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an EEG Dataset of Neural 
Signatures in a Competitive 
two-Player Game Encouraging 
Deceptive Behavior
Yiyu Chen  1, Siamac Fazli2 & Christian Wallraven  1,3 ✉

Studying deception is vital for understanding decision-making and social dynamics. Recent EEG 
research has deepened insights into the brain mechanisms behind deception. Standard methods in this 
field often rely on memory, are vulnerable to countermeasures, yield false positives, and lack real-world 
relevance. Here, we present a comprehensive dataset from an EEG-monitored competitive, two-player 
card game designed to elicit authentic deception behavior. Our extensive dataset contains EEG data 
from 12 pairs (N = 24 participants with role switching), controlled for age, gender, and risk-taking, with 
detailed labels and annotations. the dataset combines standard event-related potential and microstate 
analyses with state-of-the-art decoding approaches of four scenarios: spontaneous/instructed truth-
telling and lying. This demonstrates game-based methods’ efficacy in studying deception and sets a 
benchmark for future research. Overall, our dataset represents a unique resource with applications 
in cognitive neuroscience and related fields for studying deception, competitive behavior, decision-
making, inter-brain synchrony, and benchmarking of decoding frameworks in a difficult, high-level 
cognitive task.

Background & Summary
Deceiving another person is an intricate and multifaceted human behavior, the neurological basis of which has 
become an intense focus of research. Understanding the underlying neural mechanisms of deception (or lying) 
is essential for advancements in fields such as law, psychology, and clinical domains. Modern neuroimaging 
techniques, notably functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), have 
played pivotal roles in advancing our understanding of the neural underpinnings of such deceptive behaviors. 
These technologies have superseded traditional polygraph approaches, offering deeper insights into neural pro-
cesses. For example, the concealed information test (CIT) has been widely explored using EEG to detect specific 
neural responses during deception1–5.

While CIT-based lie detection has provided valuable insights into the neural mechanisms of deception, it 
is important to consider its inherent limitations. Importantly, its accuracy can be undermined by participants’ 
use of countermeasures, such as focusing on irrelevant stimuli6,7. Additionally, the CIT’s reliance on memory 
recognition8 rather than actual deceit may produce false positives among innocent individuals exposed to crime 
details9,10. Furthermore, the controlled settings of CIT experiments often lack the practical motivations present 
in real-world deception, potentially affecting their ecological validity. There is a pressing need to bridge these 
gaps, specifically in ensuring that the neural signatures captured truly reflect deceptive behavior in a real-world 
context. Game-based designs are emerging as potential alternatives for studying lying behavior, with several 
studies having incorporated such designs to assess spontaneous lying and truth-telling actions11–15.

In view of the growing significance of these research areas and the need for comprehensive datasets, this 
paper provides a novel dataset related to deceptive behavior, obtained from a competitive, two-person-based 
card game task employing EEG. The two-player deception game task is designed to induce real-world decep-
tive behavior, thereby augmenting the depth and breadth of existing deception and lie detection research. By 
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combining spontaneous and instructed lying/truthful behaviors, this dataset offers a rich source of informa-
tion for future research endeavors. Additionally, in recognizing the potential confounds related to risk-taking 
behavior and psychological arousal, our experimental design integrates the balloon analog risk-taking 
(BART) test16,17, thereby enhancing the granularity and robustness of our dataset. Furthermore, our task inte-
grates interpersonal dynamics into decision-making, providing a fertile ground for insights into inter-brain 
interactions.

Numerous public datasets are available that span a range of tasks for studying cognitive functions. These 
range from simple tasks that enable cognitive processing, such as conflict control, language production, and 
cognitive inference, to more complex ones, such as visual / speech imagery, working memory, and decision 
making, as detailed in Table 1. However, datasets addressing advanced cognitive processes, especially deception, 
remain very few. Our dataset fills this gap, employing a game-based design to stimulate high-level cognitive 
deception. It is comprehensive and large scale, featuring data from 24 participants for each player role, and offers 
fully pre-processed, synchronized, and labeled data for approximately 121 trial epochs per condition. Notablely, 
to the best of our knowlage, our dataset is the first to showcasing two-player interactions that highlight advanced 
decision-making. Given its distinctive design, our dataset has the potential to significantly advance the under-
standing in the realm of cognitive deception and interpersonal decision-making.

