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The very shallow marine basin of Puck Lagoon in the southern Baltic Sea, on the Northern coast of 
Poland, hosts valuable benthic habitats and cultural heritage sites. these include, among others, 
protected Zostera marina meadows, one of the Baltic’s major medieval harbours, a ship graveyard, and 
likely other submerged features that are yet to be discovered. Prior to this project, no comprehensive 
high-resolution remote sensing data were available for this area. This article describes the first Digital 
Elevation Models (DEMs) derived from a combination of airborne bathymetric LiDAR, multibeam 
echosounder, airborne photogrammetry and satellite imagery. These datasets also include multibeam 
echosounder backscatter and LiDAR intensity, allowing determination of the character and properties 
of the seafloor. Combined, these datasets are a vital resource for assessing and understanding seafloor 
morphology, benthic habitats, cultural heritage, and submerged landscapes. Given the significance of 
Puck Lagoon’s hydrographical, ecological, geological, and archaeological environs, the high-resolution 
bathymetry, acquired by our project, can provide the foundation for sustainable management and 
informed decision-making for this area of interest.

Background & Summary
Shallow water environments located in coastal zones are one of the most productive and valuable ecosystems on 
Earth contributing to nutrient cycling, carbon sequestration, and supporting a wide variety of marine species, 
including economically important ones. The tideless area of the Puck Lagoon is located on the Polish coast of 
the Baltic Sea1 (Fig. 1), in the eastern part of Puck Bay and the Gulf of Gdansk. It is considered to be the most 
valuable biodiversity hotspot on the Polish coast. It is separated from the open sea by the Hel Peninsula at the 
north-west and from the Puck Bay by the partly submerged Seagull Sandbar at the south-west (Fig. 1a). The area 
covers 102.69 km2 with average depth of 3.13 m and maximum depth at 9.4 m2. The shallowest parts of the Puck 
Lagoon (down to 2 m) cover approximately 30% of the area. The whole area is included in the Coastal Landscape 
Park and Natura 2000 PLB220005 and PLH220032 sites under the ‘birds directive’ and ‘habitat directive’3.

During the last few decades, the area was subjected to intense anthropogenic pressures due to pollution and 
nutrification, resulting in a considerable loss of benthic habitats and species, especially phytobenthos4,5. The Puck 
Bay, nestled within the Baltic Sea, is particularly susceptible to the process of eutrophication, a consequence of 
nutrient influx from surrounding agricultural lands6. This nutrient-rich runoff, primarily composed of nitrogen 
and phosphorus compounds, is transported to the Puck Bay via the network of rivers and streams that originate 
from these agricultural fields7. Although the northern parts of the Lagoon were dredged in five sites to support 
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beach restoration in the seaside part of Hel Peninsula between 1989–19968, the ecological biodiversity of this 
area is still high. This is indicated by the occurrence of around 25 species of macroalgae, eight species of vascular 
plants, and over 30 species of benthic crustaceans and molluscs9. The Puck Lagoon also has substantial archaeo-
logical potential, as shown by environmental research and previous archaeological discoveries10. Due to the lack 
of proper identification, and hence protection of this water area, the significant underwater cultural heritage is 
exposed to many threats.

Until now, the Puck Lagoon has lacked precise, high-resolution bathymetric data and backscatter intensity 
measurements, which significantly hindered conservation efforts and endangered underwater cultural heritage. 
Before this work, the only existing bathymetry layer for this area was generated through interpolation between 
Singlebeam Echosounder (SBES) measurements taken at 25 m intervals (Fig. 1c). These measurements were 
obtained during June 13 – September 25, 2012 fieldwork, by the Hydrographic Office of the Polish Navy. Notably, 
the most recent hydroacoustic characterisation of seabed habitats within the limited expanse of the Puck Lagoon 
was undertaken in 2003. The primary measuring devices used for this purpose were SBES and Side-scan Sonar11.

