
1Scientific Data |          (2024) 11:371  | https://doi.org/10.1038/s41597-024-03212-4

www.nature.com/scientificdata

Automated BigSMILES conversion 
workflow and dataset for 
homopolymeric macromolecules
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The simplified molecular-input line-entry system (SMILES) has been utilized in a variety of artificial 
intelligence analyses owing to its capability of representing chemical structures using line notation. 
However, its ease of representation is limited, which has led to the proposal of BigSMILES as an 
alternative method suitable for the representation of macromolecules. Nevertheless, research 
on BigSMILES remains limited due to its preprocessing requirements. Thus, this study proposes a 
conversion workflow of BigSMILES, focusing on its automated generation from SMILES representations 
of homopolymers. BigSMILES representations for 4,927,181 records are provided, thereby enabling 
its immediate use for various research and development applications. Our study presents detailed 
descriptions on a validation process to ensure the accuracy, interchangeability, and robustness of the 
conversion. Additionally, a systematic overview of utilized codes and functions that emphasizes their 
relevance in the context of BigSMILES generation are produced. This advancement is anticipated 
to significantly aid researchers and facilitate further studies in BigSMILES representation, including 
potential applications in deep learning and further extension to complex structures such as copolymers.

Background & Summary
The simplified molecular-input line-entry system (SMILES) is a chemical representation developed in 1988 
to express chemical formulas in ASCII strings1. The underlying rules in SMILES are relatively intuitive; adja-
cent atom strings are also closely connected in actual structures, and a fork, which is divided into two or more 
branches, can be indicated through parentheses, and a ring notation such as a benzene ring, can be expressed 
through numbers. Although the International Chemical Identifier (InChI)2,3, which allows chemical line nota-
tion in a mechanism not similar to SMILES, is also widely used in the overall field of chemistry, its complex and 
incomprehensible syntax has led to InChI being considered to be not as efficient as SMILES, and it has limited 
applications in the field of artificial intelligence4–6. Due to its ability to express chemical structures as strings 
using intuitive syntax and its ease of handling via various tools, SMILES has been extensively applied to polymer 
property analyses and predictions by machine learning and deep learning algorithms5–18.

However, SMILES representation suffers from certain limitations in predictive and generative studies7,19–26. 
Because SMILES is specialized in representing small molecules, additional notation system is required for the 
representation of macromolecules such as polymers. The representative chemical line notations applying similar 
creation mechanisms that have been developed since SMILES include SMARTS27, SELFIES28, DeepSMILES29, 
and BigSMILES30. Especially noteworthy is that BigSMILES, specialized in representing macromolecules, is 
anticipated to overcome the limitations in artificial intelligence research by encompassing three key pieces of 
information in addition to what SMILES provides18,19,25,31. These include the principle of polymerization through 
reactions, the indication of the significance of both head-to-tail and tail-to-tail configurations, and the infor-
mation to distinguish between two reactive end groups in step-growth polymerization. BigSMILES enables 
the provision of such information by incorporating several rules utilizing special characters in addition to the 
SMILES rules.

Numerous researchers have expressed a keen interest in employing BigSMILES representations in polymer 
research. However, there remains a paucity of machine learning or deep learning investigations in this domain32. 
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This limitation stems largely from the absence of readily available source codes or software programs to generate 
BigSMILES data without environmental restrictions compared to other representation methods. Therefore, in 
the realm of artificial intelligence research, it remains imperative that all data must be meticulously curated 
manually by domain experts.

Thus, this study propose an automated system designed specifically for generating BigSMILES from SMILES 
representations of homopolymers, with a primary emphasis on simpler structures that are readily amenable 
to the identification of conversion rules. The proposed system has been used to create dataset files applying 
BigSMILES representations to 4,927,181 records, and is ready for immediate use in various research fields. We 
aimed to enable interchangeable creation of BigSMILES representations from SMILES data without manual 
intervention, as shown in Fig. 1. This advancement can streamline the research efforts focused on the BigSMILES 
representation of homopolymers, potentially paving the way for deep learning and other related studies in this 
domain. We hope that this development will stimulate active research endeavors in the future, not only for 
homopolymers but also for more intricate and complex structures such as copolymers.

Methods
BigSMILES polymer representation in homopolymers.  The BigSMILES representation adheres to the 
fundamental principles of SMILES and is applicable to the depiction of all polymers, not exclusively homopol-
ymers. BigSMILES inherits both non-unique and unambiguous features of SMILES. Uppercase and lowercase 
letters represent non-aromatic and aromatic atoms, respectively. Special characters are employed to signify the 
bonding relationships between atoms. Parentheses indicate side chains in the presence of branching points in the 
bond relationships. Ring structures such as benzene are denoted using numeric values. For chemical substances 
with multiple rings, distinct numbers are used to distinguish ring structures. An asterisk (*) is often used as a 
wildcard symbol to represent any element or group of elements, or used as a symbol of polymerization point in the 
constitutional repeating unit. However, in this study, we considered the asterisks only as polymerization points 
because the information obtainable solely from SMILES input is limited. Additionally, as applying automated gen-
eral rules for repeating units with multi-atom connections is challenging30, all of the SMILES representations of 
repeating units of homopolymers, which is a primary focus of this study, all SMILES representations feature two 
polymerization points. Because homopolymers are formed by the repetitive linkage of identical repeating units, 
the same polymer segment is assumed to be attached to each point.

