scientific data

Check for updates

OPEN Spatiotemporal atmospheric *in-situ* carbon dioxide data over the Indian DATA DESCRIPTOR sites-data perspective

Mahesh Pathakoti ^{1,2}, Mahalakshmi D.V. ¹, Sreenivas G.^{3,10}, Arun Shamrao Suryavanshi⁴, Alok Taori¹, Yogesh Kant⁵, Raja P.^{6,11}, Rajashree Vinod Bothale¹, Prakash Chauhan¹, Rajan K.S.², P. R. Sinha⁷, Naveen Chandra ⁸ & Vinay Kumar Dadhwal ⁹

In the current study, atmospheric carbon dioxide (CO₂) data covering multiple locations in the Indian subcontinent are reported. This data was collected using a dedicated ground-based in-situ network established as part of the Geosphere-Biosphere Programme (CAP-IGBP) of the Climate and Atmospheric Processes of the Indian Space Research Organisation (ISRO). Data are collected over Ponmudi, Ooty, Sriharikota, Gadanki, Shadnagar, Nagpur, and Dehradun during 2014-2015, 2017–2020, 2012, 2011-2015, 2014-2017, 2017 and 2008-2011, respectively. The atmospheric CO₂ generated as part of the CAP-IGBP network would enhance the understanding of CO₂ variability in different time scales ranging from diurnal, seasonal, and annual over the Indian region. Data available under this network may be interesting to other research communities for modeling studies and spatiotemporal variability of atmospheric CO₂ across the study locations. The work also evaluated the CO₂ observations against the Model for Interdisciplinary Research on Climate version 4 atmospheric chemistry-transport model (MIROC4-ACTM) concentrations.

Background & Summary

Carbon dioxide (CO_2) emissions from human activity are one of the leading causes for the complicated issue known as "human-induced climate change". Other activities that release greenhouse gases (GHGs) into the atmosphere include burning fossil fuels¹. CO_2 contributes about 64% of the total radiative forcing created by other long-lived GHGs². The accelerating CO_2 mixing ratios were attributed to the land use land cover (LU/LC) changes, biological and human-induced process. The amount of CO2 released into the atmosphere by human activity and the rate at which concentrations increase estimate the global carbon budget^{3,4}. Burning fossil fuel and LU/LC changes have increased CO₂ by 40%^{5,6}. This gas has been consistently increasing since pre-industrial times and crossed 400 ppm of daily mean in 2013 at the global reference site of Mauna Loa, Hawaii⁷. During 2013, in India, CO₂ emission was found to be 0.96 Ton/capita (http://www.iaea.org/inis/aws/eedrb/data/ IN-enemc.html). An increase in atmospheric CO₂ from industrial or human activity is the most significant contributor to possible anthropogenically induced global climate change⁸. Local meteorological conditions such as air temperature and moisture affect the diurnal and seasonal cycle⁹. The variability of environmental factors may significantly affect regional and global climate¹⁰, especially the radiative forcing, via the terrestrial carbon cycle's biogeochemical pathways. Since CO₂ mixing ratios in the atmosphere are strongly affected by photosynthesis,

¹National Remote Sensing Centre, Indian Space Research Organisation (ISRO), Department of Space, Hyderabad, 500037, India. ²Lab for Spatial Informatics (LSI), International Institute of Information Technology (IIIT), Hyderabad, 500032, India. ³Department of Physics, Jawaharlal Nehru Technological University Hyderabad (JNTU-H), Hyderabad, 500085, India. ⁴Regional Remote Sensing Centre, NRSC, ISRO, Nagpur, 440033, India. ⁵Indian Institute of Remote Sensing (IIRS), ISRO, Department of Space, Dehradun, 248001, India. ⁶Indian Institute of Soil and Water Conservation (IISWC), Research Centre (RC), Ooty, The Nilgiris, 643001, India. ⁷Indian Institute of Space Science and Technology (IIST), Valiamala, 695547, India. ⁸Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 2360001, Japan. ⁹National Institute of Advanced Studies (NIAS), Indian Institute of Science (IISc) campus, Bengaluru, 560012, India. ¹⁰Present address: Indian Institute of Tropical Meteorology, Pune, 411008, India. ¹¹Present address: ICAR-IISWC, RC, Odisha, Koraput, 763002, India. ^{III}Present address: ICAR-IISWC, RC, Odisha, Koraput, 763002, India. ^{III}Present address: ICAR-IISWC, RC, Odisha, Koraput, 763002, India. mahi952@gmail.com; mahesh_p@nrsc.gov.in

respiration, biomass, fossil fuel burning, and the air-sea exchange process, *in-situ* atmospheric CO_2 measurements are essential data for understanding the carbon cycle¹¹.