Shallow water environments, such as the Puck Lagoon, have not only ecological but also profound historical 
and cultural significance. The Baltic Sea has witnessed centuries of cultural exchange and the Puck Lagoon was a 
hub for maritime trade and transport in the medieval period. As home to one of the major medieval harbours in 
the Baltic, a bustling centre of commerce and trade, it welcomed ships from various corners of Europe10. Many 
of these ships sank and consequently the seabed of Puck Lagoon is now an important submerged archaeological 
site, not only for the remnants of the medieval harbour, but also for the numerous wrecks that it contains. These 
shipwrecks hold invaluable insights into the maritime history of the region, from medieval trading vessels to 
more recent naval (especially WWII) and merchant ships. Archaeological expeditions in this area have yielded 
artifacts that shed light on seafaring traditions, trade routes, and naval technologies of this important region of 
Northern Europe12–14. Environmental research conducted in the Puck Lagoon has consistently underscored the 
archaeological potential of the area15. However, these submerged cultural heritage sites are vulnerable to natural 
processes, anthropogenic pressures, and the passage of time. Proper identification, preservation, and under-
standing of this underwater cultural heritage are crucial to ensuring that they are protected and responsibly 
managed for future generations.

Investigation of the seabed habitats was undertaken in 2009 as part of a large national project16. This research 
identified two seabed types: soft bottom and post-dredging pits. Habitat types included: Zostera marina mead-
ows, Charophyceae meadows, Potamogeton spp. and/or Ruppia maritima and/or Zannichellia palistris meadows. 
Bathymetry of the seabed was modelled based on archival soundings, additional artificial soundings, naviga-
tional charts, and satellite-based maps using the OASIS program (2009)16. Seabed habitats in this area were 
also studied under the “Zostera – Restitution of key elements of the inner Puck Bay ecosystem” project in 

Fig. 1 Overview of the study site and outlook to previous research. (a) Location of the study site and its 
characteristic features. Satellite imagery provided by PlanetScope. (b) Position of Puck Lagoon within the Baltic 
Sea. (c) Bathymetry interpolated from SBES soundings recorded by the Hydrographic Office of the Polish Navy 
in 2012.
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2010–2015 (www.zostera.pl). The project’s results were generally focused on Zostera marina’s spatial occurrence, 
one of the vulnerable and endangered species defined in Polish law. Benthic habitat maps in this study were 
created based on hydrodynamic models, satellite and ground-truth data4. One of the recent works presents cate-
gorisation of benthic habitats aligning with EUNIS 2019 classification system based on GIS analysis17.

Apart from the bathymetry DEM, the current Multibeam Echosounder (MBES) and Airborne Laser 
Bathymetry (ALB) devices yield measurements of the intensity of the acoustic or laser signal from the sea-
bed. These measurements, generally referred to as backscatter intensity, can serve as a proxy for various seabed 
characteristics. Whereas much more complicated than simple bathymetry, they offer a richer understanding of 
the seafloor. However, it is important to note that accurate determination of specific features such as sediment 
or vegetation types requires ground-truth information. Therefore, backscatter intensity is the basis of modern 
benthic habitat mapping discipline strongly related to the recent technical advancements of underwater remote 
sensing methodology. This multidisciplinary approach links knowledge from oceanography, underwater acous-
tics, ecology, sedimentology, geomorphology, statistics, geoinformation, geoengineering, geodesy and numerical 
modelling. Whereas the acquisition of MBES bathymetry is standardised for hydrographic purposes, under-
standing of intensity measurements of acoustic/laser signal from the seabed is much more complicated18.

The primary aim of this study was to generate a comprehensive, high-resolution bathymetry dataset for the 
Puck Lagoon area of the Baltic Sea. This dataset, unprecedented in its detail, was compiled using a combination 
of bathymetric LiDAR, MBES, aerial photogrammetry, and Satellite-Derived Bathymetry19. The resulting dataset 
not only provides a detailed bathymetric map of the Puck Lagoon but also includes reflectance measurements.

The potential reuse value of this dataset is significant. It can serve as a valuable resource for addressing a 
wide range of ecological, geological, and archaeological questions. Furthermore, it can be utilized for sustain-
able management and conservation efforts in the Puck Lagoon area. The data generated by our research has 
significant long-term benefits and will support informed decision-making, aid in the preservation of biodiver-
sity and cultural heritage, and contribute to the broader scientific knowledge of threatened coastal ecosystems 
in high-density tourist areas. By providing this dataset, we hope to fill a critical data gap and facilitate future 
research and conservation initiatives.