Expanded from the foundational SMILES syntax, the BigSMILES syntax introduces the use of curly brackets 
to represent polymeric fragments. For homopolymers, the polymerization point notations are substituted with 
curly brackets. However, it is challenging to adapt this to the existing SMILES representation; an asterisk, which 
signifies the polymerization point, must be positioned at both ends of the SMILES expression. Because most 
canonical SMILES forms do not place asterisks at either end, this study developed an algorithm to reposition 
asterisks at both ends without altering the original structure of the polymeric fragment to be depicted.

The asterisk, which was previously treated as a branch and located in the middle of the original canonical 
SMILES, is swapped with the remaining portion located to the right of the parentheses. This repositioning 
ensures that the remaining portion is recognized as a branch. This approach exploits the fact that, in the SMILES 
expression, the branched parts are enclosed within parentheses, while the main structure is located outside them. 
Throughout this process, a careful attention must be paid to ring numbering and isotopes to ensure that the 
altered representation is logically consistent with the original repeating units. Consequently, the sequence of ele-
ments is rearranged, with the main chain of the repeating unit placed outside all parentheses, and the side chains 
defined within them. Figure 2 illustrates a permutative process applied to Poly(bisphenol-A terephthalate).  

Fig. 1  Example of mutual conversion between SMILES and BigSMILES.
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The code implementing this methodology is provided in the Python programming language to facilitate 
reproducibility.

Furthermore, a paramount distinction between BigSMILES and SMILES is the direct incorporation of infor-
mation regarding the polymerization mechanism into the representation. This is achieved by introducing special 
symbols that are not used in SMILES— angle brackets (<, >), dollar signs ($), and a comma (,). For homopoly-
mers, these angle brackets and dollar signs are positioned adjacent to curly brackets.

The dollar symbol signifies monomers engaged in polymerization through AA type bonding, encompassing 
both chain-growth and addition polymerization. Conversely, angle brackets indicate the monomers involved in 
polymerization through AB type bonding, encompassing step-growth and condensation polymerization. Thus, 
the presence of the dollar sign within the BigSMILES expression provides an immediate insight that the corre-
sponding polymer undergoes AA type polymerization, obviating the need for further analysis. Consequently, 
this feature simplifies the task of discerning variances in polymer characteristics due to different polymerization 
processes compared to alternative representation methods.

The adoption of BigSMILES enables swift differentiation between AA and AB type polymers. However, for 
AB type polymers that form a condensation polymerization with different monomers, providing additional 
information regarding the two reactive end groups can be advantageous, as it offers insights into the two-unit 
monomers responsible for step-growth polymerization. For homopolymers, if two reactive groups are identified 
in the SMILES representation, BigSMILES incorporates a “<, >” symbol between these groups. For instance, 
consider Poly(ethylene adipate), represented as “OCCOC( = O)CCCCC( = O)” in SMILES. While BigSMILES 
representation may initially portray Poly(ethylene adipate) as “{ < OCCOC( = O)CCCCC( = O) >}” with an AB 
polymerization type, it can also be encoded as “{<OCCO <, > C( = O)CCCCC( = O) >}” to distinctly denote 
the presence of reactive end groups. Figure 3 presents a practical illustration of the conversion from SMILES, 
showing the repeating units of the two polymers to BigSMILES, demonstrating the capability of expressing 
reactive groups in AB type polymers.

Nonetheless, even when the provided SMILES repeating unit data are categorized as either AA or AB type, 
actual polymerization types may undergo alterations under specific synthesis conditions, such as the applica-
tion of a catalyst. In these exceptional scenarios, supplementary adjustments become imperative subsequent 
to employing the automated BigSMILES conversion code outlined in this study. This is essential in that the 
automation code discerns the polymerization type based solely on the provided repeating unit SMILES, without 
considering the impact of specialized synthesis conditions.

Fig. 2  Example of the permutative process of moving the asterisks to either end when entering the canonical 
SMILES of Poly(bisphenol-A terephthalate). The portion identified as the main chain varies with each 
permutation; however, these SMILES notations represent the same polymer while preserving its structural 
integrity, Poly(bisphenol-A terephthalate).

Fig. 3  Examples of SMILES to BigSMILES conversion results. (a) AA type polymerization compound Poly(1-
butene). (b) AB type polymerization compound Poly(ethylene adipate). For AB type polymers, two expression 
techniques, i.e., displaying only the AB-type and displaying the reactive group, are possible.
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Following the publication on the development of BigSMILES syntax, subsequent work has extended the 
BigSMILES language to include methods and syntax for canonicalization and noncovalent bonding33–35. As 
a result, the latest BigSMILES line notation differs slightly from the rules established in the initial BigSMILES 
publication and incorporates additional features. However, in this study, we adhere to the syntax established 
in the original BigSMILES publication, acknowledging the possibility that rules may continue to be added or 
modified in the future.