Overall, our dataset will serve to provide new insights into the neuronal mechanisms of lying behavior and 
represents a significant addition to the field. In particular, it encompasses:

•	 Comprehensive EEG data collected from participants engaged in a two-person-based card game designed to 
induce real-world lying behavior.

•	 Annotations of four different experimental conditions, including spontaneous or instructed decisions, and 
truthful or lying behaviors.

•	 Demographic information and psychological assessments, including measures to control for risk-taking 
tendencies.

•	 Fully-processed data to enhance efficiency during two-player analyses, eliminating complexities associated 
with data synchronization. This includes pre-processing, time-stamping, synchronization, epoching, and 
labeling.

•	 Benchmark results from Event-Related-Potential (ERP) analysis, microstate analysis, and deep-neural-net-
work decoding for the four experimental conditions.

Methods
Participants. 24 participants (12 males and 12 females, aged 19–34, mean = 25 yrs, SD =  ± 4.34) partici-
pated in the experiment. All had normal or correct-to-normal visual acuity and none of them had a history of 
neurological disease or injury. The participants were naïve to the card game paradigm and gave written informed 
consent before the start of the experiment and received payment of around 10US$ per hour for taking part in the 
study. The experiment was conducted in accordance with the tenets of the Declaration of Helsinki and received 
IRB approval with the number KUIRB-2019-0043-01.

apparatus. EEG was recorded with a total of 31 electrodes at a sampling frequency of 500 Hz, using 
BrainAmp amplifiers and EasyCaps with an active electrode system (Brain Products, Munich, Germany). The 
measurements were performed with 30 EEG electrodes, namely: Fp2, F9,7,3,z,4,8,10, FC5,1,2,6, T7,8, C3,z,4, 
CP5,1,2,6, P7,3,z,4,8, PO3,4, O1,z,2, as well as one EOG electrode below the right eye (EOGv1). During the 

Cognitive Function Task Number of Participants Trials per Condition

Inner speech50 Up, down, left, right in spanish N = 10 45–60 trials1

Visual & Sound Imagery51 Audio, orthographic, pictorial perception and imagination N = 12 64–150 trials2

Working Memory52 N-back (0-Back, 1-Back and 2-Back) N = 29 9 blocks

Working Memory53 Digit span N = 85 108 trials

Working Memory54 Discriminate seen and unseen pictures N = 20 40 trials

Conflict control55 Stroop task N = 21 32 trials

Conflict control56 Stroop task N = 21 32 trials

Conflict control52 Arrow-based Eriksen flanker task N = 29 90 trials

Decision making57 Food, image semantic category, and word semantic 
category choice using mouse-tracking N = 31 320 trials

Decision making58 Drive car back to the center of the lane using steering wheel 
after drift event occurs N = 27 615–7269 trials3

Language production54 Picture naming and spelling N = 23 148 trials

Language production54 Picture and auditory naming N = 20 120 (pictrue), 80 (audio)

Cognitive inference59 Extended Multi-source Interference Task (MSIT+) N = 42 102 ± 7(00), 105 ± 7(S0), 
94 ± 9(F0), 98 ± 9(FS)

Mental workload52 MATB-II N = 29 9 trials

Table 1. Summary of EEG Dataset papers of Higher-level Cognitive Processing.
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initial recordings, we encountered a connection issue with the Oz electrode within the recording devices. This 
problem compromised the reliability of data from the Oz electrode. As a result, to maintain the integrity of our 
study, we decided to exclude this electrode from all further recordings and analyses. All EEG electrodes were 
nose-referenced and a forehead ground was used (Fpz). In general, the impedance of electrodes was kept below 
15k Ω during the experiment. The setup time for the electrode configuration was 35 minutes on average.