High precision *in-situ* measurements are more reliable concerning the better representation of GHG concentrations over a region¹². An amalgamation of long-term observations from *in-situ*, remote sensing, and model-simulated atmospheric CO₂ concentrations would significantly contribute toward understanding the climate system. Development of measuring infrastructure has advanced to perform high precision measurements of GHGs while meeting the World Meteorological Organisation (WMO) standards¹³. To understand the CO₂ variability and the underlying dynamics over different parts of India, several researchers such as the National Institute of Oceanography (NIO), Indian Institute of Tropical Meteorology (IITM, Pune) and Physical Research Laboratory (PRL, Ahmedabad)^{14,15} are measuring high-precision CO₂ measurements. The ground based atmospheric CO₂ concentrations network over Indian region established by various research centers^{16,17}. Huo *et al.*¹⁸ reported fossil fuel and cement industry emissions at the city level covering 1500 cities in 46 countries.

The current study presents first data on atmospheric CO_2 concentrations recorded from different locations in India through a well-established CO_2 network by the Climate and Atmospheric Processes of the Indian Space Research Organisation (ISRO)'s Geosphere–Biosphere Programme (CAP-IGBP). The National Remote Sensing Centre (NRSC), ISRO, built this network to resolve space–time diurnal and seasonal variability and construct a prospective record of atmospheric CO_2 in the country. By utilising this *in-situ* CO_2 data from the CAP-IGBP network, an integrated study with the remote sensing and model simulated atmospheric CO_2 concentrations, Mahesh *et al.*¹⁹ carried out a study to assess the diurnal and seasonal variability over the Indian sites as a function of different geographical locations. The CO_2 sensor installation covers various geographical features, including coastal, high-altitude, and dry climate conditions. The data is necessary to comprehend the CO_2 variations spatially and temporally across India. Data available under this network may be interesting to modeling research communities that aim to adjust the uncertainties resulting from the model simulation. For climate projections to reflect pertinent temporal scales more accurately, the models must be validated and refined based on global GHG measurements. Thus, the *in-situ* measurements are decisive for understanding the carbon cycle and validating the satellite retrievals.

The present paper aims to report the atmospheric CO_2 *in-situ* data collected over the different geographical locations of the Indian stations. This paper describes the features of atmospheric CO_2 monitoring stations, common data collecting protocols, procedures employed to generate dry atmospheric CO_2 , and standard calibration methods. Data has potential in resolving the diurnal and seasonal variability as a function of geographical location. The influence of meteorological parameters, especially winds and precipitation have significant impact on the distribution of CO_2 concentration⁹. The high-altitude stations namely Ooty and Ponmudi are two contrasting sites controlled by the boundary layer processes, which can be studied in detail. The CO_2 concentration changes among different sites, therefore studies can be carried out by considering factors such as monsoons, altitude, anthropogenic emissions, and land cover type. These datasets are collected with consistent inter-sensor calibration and using the National Oceanic Atmospheric Administration (NOAA) calibration cylinders (CC). The high-quality CO_2 observations are on high demand especially from fast growing economy India for accurately understanding sources/sinks, their magnitude and spatiotemporal variability using atmospheric inversion. Such estimation will be helpful to develop effective strategies to mitigate CO_2 emissions.

Methods

Overview. A Vaisala GMP-343 CO_2 sensor probe through Campbell data loggers was used to collect continuous ambient CO_2 observations from seven Indian locations, as depicted in Fig. 1. GMP-343 instruments, which works on non-dispersive infrared (NDIR) technology²⁰ are set up at the observation location at various time scales. Consequently, the data were intercalibrated using standard calibrated greenhouse gas analyser (GGA) equipment, with biases included.