Workflows.  The workflows illustrated in Fig. 4 encapsulates the comprehensive processes involved in the con-
version of SMILES into BigSMILES. The conversion between SMILES and BigSMILES yields distinct representa-
tions of the same substance. In essence, it entails converting a substance represented in SMILES into BigSMILES 
notation by deriving three pieces of information: the principle of polymerization through reactions, an indication 
of the significance of both head-to-tail and tail-to-tail configurations, and information to distinguish between two 
reactive end groups in step-growth polymerization.

The overall workflow entails an initial preprocessing stage, wherein polymerization point symbols, rep-
resented by asterisks (*), are positioned at both ends of the SMILES for each repeating unit SMILES input. 
Subsequently, the preprocessed SMILES are transformed into BigSMILES. If the asterisk is not relocated to either 
end of the SMILES during the preprocessing stage, the conversion to BigSMILES cannot be successfully achieved.

The procedure of relocating the asterisk to both ends is reiterated until all asterisks are successfully posi-
tioned at both ends of the SMILES, as illustrated in the example provided in Fig. 2. Cases in which the number 
of polymerization points is not equal to two are filtered out at this stage. To check the chemical grammar, we 
seamlessly implement it in Python, the language used for this workflow, utilizing the chemical representation 
package RDKit36. The process involves using RDKit to ensure that the SMILES representations adhere to chem-
ical grammar, confirming their validity. To remove unnecessary symbols, adjustments were made to eliminate 
redundant SMILES representations and streamline the BigSMILES conversion process. Examples of this include 

Fig. 4  Workflows of SMILES to BigSMILES conversion algorithm. (a) Overall workflow. (b) Preprocessing 
process workflow. (c) SMILES to BigSMILES conversion process workflow.
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removing the “–” symbol for a single bond, which is usually omitted. If all the asterisks are located outside the 
parentheses but not positioned at either end within the SMILES, attempts to relocate them to both ends will be 
futile. This is because there exists no primary chain to modify their placement. Once the asterisks are reposi-
tioned at both ends, these symbols are removed, and the subsequent step proceeds assuming that both ends of 
the preprocessed SMILES represent polymerization points.

Once the preprocessed SMILES is generated under the assumption of a polymerization point at both ends, it 
is fed into the conversion algorithm. Drawn from the insights and data presented in the research on BigSMILES, 
the polymer is classified as follows: If the main chain of the SMILES exclusively comprises carbon or silicon 
atoms, it is categorized as an AA type because such polyolefins and polycarbosilanes are commonly prepared by 
Ziegler–Natta polymerization or ring-opening polymerization, respectively. Conversely, unless this condition is 
satisfied, it is designated as the AB type. As explained earlier, this standard is not inflexible and may be subjected 
to alterations based on factors, such as the utilization of specialized reactions.

If the classification into the AA type is confirmed, processing can be concluded. However, in cases classified 
as AB type, it is essential to verify whether the specific criteria are met. The primary criterion involves identify-
ing situations wherein both head-to-tail and tail-to-tail configurations are significant. In the BigSMILES study, 
these attributes are specifically exemplified within the Propylene oxide series, characterized by their formation 
through the ring opening polymerization from asymmetric epoxides. To consider these attributes in SMILES 
representations wherein the structure prior to the reaction is unknown, we identify SMILES sequences charac-
terized by a main chain composed solely of “*CCO*” and consider them as exceptions. This entails a BigSMILES 
representation that expresses both head-to-tail and tail-to-tail configurations. An illustrative example is shown 
by the three propylene oxide series examples in Fig. 5.

The next aspect under consideration is the partitioning of AB type repeating unit into two reactive groups. 
This procedure is initiated with preprocessed SMILES and involves stepwise repositioning of polymerization 
points. In simpler terms, this involves sequentially shifting each SMILES notation until parallel displacement 
is achieved throughout the length of that SMILES notation. This approach draws an inspiration from the fact 
that, as presented in Fig. 5, the SMILES notation of Polyoxytrimethylene represents the same polymer even 
when the structural elements near the polymerization point, such as “*CCCO*”, “*CCOC*”, and “*COCC*”, 
are moved in parallel. However, the unit of displacement is a single character, and occasional SMILES syntax 
violations may occur when conducting parallel displacements, such as the sole movement of parentheses or 
numbers. When parentheses are shifted, there is a potential risk of encountering invalid syntax issues. Similarly, 
when numbers are shifted, there is a probability of representing a structure different from the original structure. 
In such instances, it is impossible to identify two reactive groups from the outset; consequently, these cases are 
excluded from consideration. Typically, these exclusions occur more than the total number of parentheses plus 
the number of digits for a single SMILES. Once a single unit undergoes parallel displacement without anomalies, 
the subsequent step involves inspecting whether, within this temporary SMILES, two specific structures from 