All stimuli were presented on two 24’’ monitors (LG, Seoul, South Korea) at a refresh rate of 60 Hz and a 
resolution of 1920px x 1080px. Participants’ responses were collected using two RB-740 response pads (Cedrus 
Corporation, San Pedro, USA) with 6 buttons (number of 1–6) used on one pad and 2 buttons (“Truth” and 
“Lie”) used on the other pad. The facial expressions of the participants were recorded using an HD pro C920 
webcam (Logitech, Lausanne, Switzerland). The experiment was implemented in Python with PsychoPy18. Data 
preprocessing was performed with MATLAB (The MathWorks, Natick, MA, USA) using EEGLAB19, further 
ERP analysis and statistical test was performed using the Berlin BCI toolbox20.

Experimental task. The experiment involved participants engaging in a card-based deception game, in 
which they played the role of either a “player” or an “observer” opposite a counterpart. Participants were paired 
based on similar risk-taking scores (obtained through the Balloon Analogue Risk Task or BART17), age, and 
gender.

During the game, the player and observer sat facing each other, separated by two monitors, as depicted in 
Fig. 1b. Each trial commenced with the player receiving a card displaying a number. The player’s task was to 
relay the number on the card to the observer. Relying on the player’s facial expressions and strategic considera-
tions, the observer then determined whether the information provided was truthful or deceptive. Players were 
prompted to adapt their behavior based on the color of their assigned card, which indicated the response type. 
The color-response assignments were randomized for each participant. After completing one session, the roles 
of the player and observer were swapped for a second session.

The entire game consisted of 11 rounds, with each round comprising 44 trials. After each round, a 30-second 
break was given before the subsequent round began. Of the 44 trials in a round, 22 were spontaneous, 11 were 
instructed lies, and 11 were instructed truths, presented in a randomly shuffled order. The stimuli consisted of 
cards displaying numbers ranging from 1 to 6, each printed in one of three colors (black, purple, or blue), with 
the color assignment contingent on the instruction.

The game commenced with an explanation of the card color-response assignments to the player. As illus-
trated in Fig. 1a, every trial began with a 1-second fixation cross, succeeded by a 3-second display of a card at the 

Fig. 1 Experimental setup. (a) Trial structure of the experiment. The trial started with a 1-second fixation 
cross (1st figure), followed by the player’s 3-second decision-making phase where their face was shown via live 
camera stream to the observer while looking at the card (2nd figure). Next, the player was instructed to give the 
response with a maximum reaction time of 3 seconds (3rd figure). The player’s response was then shown to the 
observer, who was asked to decide between lie or truth within a maximum response period of 3 seconds (4th 
figure). The trial ended with a 1-second trial score and 2 seconds status information screen (5th and 6th figure). 
(b) Experimental setup with a schematic illustration of the situation in the decision-making phase of the player. 
The player and the observer sat face to face with monitors between them. Participants’ responses were collected 
using a response pad, and the player’s face was displayed in real-time to the observer via a webcam stream.  
(c) Payoff matrix of the game for the player and the observer.
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screen’s center. The player was instructed to focus on the card and make a decision within the 3-second window, 
with their facial expressions simultaneously displayed to the observer in real time. Subsequently, the player was 
prompted to select the card number they wanted to convey to the observer. This selection could be influenced 
by the card color cue, requiring players to select a different number than the one displayed in the “instructed 
lie”(instL) condition, the same number in the “instructed truth” (instT) condition, or any number of their choice 
in the spontaneous condition (sponT, sponL). Upon the player’s response, a black card displaying the chosen 
number was shown to the observer, who then had 3 seconds to decide whether the information was a “lie” or 
the “truth”. After the observer’s response, feedback was provided on the screen, displaying scores or penalties for 
both participants based on the outcome of the trial. The scoring system, explained prior to the experiment, was 
designed to incentivize lying for the player and lie detection for the observer: the winner received +15 points 
and the loser −5 points if the player lied, or +10 points for the winner and −5 points for the loser if the player 
was truthful. Each trial concluded with a status screen showing the accumulated total score, number of trials 
won, rounds won, and game progress.