The bias correction was applied linearly from the installation to the calibration date. At each measuring station, the atmospheric CO₂ observations were collected with 5-minute temporal resolution and integrated to 60-minute. Using the GGA continuous CO_2 observations were collected from Shadnagar at a temporal frequency of 1 Hz from 2014 to 2017. The Ultraportable GGA (UGGA) is a sophisticated device that simultaneously measures CO₂, CH₄, and H₂O and is also purchased from Los Gatos Research Inc. It also uses a performance-improving off-axis spectroscopy method. True wavelength scanning is used by the enhanced off-axis integrated cavity output spectroscopy (OA-ICOS) technique to capture completely resolved absorption line shapes. A longer effective path length than a typical along-axis setup is made possible by the laser's off-axis alignment on the highly reflective mirrors inside the instrument chamber. This allows for the extraction of absorption line shapes with higher resolution. To investigate the effects of pressure, drop within the cavity, possibly caused by choked filters, on the absorption line spectra, the raw data were evaluated for cavity pressure and temperature variations. Using measurements of H_2O , the analyzer adjusts CO_2 and CH_4 values for dry air conditions. By removing up to 60% of the ambient H₂O through a Peltier cooler setup before the air is allowed to enter the GGA, the relatively high concentration of H_2O in ambient air, which may cause a significant error in such corrections, is reduced. The measuring setup of GGA is given in Mahesh et al.¹² and the data collection layout are described in Fig. 2. Studies show reliable results using these sensors in atmospheric studies^{21,22}.

Calibration. As shown in Table 1, the 3-span calibration gases from the NOAA are utilized for the periodic calibration of GGA and UGGA analyzers. These analyzers are well calibrated against the NOAA CO_2 spans to evaluate the instrument's precision and accuracy. The NOAA CO_2 cylinders are highly accurate while meeting the WMO standards with a reproducibility of ± 0.02 ppm. Reproducibility is defined as the consistency of measurements by different time periods using the same measuring equipment. The accuracy in the data file represents the degree of uncertainty which is used for assessment of the quality of the records. The precision and accuracy

Fig. 1 Workflow illustration of atmospheric CO_2 datasets creation **a**) Study site overlaid on the Digital Elevation Model (DEM) **b**) stages of calibration.

of CO₂ were, respectively, 0.078 ppm and 0.101 ppm for sample averaging time of 10 seconds. As shown in Fig. 1, except at the Shadnagar location, all other measuring locations are installed with the Vaisala GMP343 instruments, which were well calibrated against the precision UGGA equipment (make: ABB-Los Gatos Research, U.S.A) and subsequently adjusted the bias in the GMP-343 measured atmospheric CO₂ data. No additional temperature or pressure adjustments are needed for stations close to mean sea level²³. Atmospheric CO₂ concentrations are measured with a portable UGGA of CH₄/CO₂/H₂O analyzer at Ooty station is used for the inter-sensor calibration. UGGA works on off-axis integrated cavity output spectroscopy (ICOS) to measure atmospheric CO₂ concentrations with laser absorption technology. The precision of this analyzer for CO₂ measurements are <0.30 ppm²⁴⁻²⁶. As the GMP-343 instruments does not account for ambient moisture, hence the present study implemented the standards empirical equations to remove the water vapour influence and reported in the dry atmospheric CO₂ concentrations. Detailed air sampling system, calibration and inter-sensor comparison strategy is given in Mahesh *et al.*¹².

Table 2 provides inter-sensor calibration for every location. As shown in Fig. 3, the GMP-343 sensor functions accurately with an accuracy of 0.62%, as evidenced by the strong correlation between UGGA and GMP-343, which has a root mean square error of 2.57 ppm¹⁹.

Atmospheric CO₂ water vapour correction. Since the GMP-343 operates on NDIR technology, initially the measured atmospheric CO₂ records are corrected with the ambient temperature and pressure for the high-altitude stations using ideal gas equation as described in²¹. In the data files, the GMP-343 instrument reports atmospheric CO₂ concentrations without accounting the water vapour. Therefore, using the Wagner and Pruss²⁷ equations, the GMP-343 measured wet atmospheric CO₂ concentrations were corrected to dry atmospheric CO₂ concentrations. The following are the empirical formulas for calculating the ratio of atmospheric CO₂ concentration in wet and dry conditions. Except for the Shadnagar site, all other measurement location's

Fig. 2 Flow chart of data collection layout from the GGA, UGGA and GMP-343 CO_2 sensors at the observational sites.