Methods
LiDAR data collection.  The aerial survey of the Puck Lagoon was conducted by GISPRO SA under the 
supervision of the Maritime Institute, Gdynia Maritime University, during calm water and weather conditions 
from February 27 to March 2, 2022 (3 survey days). The precise weather conditions for the flight period and the 
research area were provided by the Polish Institute of Meteorology and Water Management (IMGW-PIB), the 
Zephr-HD model with resolution of 3 km for Europe (provided by Windguru and partners), and the EWAM wave 
forecast for Europe with resolution of 5 km (provided by the German weather service). The summary results for 
the three measuring days are presented in Table 1.

The measurements were taken from an altitude of 600–700 meters by an SP-PRO Vulcanair P68 TC Observer 
plane equipped with a Topo/Applanix navigation system and GPS-IMU Type 57 recorder. The main measur-
ing device used was a Riegl VQ-880-GII bathymetric laser scanner, which was integrated with two RGB and 
IR cameras. The manufacturer of the device declares maximum depth penetration of up to 1.5 Secchi depths. 
Bathymetric LiDAR measurements were planned to register at least 12 points per square meter. A standard qual-
ity assessment with the scientific laser scanning software OPALS confirmed a mean pulse density of 12 points/
m2 (median: 10 points/m2) for the single lines. In the overlap area between adjacent flight lines the point density 
increased to approx. 25 points/m2. In total, the entire lagoon was surveyed with 58 flight lines, each delivering 
data from an infrared laser channel for measuring water surface and alluvial topography and a green laser chan-
nel for bathymetry. The registered point cloud was generated in the PL-EVRF2007-NH vertical system and the 
UTM 34 N projected coordinate system, based on the ETRS89 ellipsoid.

LiDAR data processing.  Bathymetric LiDAR measurements were first analyzed in terms of trajectory align-
ment with the aircraft traverses. The trajectory alignment procedure was conducted with respect to a fundamental 
reference Global Navigation Satellite Service (GNSS) station that was situated approximately 20 kilometers from 
the furthest measurement site. To ensure the robustness of our airborne data, we scrutinized trajectory deviation 
statistics for any significant deviations. This rigorous approach to trajectory alignment and reference point adher-
ence formed the foundation of our data processing workflow, ultimately enhancing the accuracy and reliability of 
our high-resolution datasets.

Refraction correction, including refraction of radiation beams and reduced beam propagation speed in water 
was performed in RiHydro software. To execute the refractive correction process effectively, a Water Surface 

Parameter \ day 27.02 01.03 02.03

Temperature [°C] 1–3 0–5 0–5

Wind speed [km/h] 3–14 5–15 9–14

Precipitation [mm/h] 0 0 0

Significant wave height [m] 0.2–0.4 <0.1 <0.1

Wind waves [m] <0.1 <0.1 <0.1

Wave current [m/s] 0–0.3 <0.1 <0.1

Table 1. Summary for weather conditions during flight measurements.
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Model (WSM) was meticulously constructed for each data acquisition series. This correction process served as 
a critical step in refining the bathymetric data, enhancing the accuracy of the final results, and mitigating the 
distortions caused by the refractive effects.

By incorporating these corrections, we aimed to provide reliable bathymetric data that can be used with con-
fidence in various applications, contributing to the advancement of underwater mapping and research. In the 
data processing workflow, alignment was a critical step to ensure the accuracy and consistency of the extracted 
data. This alignment process was performed using a suite of Riegl software tools, namely RiPPROCESS, 
SDCImport, and RiWORLD. The fundamental principle underlying this alignment process was the measure-
ment of differences in the position of identical planes within the cross-sections of data rows. Systematic errors 
observed and measured during this phase were transformed into shift vectors, allowing for precise correc-
tion. RiProcess, a key component of our data alignment strategy, played a pivotal role in this endeavor. It was 
equipped to calculate and rectify a range of systematic errors, including shifts, drifts in all spatial directions 
(XYZ), variations in heading, as well as roll and pitch discrepancies. One crucial aspect of the data processing 
workflow involved the precise alignment of recorded lines of bathymetry airborne scans between each other and 
to reference points. In our processing procedure, we used automatic and the established points as a reference. 
To automatically identify and align planes within the dataset, we employed the “Plane Patch Filter” option, 
which was a feature available in the Riegl software20. This method offers an efficient means of detecting and 
aligning planes within the data. In the application of this method, one crucial aspect was the determination of 
normal vectors for the points comprising the planes within the dataset. In the case of a dense point cloud, two 
of the components were assigned to define the plane, while the third component specified the direction of the 
normal vector. The core concept behind this approach is rooted in the nearest neighbor method. There are two 
primary methods for implementing this concept. The first method involves employing the nearest neighbor 
approach for a predetermined number of points, while the second method utilizes all points within a specified 
distance from individual objects. In the context of this study, we opted for the latter approach, utilizing centroid 
constraining within distinct cubic regions. Therefore, the alignment was achieved through data optimization 
techniques and the Iterative Closest Point (ICP) algorithm21,22.