Data Records
The complete set of raw behavioral data, raw EEG data, and preprocessed EEG data utilized in this study is 
readily accessible on Figshare for use21. EEG data is made available in the Brain Vision Recorder’s native for-
mat, encompassing “.eeg” for raw data, alongside “.vhdr” and “.vmrk” files for header and marker information, 
respectively. The naming convention for raw EEG files follows the output format of the BrainVision recorder, 
categorizing each participant by their role—either as a player or an observer—with filenames exemplified by 
Player_sub01.eeg and Observer_sub01.eeg.

Raw behavioral logs are presented as space-separated text documents (“.txt”), and accompanying event 
timestamp files (“.txt”), correlated with the EEG recordings, are prepared for each participant. These docu-
ments include information detailed in Tables 2 and 3. Behavioral and timestamp files are named to reflect 
the dyadic structure of the experimental sessions, indicating participant roles and numbers—for instance, 
Player_sub01_Observer_sub02_Behavioral.txt and Player_sub01_Observer_sub02_
Timestamp.txt.

Category Details

Demographic characteristics
Age

Sex

Trial information

Card type (spon/inst)

Card color

Card number

Trial number

Round number

Response information

Player’s response (Truth, lie)

Observer’s response (Truth, lie)

player’s input number

Player’s reaction time

observer’s reaction time

Table 2. Log information.

Category Details

Stimulus

Round start

Round end

Fixation cross

Card show (Spon/instL/instT)

Player input start

Observer input start

Break start

Break end

Response
Player input (truth/lie, number)

Observer input (truth/lie)

Feedback

Trial status

Trial result

Round result

Final game result

Table 3. Timestamp information.
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For the preprocessed EEG data and data prepared for 1D-CNN classification, filenames are systematically 
organized based on the type of stimulus onset, such as DecisionMaking (player decision making phase in 
Fig. 1a) or Feedback (Trial score in Fig. 1a), to facilitate targeted analysis. Preprocessed data files bear names 
that mirror individual session identifiers, like Player_sub01_Observer_sub02.mat. Conversely, 
Datasets for 1D-CNN classification are consolidated into single.mat files per session for efficient initial loading 
in Python, optimizing trial selection and data handling by mitigating the cumbersome loading of.mat file.

technical Validation
Data preprocessing. As depicted in Fig. 2, the data underwent downsampling to 100 Hz, followed by the 
application of a 1/49 Hz high-/low-pass filter. Channel rejection was performed using EEGLab function clean_
artifact() with channels whose line noise power was 4 standard deviations higher than their signals, and 
lower correlations than 0.85 with their reconstructed versions based on adjacent channels being rejected. With 
the same function, EEG data containing nonstationary high-amplitude bursts were removed using artifact sub-
space reconstruction (ASR)22, which is a principle component-based method. The ASR procedure was applied 
using a 500-ms sliding window and a lax (20 standard deviations) threshold that removes extreme mechanical 
artifacts while preserving brain signal components. This method has been shown to improve the quality of a 
subsequent Independent Component Analysis (ICA) decomposition23,24. Next, all removed channels were inter-
polated and EEG data were then re-referenced to a common average reference. ICA was performed using EEGLab 
function runamica15() in EEGLab and the independent components (ICs) were subsequently separated into 
several signal categories (e.g., brain, muscle, eye, etc.) by a trained classifier ICLabel25 using EEGLab function 
iclabel(). The ICs labeled as eye movements with probabilities higher than 0.7 were rejected.