S.No	Cylinder ID	CO _{2_NOAA} .(ppm)	Reproducibility (ppm)			
1	CB09852	353.17	± 0.02			
2	CC718409	404.53	± 0.02			
	CC718425	448.44	± 0.40			
Specifications of UGGA Precision and Accuracy						
Precision		Accuracy	Reference			
78 ppb		101 ppb	NOAA Calibration Cylinder			

Table 1. NOAA calibration span gases.

Station Name	Date of calibration	Reference data	RMSD (ppm)	Mean (ppm)	Accuracy (%)
NARL, Gadanki	$\frac{17^{\text{th}}}{18^{\text{th}}}$ March 2015		23.19 24.53	374.56	6.0
RRSC, Nagpur	$\frac{17^{\text{th}}}{18^{\text{th}}}$ March 2015	High precision UGGA	<u>8.30</u> 14.73	389.22	2.0
IISWC, Ooty	09-10 th August 2017		2.57	411.25	0.60
IIST, Ponmudi	$\frac{17^{\text{th}}}{18^{\text{th}}}$ March 2015		24.54 25.06	372.79	6.50
SHAR, Sriharikota	15 th January 2014	Against calibration reference 370 ppm	3.2	373.20	1.0
NRSC Shadnagar	10 th March 2015	NOAA CO ₂ references	0.11 ppm	402.92	<0.25

Table 2. Calibration of GMP-343 CO₂ sensors at study locations against UGGA instrument.

dry air CO₂ concentrations are estimated using Wagner and Pruss²⁷ Eq. (1-3). However, in the Shadnagar site, the high-precision greenhouse gas analyzer will remove 60% of water vapor through its Peltier cooling system. To remove the other 40% water vapour influence, a three-point standard calibration curve is established between measured CO₂ against the known CO₂ concentrations using the WMO certified NOAA supplied calibration spans as summarized in Table 1. Further, zero calibration is also applied to adjust the instrument bias. A detailed dry correction method is also discussed in the previous studies by Mahesh *et al.*¹⁹ and Sharma *et al.*^{21,23}.

Fig. 3 A 12-hour inter-sensor calibration of GMP-343 CO₂ sensor against high precision UGGA sensor during 9-10 August 2017.

$$\ln\left(\frac{p}{p_{c}}\right) = \frac{(a_{1}\tau + a_{2}\tau^{1.5} + a_{3}\tau^{3} + a_{4}\tau^{3.5} + a_{5}\tau^{4} + a_{6}\tau^{7.5})T_{c}}{T}$$
(1)

Relative Humidity (RH) =
$$\left(\frac{e}{e_s}\right) \times 100$$
 (2)

$$Dry (CO_2) = \frac{wet (CO_2)}{1 - (0.01 \times e)}$$
(3)

p = saturated vapor pressure; p_c = critical pressure (22.064 MPa); T_c = Critical temperature (647.096 K); $a_1 = -7.859$; $a_2 = 1.844$; $a_3 = -11.786$; $a_4 = 22.680$, $a_5 = -15.961$, $a_6 = 1.801$ and $\tau = 1-(T + 273.15)/T_c$; e and e_s are actual and saturated vapour pressure respectively.

Figure 4 displays the monthly water vapour corrected atmospheric CO_2 concentration compared to the raw atmospheric CO_2 concentration (wet CO_2) over the observational sites for the corresponding periods. The nearly uniform difference in atmospheric CO_2 content between wet and dry is noticed at the stations. The relative bias between the dry and wet atmospheric CO_2 concentrations are -11.27%, -2.80%, -2.52%, -2.24%, 1.78% and 5.95% over the Dehradun, SHAR, Nagpur, Gadanki, Shadnagar and Ooty respectively.

Data Records

We have made an effort to maintain synchronized atmospheric CO_2 observations across the country. Data gaps over the study sites are due to technical snags in the instrument. Atmospheric CO_2 data records are located at figshare online repository²⁸ and the National Information system for Climate and Environment Studies (NICES) web page under the ISRO's Bhuvan Geo-portal platform (https://bhuvan-app3.nrsc.gov.in/data/download/index.php). Data can be downloadable to the login users only. After login, the procedure to download the data has been given in Fig. 5.