Fig. 5  Examples to illustrate intermediate steps in the workflows. (a) Examples of ring opening polymerization 
from asymmetric epoxides. The main chain of the repeat unit is made up of CCO. (b) Examples of parallel 
displacement in SMILES notation.
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the predefined forms of reactive end groups seamlessly fit together. The predefined forms of reactive end groups 
used in this step are primarily adopted from existing literature, with some additions incorporated during the 
ground-truth creation and manual verification stages of this study. Throughout this process, upon discovering 
the presence of two reactive groups, the transformation proceeds to represent both groups within the AB type 
notation, prompting the cessation of the parallel displacement process. However, if the search reached the last 
iteration without discovering these groups, it simply confirms the presence of the AB type. In some chemical 
instances, the absence of two reactive groups can occur, either as a result of the non-existence of the homopoly-
mer or the complexity of its structure, rendering it difficult to identify such groups.

Data acquisition.  A homopolymer dataset comprising 4,927,181 records was obtained from three distinct 
studies. All of the data sources explicitly stated that the data were available for academic use. Among these, 966 
records included both SMILES representation data and their corresponding glass transition temperature val-
ues. These records were provided in the form of supplementary information in their respective papers. Within 
this subset, 304 records represented the experimentally verified temperature values derived from the entries of 
the standard dataset of the glass transition temperature of linear polymers30,37; the remaining 662 records were 
derived through machine calculations7. As will be discussed in the Technical Validation section, the initial 304 
data records were manually validated once and were found to differ from the original source by about eight 
records. The remaining 4,926,212 records consisted solely of SMILES representations generated by systematically 
combining the chemical fragments extracted from synthesis-proof polymers8. These records were provided in 
the form of a Zenodo database38. Even though the data provided in the database total approximately 100 million 
records, because the feasibility of synthesizing these data into actual polymers has not been empirically demon-
strated, we decided to convert only records with SMILES lengths of 85 characters or less to reflect the fact that 
excessively long repeating unit structures might be less practically feasible.

Data Records
The complete dataset of 4,927,181 homopolymers with BigSMILES representations can be accessed from 
Figshare39. All dataset files are available in comma-separated values (csv) format. Notably, all of the BigSMILES 
values present in the dataset were automatically generated using the conversion algorithm. The detailed descrip-
tion of the dataset with and without the glass transition temperature is presented below. Each dataset exists in 
the “with_Tg” and “without_Tg” folders in Figshare.

Dataset with glass transition temperature (966 records). 

•	 JCIM_sup_bigsmiles.csv is a csv file containing 662 records of machine-derived homopolymer structures 
and glass transition temperatures. All 662 generated BigSMILES records were verified by a chemist. The file 
is structured with the following fields:

	 1.	 SMILES field indicates the homopolymer’s repeating unit SMILES representation for each row;
	 2.	 BigSMILES field indicates the homopolymer’s BigSMILES representation for each row;
	 3.	 Tg (C) field represents the °C temperatures of the data collected for each row.
•	 Bicerano_bigsmiles.csv is a csv file containing 304 records of experimentally verified homopolymer struc-

tures and glass transition temperatures. All 304 generated BigSMILES records were verified by a chemist. 
Since the data has been constructed from existing polymer structures, the information on the polymer name 
was also included. The remaining fields are the same as those shown in the file above. The file is structured 
with the following fields:

	 1.	 Polymer name field represents the existing polymer structure name for each row;
	 2.	 SMILES field;
	 3.	 BigSMILES field;
	 4.	 Tg (K) exp field represents the temperature in Kelvin of the data collected for each row.

Dataset without glass transition temperature (4,926,212 records). 

•	 polyBERT_len85_######.csv in “without_Tg” folder comprising 4,926,212 records, is segmented into a 
total of 50 csv files. Each file accommodates data in batches of 100,000 records and is stored as an indi-
vidual file with sequential nomenclature (polyBERT_len85_0.csv, polyBERT_len85_100000.csv, polyBERT_
len85_200000.csv, etc.) The final file, polyBERT_len85_490000.csv, has 26,212 records. The dataset contains 
only the BigSMILES field. The corresponding SMILES data can be accessed on the Zenodo database38.

Technical Validation
To verify the reliability of the dataset and workflow, three validation procedures were conducted. The first objec-
tive was to verify the accuracy of the conversion algorithm. The second focused on ensuring that there was 
no loss of information or disruption in the conversion of the representation methods resulting from the algo-
rithm. Finally, we verified the robustness of the algorithm, ensuring that it performed consistently regardless of 
the input. The first and second steps of this process involved testing the success rate of the mutual conversion 
between SMILES and BigSMILES, as shown in Fig. 1. These three technical validations were executed through 
Python programming code. For clarity, all steps in the process were executed algorithmically, and any aspects 
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that require manual confirmation were initially verified by a data scientist who was aware of the underlying 
encoding principles of SMILES and BigSMILES and had conducted workflows. The next step was subsequent 
validation based on the chemical structure by a chemist. Thus, for each technical step that required manual val-
idation, two-stage verification was conducted from data and chemical perspectives, respectively.