EEG epochs were extracted for both the player and the observer. For the player, 3500 ms epochs were taken 
starting 500 ms before the onset of the stimulus presentation (Player decision making period in Fig. 1a). These 
epochs were grouped into four conditions: instructed truth (instT), instructed lie (instL), spontaneous truth 
(sponT), and spontaneous lie (sponL), with a baseline correction interval of 500 to 0 ms before stimulus onset. 
For the observer, 1200 ms epochs commenced 200 ms before the feedback (Trial score in Fig. 1a) onset. These 
epochs were categorized into two conditions: correct and incorrect, using a baseline correction interval of 200 
to 0 ms. In both cases, subjects with artifact-free epochs were retained for analysis. However, one participant 
from each group had to be excluded due to faulty EEG equipment, leaving 23 participants in each category for 
ERP analysis.

EEG analysis. ERP and statistical analysis. The ERP was calculated using a weighted average, as the spon-
taneous trials involving binary comparisons did not have balanced numbers of trials. Topographic maps of 
significant features for the four different deception conditions were calculated by point-biserial correlation coef-
ficients26, measuring the association of the trial type label to the electrode-wise ERP data. Using Fisher’s transfor-
mation, correlations were transformed into unit variance z-scores for each subject, and grand average z-scores 
were obtained by weighted sums of individual z-scores over all subjects. In calculating grand-average statistics, 
inverse-variance weighting under a fixed-effects hierarchical model based on the sufficient statistics approach27 
was used. P-values for the hypothesis of zero correlation in the grand average were computed using a two-sided 
z-test. All reported p-values were Bonferroni-corrected to account for multiple hypothesis testing.

Microstate. We also conducted a microstate analysis using the Randomization Graphical User Interface28. 
This approach uses a spatial K-means clustering approach to pinpoint functional microstates, characterized by 
quasi-stable scalp map topographies, by measuring global map dissimilarity29. Dominant topographies in the 
grand-mean stimulus/feedback-locked ERP map series for player and observer were identified. To ascertain 
the optimal cluster count, we assessed models of different cluster numbers on training data, comparing their 
mean correlation against the rest of the participants’ stimulus-locked ERPs. This process was executed 50 times, 
averaging results to accommodate inter-participant variance while minimizing intra-participant variance. the 
cluster count that best represented the group-averaged data were selected. A topographical fitting procedure was 
then employed to find the onset and offset of each microstate in the grand-mean stimulus-locked ERP up to the 
intersection point.

Decoding analysis. To assess single-trial decoding of the four different deception conditions, we used a 
10-layer one-dimensional convolutional neural network (1D-CNN)30 in a stratified ten-fold cross-validation. 
This 1D-CNN efficiently extracts local features between adjacent elements in a feature vector31. This network, 
enhanced by an electrode selection strategy involving pairs of symmetrical electrodes in the region of interest30,32, 
outperformed prior CNN methods on motor imagery data. Based on significant ERP scalp patterns, we chose 

EEG Data Accquisition Downsampling to 100Hz 1/49 Hz High-/Low-pass Filter Line Noise Removal

Artifact Correction Using ASR Channel Interpolation Common Average Reference Artifact Rejection Using ICA

Fig. 2 Flowchart of preprocessing steps.
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electrode pairs for training, as shown in Fig. 3, including frontal-occipital and X-pattern symmetrical electrodes 
relative to the transverse line through T7-C3-Cz-C4-T8. To verify if the 1D-CNN’s classification results exceeded 
chance levels, we conducted exact binomial tests within each participant for the six experimental conditions. 
The ratio of correct and incorrect predictions was compared to a null model with 0.5 accuracy (chance level). 
To understand the 1D-CNN classifier’s learned features, we adopted the Gradient-weighted Class Activation 
Mapping (Grad-CAM) approach33 to assess the impact of different time points. The feature importances from 
Grad-CAM were normalized in each training iteration within the ten-fold cross-validation Figs 4–6.

Fig. 3 Selection of electrode pairs for 1D-CNN classification. (a) fronto-occipital symmetrical electrode pairs 
used for player. (b) x-pattern electrode pairs used for player. (c) circular design for observer (e.g. each pf the 
orange electrodes are paired to central yellow electrode).