Atmospheric CO_2 data is formatted in a single Microsoft Excel (.xlsx) file. The first sheet is labelled as "daily_Atmospheric_CO2_ppm", in which the first column represents the date in DDMMYYYY format. From the second to eighth columns are CO_2 measurement locations, namely Dehradun, Gadanki, SHAR, Ponmudi, Shadnagar, Nagpur, and Ooty, respectively. The second sheet of the file contains the daily raw CO_2 labelled as "Raw_daily_CO2_ppm". Third sheet contains hourly corrected atmospheric CO_2 . Gaps in the meteorological data are obtained from a fifth generation European Centre for Medium-Range Weather Forecasts reanalysis (ECMWF-ERA5) climate data, an open access platform (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels). Fourth sheet tagged as "Meta_data_Info" depicts the information of the data records, such as station names with their geographical locations (Latitude and Longitude) and the respective data period. The fifth sheet, i.e., inter-sensor calibration along with their deviations. The data in the fifth sheet has three columns; the first column is measurement time in HHMM format, the second column is CO_2 in ppm measured by the UGGA and GMP-343 measurements. Missing values in the xlsx file are indicated by the -999.

GMP-343 recorded CO_2 data are formatted in a CSV file. Table 3 shows the study site's positions, mean sea level (altitude), and data availability. At study sites, GMP-343 CO_2 sensors are installed during different periods.

Fig. 4 Water vapor corrected monthly mean of atmospheric CO₂ variation over the study locations.

Register /Login	Select	Select	Select	Select	Select	ПВ
https://bhuvan- app3.nrsc.gov.in/dat a/download/index.p hp?c=p&s=NI&g=all	Category: Program/Projects	Project: National Information system for climate & Environment studies (NICES)	Group: In-situ data	Product: Atmospheric CO ₂	Select site and time period	Download

Fig. 5 Flow chart for the CO_2 data access from the NRSC/Bhuvan Portal of NICES.

Station name	Latitude (N)	Longitude (E)	Altitude (m)	Data period
IIST, Ponmudi	8°45′	77°06′	1100.0	June 2014-May 2015
IISWC, Ooty	11°24′	76°40′	2240.0	May 2017- July 2021
SHAR, Sriharikota	13°43′	80°13′	9.0	January 2012-December 2012
NARL, Gadanki	13°27′	79°10′	375.0	January 2014-December 2014
NRSC, Shadnagar (GGA)	17°01′	78°11′	650.0	January 2014-December 2017
RRSC, Nagpur	21°09′	79°01′	310.0	January 2017-December 2017
IIRS, Dehradun	30°20′	78°02′	690.0	November 2008-December 2011

Table 3. GMP-343 CO₂ sensor locations and data availability.

Technical Validation

To maintain the quality measurements of continuous atmospheric CO_2 observations, the GMP-343 CO_2 sensors and the high precision greenhouse gas analyzer were periodically calibrated. An inter-sensor calibration was

Fig. 6 (a) Comparison of *in-situ* (dry) CO_2 against the MIROC4 ACTM simulated surface level CO_2 (b) Relative bias between monthly averaged *in-situ* CO_2 against the MIROC4 ACTM simulation.

carried out between the GGA and GMP-343 CO_2 sensors. An accuracy of the measurements from site to site are varied between 0.25% to 6.50%. The dry atmospheric CO_2 is mainly controlled by the atmospheric pressure, temperature, and water vapor, hence atmospheric dilution correction was carried out. Due to the atmospheric dilution, observed a deviation of 3 ppm to 50 ppm at different locations. Further, the CO_2 simulations from the Model for Interdisciplinary Research on Climate version 4^{29} (MIROC4); atmospheric general circulation model (AGCM)-based chemistry-transport model³⁰ (referred to as MIROC4-ACTM;) are used to evaluate the *in-situ* observations against the model simulation for the Indian sites (Fig. 6). Observation from 50 sites across the globe are used for optimizing biospheric and oceanic fluxes. Detailed information about the simulations can be found in Patra *et al.*³¹.

The model-simulated CO_2 and the baseline measurement over Nagpur match well; however, from March to April, there are noticeable increases in atmospheric CO_2 concentrations. Measurements of Gadanki between 2011 and 2013 occasionally found inconsistent values. However, measurements in 2014 showed a good correlation with the model's output. In the month of June 2013, anomalous measurements of atmospheric CO_2 concentrations were recorded due to the technical snag of the instrument The mean monthly bias between *in-situ* CO_2 against the MIROC4–ACTM simulated CO_2 indicated the largest bias for Dehradun compared to other stations and systematic bias for Shadnagar (Fig. 6b). Overall, the bias between the dry corrected CO_2 and model simulated CO_2 lies within $\pm 10\%$. Results of the comparison indicates the potentiality of the *in-situ* CO_2 for the use of atmospheric research.