The first validation procedure involved verifying whether the BigSMILES ground-truth provided by the orig-
inal data source matched the BigSMILES representation generated using our conversion algorithm. Because 
the dataset with BigSMILES representation was primarily sourced from a paper introducing BigSMILES, we 
conducted a validation process on 304 records to ensure the precision of the conversion.

Our initial step involved verifying the integrity of 304 BigSMILES representations to ascertain their suitabil-
ity as the ground-truth. We cross-referenced the BigSMILES representations with the polymer structure images 
provided in the respective previous study to detect typographical errors. We identified discrepancies in the 
BigSMILES representations of eight polymer structures, as outlined in Table 1. The index columns corresponded 
to those in the provided dataset. Among these, three records were found to contain structural errors that were 
not logically feasible, whereas five records were corrected because they originally represented different poly-
mers. These eight errors were rectified and adopted as the ground-truth. The names following the colon after 
“Perfluoropolymer” in the table represent the IUPAC names40 of the respective polymers. They have been added 
as clarifications to avoid confusion with polymers named using common nomenclature. The IUPAC names 
corresponding to each molecule were generated using a IUPAC name generation toolkit named Marvin Suite41  
and then verified by a chemist. Thus, these two cases of “Perfluoropolymer” were checked for anomalies and 
added to the table.

Subsequently, we compared the BigSMILES generated by our conversion algorithm from SMILES with 
the corrected ground-truth records. The SMILES data were input into the Python workflow code to gener-
ate BigSMILES outputs. Of the generated results, 128 cases matched perfectly with the ground-truth; for the 
remaining 176 cases, a manual verification process was conducted to confirm whether they represented the 
same polymer with only differences in ordering. After a meticulous review by a data scientist and chemist, it 
was confirmed that the conversion process proceeded without errors. The primary focus of this conversion suc-
cess rate verification was to ensure the accuracy of the transitions between the AA and AB types as well as the 
representation of ring opening polymerization from asymmetric epoxides. Consequently, it was confirmed that 
these processes proceeded without errors.

The second procedure involved confirming whether the representation, that had already been converted to 
BigSMILES using our algorithm, matched the original SMILES when converted back to SMILES. This process 
was conducted for the entire dataset comprising 4,927,181 records. Through the verification using the pro-
gramming language Python and the chemical representation package RDKit, it was confirmed that they all 
accurately represented the repeating unit as in the original SMILES, despite instances wherein the ordering dif-
fered in terms of the SMILES syntax. This result indicates that it is possible to use SMILES data converted from 
BigSMILES as is or after canonicalization.

Finally, we examined whether the conversion to BigSMILES was successful for SMILES representations of 
the same repeating unit but with varying ordering. This process was undertaken owing to the characteristics 
of the SMILES representation, as depicted in Fig. 2, which is non-unique yet unambiguous for a perticular 
structure. Because a single structure may be expressed in various orders, SMILES necessitates such verification. 
For the 304 existing structures, we generated five different SMILES representations with varying orders using 
RDKit and input them into the conversion algorithm to check whether they all resulted in the same BigSMILES 

Index Polymer name Reference SMILES Obtained BigSMILES Corrected BigSMILES

28 Poly(3-methoxypropylene oxide) *CC(COC)O* {<CC(OC)O>, <C(OC)CO>} {<CC(COC)O>, <C(COC)
CO>}

65

Perfluoropolymer:
poly[2‐(1‐{[1,1,2,2,3,3,4,4,5,5,6,6‐
dodecafluoro‐6‐(2,2,2‐
trifluoroethoxy)hexyl]
oxy}‐1,2,2,2‐tetrafluoroethyl)‐4‐
methyl‐1,3,5‐triazine]

*c1nc(C)nc(C(F)(OC(F)(F)C(F)
(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)
OC(*)C(F)(F)F)C(F)(F)F)n1

{<C(C(F)(F)F)OC(F)(F)C(F)(F)
C(F)(F)C(F)(F)C(F)(F)OC(F)
(C(F)(F)F)c1nc(nc(C)n1)>}

{<c1nc(C)nc(n1)C(F)(C(F)(F)F)
OC(F)(F)C(F)(F)C(F)(F)C(F)(F)
C(F)(F)C(F)(F)OC(C(F)(F)F)>}

69

Perfluoropolymer:
poly[2‐(2,2,2‐trifluoro‐1‐
{[1,1,2,2,3,3,4,4,5,5,6,6,7,7‐
tetradecafluoro‐7‐(2,2,2‐
trifluoroethoxy)heptyl]oxy}
ethyl)‐4‐(trifluoromethyl)‐1,3,5‐
triazine]