After performing alignment procedures, we observed that the signal spectrum did not accurately mark tar-
gets at their correct heights leaving stepped traces between the measurement lines. In response to this issue, we 
fitted a nonlinear least squares solution to a surface that approximated the correct scanning results. This chal-
lenge led us to address several specific cases. First and foremost, we identified the areas where errors in point 
registration occurred, particularly in cases where the bottom classification alone was insufficient. Following this, 
we evaluated the level of detail in the bottom, a critical parameter indicating the quality of the acquired data. In 
the subsequent step, we needed to distinguish between points that accurately represented the bottom and those 
that did not. Once we had categorized these points accordingly, we constructed a surface based on the accurately 
registered points and aligned the erroneously positioned points with this surface. This approach proved to be 
pivotal in successfully enhancing the registration of the beam reflection amplitude. Contrary to attempts to 
determine the best-fitting model and incorporate structural information, directly deriving the beam reflection 
size from defined points in space yielded superior results.

Notably, many airborne scanning filtering methods23,24 designated the last reflection as a ground point. 
However, in our exploration of air-water correction methods, we identified instances where points recorded as 
the last reflection did not accurately represent the ground. To address this, we implemented hierarchical filtering 
after dividing the point cloud into smaller, more manageable sections.

Our data filtering strategy was executed in a systematic manner, comprising the following key steps:

 1. Division of Representative Area: We initiated the process by dividing the representative area into smaller, 
manageable sections. Within each of these sections, we carefully selected representative points. These 
representative points were identified through meticulous comparison with multibeam data, ensuring their 
correspondence with the actual bottom of the Puck Lagoon.

 2. Approximation of Bottom Surface: Building upon the selected representative points, we proceeded to 
approximate the underlying bottom surface using triangulation techniques. This step allowed us to create 
an approximate representation of the Lagoon’s seabed.

 3. Hierarchical Point Rejection: To further refine the dataset, we implemented a hierarchical point rejection 
mechanism. This step involved identifying and rejecting points that were deemed too distant from the 
approximated bottom surface. By systematically eliminating outliers, we enhanced the overall data quality.

Once these filtration procedures were completed, we proceeded to implement vegetation filters locally to 
further refine and organize the data. This comprehensive filtration strategy ensured that the final dataset was 
not only accurate but also effectively processed for subsequent analysis and interpretation. After completing all 
the necessary data adaptation steps, we conducted a relative evaluation. This entailed assessing the quality of the 
airborne laser scanning data in relation to data obtained from the multibeam echosounder. By systematically 
addressing and correcting these errors, our data alignment process ensured that the final datasets are not only 
accurately aligned but also consistent, enabling reliable downstream analysis and interpretation of the acquired 
data. The high level of accuracy demonstrated by this alignment process, as grounded in our eigenvalue distri-
bution analysis and point cloud extraction detailed in the ‘LiDAR Data Quality’ chapter, indicates the method’s 
potential for innovatively enhancing the alignment and overall precision of airborne laser scanning data. This 
novel approach represents a significant methodological contribution by the authors aimed at expediting data 
processing and reducing the time required for field measurements, especially when compared to traditional 
methods employing total stations.

https://doi.org/10.1038/s41597-024-03199-y


5Scientific Data |          (2024) 11:360  | https://doi.org/10.1038/s41597-024-03199-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

As an outcome of our data processing efforts, we presented the results in the form of reflection amplitudes 
displayed in grayscale (Fig. 2b). Intensity values can be utilized to assess data quality through visual inspection. 
Anomalies or outliers in intensity may indicate data artifacts or errors in the scanning process. This can help 
improve data preprocessing and quality control procedures.