Code availability

There is no specific custom code used to generate the data/figures presented in this work.

Received: 7 November 2022; Accepted: 9 April 2024; Published online: 16 April 2024

References

- Canadell, J. G. *et al.* Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ch.5 United Kingdom and New York, NY, USA, pp. 673–816, https:// doi.org/10.1017/9781009157896.007 (Cambridge Univ. Press, 2021).
- WMO. WMO Greenhouse Gas Bulletin. The state of Greenhouse Gases in the atmosphere based on global Observations through 2011.; 8, 19 November 2012, ISSN: 2078-0796:1–4 (2013).
- Ballantyne, A. P. et al. Increase in observed net carbon dioxide uptake by land &oceans during the past 50 years. Nature 488, 70–72, https://doi.org/10.1038/nature11299 (2012).
- 4. Friedlingstein, P. et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020 (2020).
- Stocker, T. F. et al. Climate change: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5) (Cambridge Univ Press, New York) (2013).
- Huang, Y. et al. Global organic carbon emissions from primary sources from 1960 to 2009. Atmos. Environ. 122, 505–512, https:// doi.org/10.1016/j.atmosenv.2015.10.017 (2015).
- Monastersky, R. Global carbon dioxide levels near worrisome milestone: concentrations of greenhouse gas will soon surpass 400 parts per million at sentinel spot. *Nature*. 497, 13–15, https://doi.org/10.1038/497013a (2013).
- Houghton, John, T, Geoffrey J. J. & Jim J. E. Climate change: the IPCC scientific assessment. American Scientist; (United States). 80, 6 (1990).