Fig. 4 Event-related potential. Left) For the player, first row shows grand average ERP analysis of all conditions 
for electrodes Fz for Player and observer. Shaded areas indicate P200, N200, N300, LPP, and post-LPP 
(overlapped with LPP), respectively. Below shows the ERP scalp map (rows 1 and 2) and signed logarithm 
p-values (row 3) indicating the grand average statistical significance of difference for instL vs. instT (left top), 
sponL vs. instT (right top), sponT vs.instT (left bottom), and sponL vs. sponT (right bottom). Right) For the 
observer, top shows grand average ERP contrasing condition correct and incorrect. Shaded areas indicate P300, 
P400 and N500. bottom shows the ERP scalp map (rows 1 and 2) and statistical significance of difference for 
incorrect vs. correct. Bold contours indicate p < 0.05, where p-values are corrected for multiple comparisons.

https://doi.org/10.1038/s41597-024-03234-y
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Behavioral results. In spontaneous conditions, participants chose to either tell the truth or lie. We observed 
that the participants (N = 23) made significantly more truthful decisions (mean = 132, SD = ±20) than lying 
decisions (mean = 109, SD = ±20; t(22) = −3.809, p < 0.001). No significant correlation was found between the 
percentage of lies in the spontaneous condition and BART scores (r = −0.32, p = 0.13).

Regarding reaction times, previous research has shown that reaction data fits a convolution of normal and 
exponential distributions (Ex-Gaussian)34. A Box-Cox transformation34, with λ = 0.3, was therefore used to 
meet the normality assumption for parametric statistical tests. A 4-level (condition type: instL, instT, sponL, 
sponT) one-way repeated measure ANOVA found a significant main effect of condition type ( = .F(3, 66) 4 8, 

= .p 0 0044, η = .0 18p
2 ). Paired t-tests revealed participants responded significantly slower in the sponL condi-

tion (GM ms552untransformed = ) compared to all  other conditions (instT: =GM ms513untransformed , 
= .t (22) 2 95sponL instT( , ) , = .p 0 0073; instL: =GM ms521untransformed , = .t (22) 2 97sponL instL( , ) , p 0 0070= . ; sponT: 

mean ms502= , t (22) 3 35sponL sponT( , ) = . , p 0 0029= . ). No significant differences were noted for other condition 
pairs.

Benchmark EEG results. Event related potential. For the player, our ERP analysis revealed differences 
between the four experimental conditions in several components: P200, N200, N300, LPP, and post-LPP. When 
compared to the instT condition, other conditions elicited more pronounced P200 (170–200 ms) and N200  
(240–290 ms) responses. P200 was related to emotional salience35, risky information36, or mismatch37, suggest-
ing that participants required more attention in the instructed lie and spontaneous conditions. This increased 

Fig. 6 Single-Trial Clasiification result. (a) The mean cross-validated 1D-CNN classification accuracy for all 
six binary combinations of conditions (player) and correct vs. incorrect condition (observer) using 0 to 3000 ms 
post-stimulus data. Individual accuracy is indicated by white dots. (b) Feature importance calculated using 
Grad-CAM for all six binary combinations of conditions (player) and correct vs. incorrect condition (observer).

Fig. 5 Microstate. Microstate clusters across time (ms) for all conditions plotted over global field power (GFP) 
for observer and player.

https://doi.org/10.1038/s41597-024-03234-y
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attention could be attributed to the need for a choice in these conditions, whereas instT involved only a single 
button press. The N200, higher in instT, is associated with cognitive control and conflict monitoring, potentially 
due to greater cognitive control demands in deception14,15,38. Subsequent to the N200, an N300 difference was 
observed, only contrasting the instructed lie versus the spontaneous conditions, associated with more specific 
information in the presence of semantic incongruencies39,40. Our study suggests the N200 differentiates between 
cue-related default behavior and other behaviors, while the N300 distinguishes forced-choice deception from 
self-determined deception, with increased amplitude for forced-choice. The LPP, related to decision ambigu-
ity41,42, was more pronounced in instL, sponT, and sponL, reflecting the graded ambiguity of choice in these 
conditions. Subsequent prefrontal post-LPP was higher in spontaneous conditions, likely due to the longer deci-
sion time in instructed lying and spontaneous decisions. A more pronounced post-LPP was observed for sponL, 
attributable to higher decision ambiguity. The lack of significant P200, N200, and N300 differences between 
sponL and sponT, despite visually identical cues, is consistent with previous studies13–15, suggesting that early 
LPP components are more perceptually driven. These results contribute to understanding the neural basis of 
deception, involving attentional control, cognitive control, semantic processing, and decision-making processes.