*C(C(F)(F)F)OC(F)(F)C(F)
(F)C(F)(F)C(F)(F)C(F)(F)
C(F)(F)C(F)(F)OC(C(F)(F)F)
c1nc(nc(C(F)(F)F)n1)*

{<C(C(F)(F)F)OC(F)(F)C(F)
(F)C(F)(F)C(F)(F)C(F)(F)
C(F)(F)C(F)(F)OC(C(F)(F)F)
c1nc(nc(C(F)(F)F)n)>}

{<C(C(F)(F)F)OC(F)(F)C(F)
(F)C(F)(F)C(F)(F)C(F)(F)
C(F)(F)C(F)(F)OC(C(F)(F)F)
c1nc(nc(C(F)(F)F)n1)>}

78 Poly(vinyl butyrate) *CC(OC( = O)CCC)* {$CC(OC( = O)CCC$} {$CC(OC( = O)CCC)$}

113 Poly(isobutyl methacrylate) *CC(*)(C)C( = O)OCC(C)C {$CC(C)(C( = O)CC(C)C)$} {$CC(C( = O)OCC(C)C)(C)$}

192 Poly(cyclohexyl α-chloroacrylate) *CC(*)(Cl)C( = O)OC1CCCCC1 {$CC(C( = O)C1CCCCC1)(Cl)$} {$CC(C( = O)OC1CCCCC1)
(Cl)$}

236 Poly(N-vinyl carbazole) *CC(*)n1c2ccccc2c2ccccc21 {$CC(N1c2c(cccc2)c3c1(cccc3)$} {$CC(N1c2c(cccc2)c3ccccc13)$}

283
Poly(quinoxaline-2,7-
diylquinoxaline-7,2-diyl-p-
terphenyl-4,4′-ylene)

*c1ccc(-c2ccc(-c3ccc(-c4cnc5ccc(-
c6ccc7ncc(*)nc7c6)cc5n4)cc3)
cc2)cc1

{<c1nc2cc(ccc2nc1)
c3cc4nc(cnc4cc3)<, >c1ccc(cc1)
c2ccc(cc2)c3c(cccc3)>}

{<c1ccc(cc1)c2ccc(cc2)
c3ccc(cc3)c4cnc5ccc(cc5n4)
c6ccc7ncc(nc7c6)>}

Table 1.  List of corrected errors in BigSMILES present during data collection.
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representation. The results confirmed successful and consistent conversion in all cases, indicating that the con-
version algorithm will still work if a SMILES representation is fed into the algorithm without going through the 
process of refinement using a separate tool.

Through this technical validation process, we demonstrated that our workflow fully supports interconversion 
between SMILES and BigSMILES representations for homopolymers with two polymerization points, and that 
the BigSMILES representation of the data we provide is correctly converted and can be used as such.

Usage Notes
All source code provided was implemented in Python. The experiments were conducted in Python version 
3.7.11, and the required packages were specified in the “requirements.txt” file. Within the provided codes, 
“s2bigs.py” and “bigs2s.py” encompass essential functions. The other codes were the test scripts used to gen-
erate the dataset using these functions. Each step of the code was explained through comments. To make these 
codes user-friendly and usable for practical applications, the source codes were packaged into a Python package 
named “BigSMILES_homopolymer”. In this section, a brief explanation of the core functions will be outlined. 
Therefore, for actual application or modification of the code and package, detailed information can be obtained 
from the provided GitHub repository in which the code is available.

The three functions starting with the name “Data_Load” in the code can import data files in the txt, csv, and 
xlsx formats. The input files must contain a column containing SMILES information. When importing data in 
the txt format, the code allows the efficient handling of large datasets by limiting the number of rows and the 
SMILES length to be imported.

Upon loading the data using the aforementioned data loading functions, it can then be converted globally 
using the “Converting” functions, divided into 100,000 records and then saved as a csv file in a specified folder 
location. The “move_parallel” variable in the “Converting” function in “s2bigs.py” was used during the search 
for two reactive end groups within the same SMILES representation. Setting this number to −1 enabled search-
ing across all SMILES orderings. However, in cases where the data were generated through simulations and not 
through actual polymers, finding two reactive end groups for all SMILES orderings may be challenging. In such 
instances, setting this value to zero can enhance processing speed.

Unlike the aforementioned codes that provide mutual conversion between SMILES and BigSMILES, the code 
for altering versions within BigSMILES representations is declared within the comprehensive file of functions 
titled “BigSMILES_homopolymer.py.” This code is declared as a class named “version_converter” and currently 
provides conversion between the officially documented BigSMILES representations, versions 1.0 and 1.1. The 
versions developed to date, and future BigSMILES syntax additions, if any, are documented on the following 
GitHub page: (https://olsenlabmit.github.io/BigSMILES/docs/line_notation.html).

Code availability
The collected SMILES datasets can be accessed in the corresponding supplementary information files7,30 and 
Zenodo38.

