Heart Island, Isle of Man, Kingman Reef, Kiribati, Ma’tan al-Sarra, 
Mayotte, Nether. Antilles, Palau, Réunion, Saint Pierre, South Georgia, Svalbard, Virgin Islands). Greenland is 
also excluded, considering the small area of cultivated land.

Furthermore, uncertainties can also arise from the type of validation data, which themselves may inherit 
uncertainties. For example, statistics at the subnational level may be masked due to confidentiality issues, espe-
cially in cases where significant producers are located in relatively small counties or districts. As a result, the 
aggregated data at the national level may differ from the data available at the more detailed subnational level, 
thereby posing limitations in the validation process.

Usage Notes
All georeferenced maps distributed in CROPGRIDS dataset25 are formatted as standard NetCDF4 files, which 
can be read in various coding languages (e.g., MATLAB, Python, Julia) and software (ArcGIS, QGIS, Panoply). 
CROPGRIDS dataset also contains a country mask based on GAUL21 dataset at administrative level 0, which can 
be used to aggregate pixel-level data to national-level for comparison against official statistics (e.g., FAOSTAT or 
other National Statistical Offices). Crop type name in CROPGRIDS follows the naming system used by FAO19, 
allowing direct comparison against FAOSTAT data.

Code availability
All data processing and testing described in Methods and Technical Validation sections were conducted using 
MATLAB version R2021a. Main codes used to construct CROPGRIDS are distributed in the “CODES.zip” folder 
(Table 3) along with CROPGRIDS dataset available for public download from the figshare repository25 at https://
doi.org/10.6084/m9.figshare.22491997.
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