- 9. Sreenivas, G. *et al.* Influence of Meteorology and interrelationship with greenhouse gases (CO₂ and CH₄) at a suburban site of India. *Atmos. Chem. Phys.* **16**, 3953–3967, https://doi.org/10.5194/acp-16-3953-2016 (2016).
- Wang, G. et al. Observation analysis of land-atmosphere interactions over the Loess Plateau of northwest China. J. Geophys. Res. 115, D00K17, https://doi.org/10.1029/2009JD013372 (2010).
- Machida, T. *et al.* Vertical and meridional distributions of the atmospheric CO₂ mixing ratio between northern mid-latitudes and southern subtropics. *J Geophys Res.* 108(D3), https://doi.org/10.1029/2001JD000910 (2003).
- Mahesh, P. et al. High-precision surface-level CO₂ and CH₄ using off-axis integrated cavity output spectroscopy (OA-ICOS) over Shadnagar, India. Int. J. Remote Sens. 36(22), 5754-5765, https://doi.org/10.1080/01431161.2015.1104744 (2015).
- Cracknell, A. P. & Varotsos, C. A. Satellite systems for atmospheric ozone observations. Int. J. Remote Sens. 35(15), 5566–5597, https://doi.org/10.1080/01431161.20154.945013 (2014).
- 14. Bhattacharya, S. K. et al. Trace gases & CO₂ isotope records from Cabo de Rama, India. Curr. Sci. 97(9), 1336–1344 (2009).
- Tiwari, Y. K. et al. Influence of monsoons on atmospheric CO₂ spatial variability &ground-based monitoring over India. Sci. Total Environ. 490, 570–578, https://doi.org/10.1016/j.scitotenv.2014.05.045 (2014).
- Nalini, K. *et al.* Designing surface CO₂ monitoring network to constrain the Indian land fluxes. *Atmos. Env.* 218(1), 117003, https://doi.org/10.1016/j.atmosenv.2019.117003 (2019).
- Mahesh, P. *et al.* Implications of emission sources and biosphere exchange on temporal variations of CO₂ and δ¹³C using continuous atmospheric measurements at Shadnagar (India). *J Geophys Res. Atmos.* https://doi.org/10.1029/2022JD036472 (2023).
- Huo, D. *et al.* Carbon Monitor Cities near-real-time daily estimates of CO₂ emissions from 1500 cities worldwide. *Sci. Data.* 9, 533, https://doi.org/10.1038/s41597-022-01657-z (2022).
- Mahesh, P *et al.* Three-dimensional view of CO₂ variability in the atmosphere over the Indian region. *Atmos. Res.* 290, https://doi. org/10.1016/j.atmosres.2023.106785 (2023).
- Rigby, M. et al. First continuous measurements of CO₂ mixing ratio in central London using a compact diffusion probe. Atmos. Environ. 42, 8943–8953, https://doi.org/10.1016/j.atmosenv.2008.06.040 (2008).
- Sharma, N. et al. Atmospheric CO₂ variations in two contrasting environmental sites over India. Air, Soil Water Res., 7, https://doi. org/10.4137/ASWR.S13987 (2014).
- 22. Mahesh, P. et al. Impact of land-sea breeze and rainfall on CO₂ variations at a coastal station. J. earth sci. clim. 5(6), https://doi. org/10.4172/2157-7617.1000201 (2014).
- Sharma, N. et al. Temporal variations of atmospheric CO₂ in Dehradun, India during 2009. Air, Soil Water Res. 6, https://doi.org/10.4137/ASWR.S10590 (2013).
- Baer, D. S., Paul, J. B., Gupta, M. & O'Keefe, A. Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy. *Appl. Phys. B* 75, 261–265, https://doi.org/10.1007/s00340-002-0971-z (2002).
- Paul, J. B., Lapson, L. & Anderson, J. G. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment. Appl. Opt. 40, 4904–4910, https://doi.org/10.1364/AO.40.004904, (2001).
- Sun, X. et al. In situ measurement of CO₂ and CH₄ from aircraft over northeast China and comparison with OCO-2 data. Atmos. Meas. Tech. 13, 3595–3607, https://doi.org/10.5194/amt-13-3595-2020 (2020).
- Wagner, W. & Pruss, A. International Equations for the Saturation Properties of Ordinary Water Substance. Revised According to the International Temperature Scale of 1990. J. Phys. Chem. Ref. Data. 22, 783–787, https://doi.org/10.1063/1.555926 (1993).
- Mahesh et al. Data_Discriptor_worksheet_CO2.xlsx Spatio-temporal Atmospheric In-situ CO2 data over the Indian Sites-Data Perspective. figshare. https://doi.org/10.6084/m9.figshare.23266433.v1 (2023).
- Watanabe, S. et al. Development of an atmospheric general circulation model for integrated Earth system modeling on the Earth Simulator. J. Earth Simulator 9, 27–35 (2008).
- Chandra, N. et al. Estimated regional CO₂ flux and uncertainty based on an ensemble of atmospheric CO₂ inversions. Atmos. Chem. Phys. 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022 (2022).
- Patra, P. K. et al. Improved chemical tracer simulation by MIROC4.0-based atmospheric chemistry-transport model (MIROC4-ACTM). Sola. 14, 91–96, https://doi.org/10.2151/sola.2018-016 (2018).

Acknowledgements

We greatly thank the CAP-ISRO Geosphere-Biosphere Program (CAP-IGBP) for continuous support and funding. Authors sincerely thank G. Srinivasa Rao, Deputy Director, ECSA and Dr. M.Venkata Ramana, Group Director, ECSA for their continued support. Authors of this paper thank Ms. Kanchana A.L. of ECSA for extending the support during the data collection and curation of the data. We greatly acknowledge the handling editor, editorial board members of Nature Scientific Data and anonymous reviewers for their constructive feedback which has helped us to improve the quality of the manuscript in the present form. One of the authors Dr. Naveen Chandra receivced the support from the projects ArCS-II; JPMXD1420318865 and special thanks to Dr. Prabir Patra, JAMSTEC for atmospheric CO_2 model simulations. We thank the Copernicus Climate Change Service (C3S) at ECMWF for providing hourly meterological paramters.

Author contributions

Conceptualization and Methodology, M.P., M.D.V., and S.G.; Data: M.P., S.G., A.S.S., Y.K., R.P., and P.R.S.; Formal Analysis, M.P., S.G., and M.D.V.; Writing-Original Draft Preparation, M.P., M.D.V., A.T., R.P., and N.C.; Writing-Review & Editing, R.V.B., P.C., R.K.S., and V.K.D.; Model Support N.C.

Competing interests

The authors declare no conflict of interest.

Additional information

Correspondence and requests for materials should be addressed to M.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024