The Python codes of the SMILES to BigSMILES conversion algorithm, BigSMILES to SMILES conversion 
algorithm, and examples of the analysis conducted in this study, including technical validations, are available at 
GitHub: (https://github.com/CDAL-SChoi/BigSMILES_homopolymer).

Received: 9 October 2023; Accepted: 2 April 2024;
Published: xx xx xxxx

References
	 1.	 Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. 

Inf. Model. 28, 31–36 (1988).
	 2.	 Heller, S. R., McNaught, A., Pletnev, I., Stein, S. & Tchekhovskoi, D. InChI, the IUPAC International Chemical Identifier.  

J. Cheminform. 7, 23 (2015).
	 3.	 Goodman, J. M., Pletnev, I., Thiessen, P., Bolton, E. & Heller, S. R. InChI version 1.06: now more than 99.99% reliable. J. Cheminform. 

13, 40 (2021).
	 4.	 Krenn, M. et al. SELFIES and the future of molecular string representations. Patterns 3, 100588 (2022).
	 5.	 Gómez-Bombarelli, R. et al. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. 

Sci. 4, 268–276 (2018).
	 6.	 Rajan, K., Steinbeck, C. & Zielesny, A. Performance of chemical structure string representations for chemical image recognition 

using transformers. Digit. Discov. 1, 84–90 (2022).
	 7.	 Tao, L., Varshney, V. & Li, Y. Benchmarking Machine Learning Models for Polymer Informatics: An Example of Glass Transition 

Temperature. J. Chem. Inf. Model. 61, 5395–5413 (2021).
	 8.	 Kuenneth, C. & Ramprasad, R. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics. 

Nat. Commun. 14, 4099 (2023).
	 9.	 Alshehri, A. S. & You, F. Deep learning to catalyze inverse molecular design. Chem. Eng. J. 444, 136669 (2022).
	10.	 Chen, G., Tao, L. & Li, Y. Predicting polymers’ glass transition temperature by a chemical language processing model. Polymers 

(Basel) 13, 1–14 (2021).
	11.	 Chithrananda, S., Grand, G. & Ramsundar, B. ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property 

Prediction. Preprint at https://arxiv.org/abs/2010.09885 (2020).
	12.	 Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter 

engineering. Science. 361, 360–365 (2018).
	13.	 Kim, H., Lee, J., Ahn, S. & Lee, J. R. A merged molecular representation learning for molecular properties prediction with a web-

based service. Sci. Rep. 11, 11028 (2021).
	14.	 Li, J. & Jiang, X. Mol-BERT: An Effective Molecular Representation with BERT for Molecular Property Prediction. Wirel. Commun. 

Mob. Comput. 2021, 1–7 (2021).
	15.	 Goswami, S., Ghosh, R., Neog, A. & Das, B. Deep learning based approach for prediction of glass transition temperature in polymers. 

Mater. Today Proc. 46, 5838–5843 (2021).

https://doi.org/10.1038/s41597-024-03212-4
https://olsenlabmit.github.io/BigSMILES/docs/line_notation.html
https://github.com/CDAL-SChoi/BigSMILES_homopolymer
https://arxiv.org/abs/2010.09885


9Scientific Data |          (2024) 11:371  | https://doi.org/10.1038/s41597-024-03212-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

	16.	 Morris, P., St. Clair, R., Hahn, W. E. & Barenholtz, E. Predicting Binding from Screening Assays with Transformer Network 
Embeddings. J. Chem. Inf. Model. 60, 4191–4199 (2020).

	17.	 Nigam, A. et al. Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) 
algorithm for molecules using SELFIES. Chem. Sci. 12, 7079–7090 (2021).

	18.	 Gormley, A. J. & Webb, M. A. Machine learning in combinatorial polymer chemistry. Nat. Rev. Mater. 6, 642–644 (2021).
	19.	 David, L., Thakkar, A., Mercado, R. & Engkvist, O. Molecular representations in AI-driven drug discovery: a review and practical 

guide. J. Chem. inform. 12, 56 (2020).
	20.	 Mokaya, M. et al. Testing the limits of SMILES-based de novo molecular generation with curriculum and deep reinforcement 

learning. Nat. Mach. Intell. 5, 386–394 (2023).
	21.	 Cencer, M. M., Moore, J. S. & Assary, R. S. Machine learning for polymeric materials: an introduction. Polym. Int. 71, 537–542 (2022).
	22.	 Mohapatra, S., An, J. & Gómez-Bombarelli, R. Chemistry-informed macromolecule graph representation for similarity 

computation, unsupervised and supervised learning. Mach. Learn. Sci. Technol. 3, 015028 (2022).
	23.	 Patra, T. K. Data-Driven Methods for Accelerating Polymer Design. ACS Polym. Au 2, 8–26 (2022).
	24.	 Upadhya, R. et al. Automation and data-driven design of polymer therapeutics. Adv. Drug Deliv. Rev. 171, 1–28 (2021).
	25.	 Anstine, D. M. & Isayev, O. Generative Models as an Emerging Paradigm in the Chemical Sciences. J. Am. Chem. Soc. 145, 