For the observer, post-feedback onset elicited the P300, P400, and a late negative potential N500. The P300, 
manifesting as a central positivity between 250–400 ms, is a widely studied feedback-related component linked 
to feedback type and valence. Consistent with prior research, P300 amplitudes showed heightened responses 
to negative feedback compared to positive ones43,44. The ensuing P400, identifiable by a positive deflection at 
frontal recording sites and a negative one at posterior sites, peaks around 400 ms post-feedback onset and was 
more pronounced in the loss condition. This P400 component has been linked to the processes of updating and 
memorizing information45. In the context of our study, this suggests observers were actively monitoring game 
scores to ensure a win in the game. Previous studies have indicated that the N500 is generally more pronounced 
for unpleasant stimuli and is believed to originate from the posterior cingulate cortex and visual association 
cortex46,47.

Microstate analysis. Our microstate analysis corroborated the main ERP patterns, showing consistently higher 
Global Field Power (GFP) for both players and observers. Specifically, players displayed unique clusters (5th 
and 6th) in the LPP interval (400–500 ms), which effectively distinguished between instructed and spontane-
ous conditions. In the instructed condition, we observed elevated posterior potentials, whereas the spontane-
ous condition yielded higher frontal potentials. For observers, a markedly higher GFP was linked to the P300 
component in loss outcomes (p < 0.0005), further establishing P300 as the key component for differentiating 
between outcome types.

Single-trial classification results. In our decoding analysis, we used 1D-CNN for single-trial classifica-
tion to associate EEG features with behavioral performance. We achieved above-chance classification accuracy 
in all conditions for both players (55%) and observers(71%). Notably, Grad-CAM analysis highlighted that early 
ERP components (P200, N200, N300) were the key discriminative features for player classification. This confirms 
their ability to accurately distinguish between truths and lies in both instructed and spontaneous conditions. For 
observers, Grad-CAM indicated that later ERP components starting at 300 ms (P300, P400, N500) effectively 
classified correct and incorrect outcomes.

Usage Notes
Our dataset, offering both player and observer perspectives in a competitive deception game, serves as a foun-
dational resource for understanding cognitive functions during deceptive activities. The basic ERP analysis we 
performed has confirmed essential cognitive functions such as attention, cognitive control, decision ambiguity, 
and information processing for both players and observers, thereby setting the stage for more nuanced investiga-
tions. One immediate avenue for future research could involve exploring connectivity and inter-brain synchrony 
to investigate the dynamics within and between brains during deception. Our data could enable researchers 
to build more complex models of social interaction involving deception, potentially illuminating key neural 
pathways and mechanisms that govern truthful and deceptive behavior. As strategy plays a critical role in com-
petitive games, future analyses could focus on how higher-order decision makings, like the dynamic adjustment 
of decisions based on previous outcomes, interact with basic cognitive functions48,49. This can extend to studies 
of game theory, risk taking, and decision-making in other contexts as well. Our robust single-trial classification 
results using 1D-CNN demonstrate the feasibility of employing deep learning for decoding players’ deceptions 
and observers’ feedback. Advanced deep learning models could further refine these techniques, contributing to 
not only more accurate, real-time decision-making and deception detection systems, but also for applications 
in cognitive rehabilitation.

Code availability
The EEG preprocessing, ERP analysis code and code used for classification is avaliable at https://github.com/
yiyuchen-lab/DeceptionGame.
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