8736–8750 (2023).
	26.	 Aldeghi, M. & Coley, C. W. A graph representation of molecular ensembles for polymer property prediction. Chem. Sci. 13, 

10486–10498 (2022).
	27.	 Daylight Theory: SMARTS - A Language for Describing Molecular Patterns. https://www.daylight.com/dayhtml/doc/theory/theory.

smarts.html. Accessed 29 Sep 2023
	28.	 Krenn, M., Häse, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. Self-referencing embedded strings (SELFIES): A 100% robust 

molecular string representation. Mach. Learn. Sci. Technol. 1, 045024 (2020).
	29.	 O’Boyle, N. & Dalke, A. DeepSMILES: An Adaptation of SMILES for Use in Machine-Learning of Chemical Structures. Preprint at 

https://doi.org/10.26434/chemrxiv.7097960.v1 (2018).
	30.	 Lin, T. S. et al. BigSMILES: A Structurally-Based Line Notation for Describing Macromolecules. ACS Cent. Sci. 5, 1523–1531 (2019).
	31.	 Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).
	32.	 Chen, L. et al. Polymer informatics: Current status and critical next steps. Mater. Sci. Eng. R Reports 144, 100595 (2021).
	33.	 Lin, T.-S., Rebello, N. J., Lee, G.-H., Morris, M. A. & Olsen, B. D. Canonicalizing BigSMILES for Polymers with Defined Backbones. 

ACS Polym. Au 2, 486–500 (2022).
	34.	 Zou, W. et al. Extending BigSMILES to non-covalent bonds in supramolecular polymer assemblies. Chem. Sci. 13, 12045–12055 (2022).
	35.	 Deagen, M. E. et al. Machine Translation between BigSMILES Line Notation and Chemical Structure Diagrams. Macromolecules 57, 

42–53 (2024).
	36.	 Landrum, G. others, RDKit: Open-source cheminformatics. (2006).
	37.	 Bicerano, J. Prediction of Polymer Properties. https://doi.org/10.1201/9780203910115 (CRC Press, 2002).
	38.	 Kuenneth, C. & Ramprasad, R. polyBERT: A chemical language model to enable fully machine-driven ultrafast polymer informatics. 

Zenodo https://doi.org/10.5281/zenodo.7969082 (2023).
	39.	 Choi, S. et al. Automated BigSMILES conversion workflow and dataset for homopolymeric macromolecules, Figshare, https://doi.

org/10.6084/m9.figshare.c.6858337.v1 (2023).
	40.	 Favre, H. A. & Powell, W. H. Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. (Royal 

Society of Chemistry, 2013).
	41.	 ChemAxon - Software Solutions and Services for Chemistry & Biology. https://www.chemaxon.com. Accessed 5 Oct 2023

Acknowledgements
This work was supported by Samyang Corporation and Yangyoung Foundation, and a grant from National 
Research Foundation of Korea (NRF-2022R1A2C2004003).

Author contributions
Choi, S. conceptualization, methodology, software, investigation, validation, data collection, data curation, 
writing – original draft, writing – review and editing. Lee, J. conceptualization, methodology, investigation, 
validation, data curation, writing – review and editing. Seo, J. data collection, data curation. Han, S.W. 
supervision, funding acquisition. Lee, S.H. supervision, funding acquisition, writing – review and editing. Seo, 
J.-H. conceptualization, supervision, funding acquisition, writing – review and editing. Seok, J. conceptualization, 
investigation, supervision, funding acquisition, writing – review and editing.

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could 
have appeared to influence the work reported in this paper.

Additional information
Correspondence and requests for materials should be addressed to Junhee Seok
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2024

https://doi.org/10.1038/s41597-024-03212-4
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://doi.org/10.26434/chemrxiv.7097960.v1
https://doi.org/10.1201/9780203910115
https://doi.org/10.5281/zenodo.7969082
https://doi.org/https://doi.org/10.6084/m9.figshare.c.6858337.v1
https://doi.org/https://doi.org/10.6084/m9.figshare.c.6858337.v1
https://www.chemaxon.com
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Automated BigSMILES conversion workflow and dataset for homopolymeric macromolecules

	Background & Summary

	Methods

	BigSMILES polymer representation in homopolymers. 
	Workflows. 
	Data acquisition. 

	Data Records

	Dataset with glass transition temperature (966 records). 
	Dataset without glass transition temperature (4,926,212 records). 

	Technical Validation

	Usage Notes

	Acknowledgements

	Fig. 1 Example of mutual conversion between SMILES and BigSMILES.
	Fig. 2 Example of the permutative process of moving the asterisks to either end when entering the canonical SMILES of Poly(bisphenol-A terephthalate).
	Fig. 3 Examples of SMILES to BigSMILES conversion results.
	Fig. 4 Workflows of SMILES to BigSMILES conversion algorithm.
	Fig. 5 Examples to illustrate intermediate steps in the workflows.
	Table 1 List of corrected errors in BigSMILES present during data collection.