The processed LiDAR point clouds were used to generate bathymetry (Fig. 2a) and intensity surface grids 
in GlobalMapper software. We used the Binning gridding method with manually specified grid spacing to 0.2 
meters and default “no data” distance criteria. All grids were exported to GeoTiff data format. Grids were 
saved in PL-EVRF2007-NH vertical system, UTM34N projected coordinate system, based on ETRS89 ellipsoid.

Aerial photogrammetry data acquisition and processing.  Aerial photographs were acquired by 
GISPRO SA as an additional dataset to laser measurements during the same flights (described in the previous 
section). The aerial photographs were planned to ensure 80% longitudinal and 40% transverse coverage, with a 
terrain pixel size of approximately 8 cm and RGB and NIR colour composition.

Refraction correction and orthoimage generation.  Although aerial image-based bathymetric map-
ping can provide both water depth and visual information, water refraction poses significant challenges for accu-
rate depth estimation25,26. In order to tackle this challenge in this dataset, we implemented a state of the art image 
correction methodology27,28, which first exploited recent machine learning procedures that recover depth from 
image-based dense point clouds25,26 and then corrected the refraction effects on the original imaging dataset27. 
This way, the structure from motion (SfM) and multi-view stereo (MVS) processing pipelines were executed 
finally on a refraction-free set of aerial datasets, resulting in highly accurate bathymetric maps and respectively 
high quality and accurate orthoimagery.

Following the aerial image data collection and Ground Control Points (GCPs) measurement, an initial 
SfM-MVS was executed in order to obtain the required data for applying the proposed refraction correction 
methodology (i.e., the interior and exterior orientation of the cameras and the initial dense point cloud). For 
the SfM-MVS step, a specific software implementation did not affect the quality of the results, and they could be 
produced in a similar way using any commercial or open-source automated photogrammetric software, without 
employing any water refraction compensation. For the approach presented here, the Agisoft Metashape com-
mercial software was used.

The resulting initial dense point cloud with systematic depth underestimation due to the refraction effect was 
corrected by employing the recently developed DepthLearn26 solution for the seabed points. For DepthLearn, 
a Support Vector Regression model already trained on synthetic data28 was used. This model enabled us to 

Fig. 2 Bathymetric LiDAR datasets acquired in this study. (a) Bathymetry grid. (b) Laser intensity grid covering 
the same area.
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correct the effects of refraction on the point clouds of the submerged areas ignoring additional error sources not 
related to refraction, e.g. waves, point cloud noise due to ambiguities in matching caused by the water column 
or refraction effect.

Consequently, this corrected point cloud was used to create an updated (merged) DEM with recovered sea-
bed bathymetry which was then used to differentially rectify29 the initial aerial image dataset. A new SfM pro-
cessing was finally executed based on the refraction-free imaging dataset in order to update the interior and 
exterior orientation of the cameras, before orthomosaicing. During the last stages, texture and orthoimages 
can be generated based on the merged DEM generated by the corrected dense point clouds using DepthLearn 
and the initial dry-land points. Also the corrected dense point clouds and DEM can be exported to be used as 
bathymetry source (Fig. 3).

Similarly like in the LiDAR datasets, we generated the unified grids from photo point clouds in GlobalMapper 
software with the same settings. All grids were exported to GeoTiff data format in PL-EVRF2007-NH vertical 
system, UTM34N projected coordinate system, based on ETRS89 ellipsoid.

Multibeam data collection. Multibeam echosounder (MBES) datasets were acquired during a three-month 
survey from March 22 to June 22, 2022, with a total of 21 surveying days. The main measuring device used was a 
Teledyne Reson T50-P or T20-P (from 23 May 2022), which was mounted on a pole onboard the IMOROS 2 or 
IMOROS 3 survey units. Both MBESs had the same settings throughout the survey, with the number of beams 
being 1024 in T50-P and 999 in T20-P (Table 2).

In addition to MBESs, the measurement and positioning system contained duplicated GPS receivers Trimble 
SPS851 and Trimble BX982, iXBlue Hydrins Inertial Navigation System, Reson SVP70 Sound Velocity Probe 
and Reson SVP15 Sound Velocity Profiler. All measurements were carried out with RTK corrections available 
for the whole area of interest. Multibeam echosounder recordings were collected using QINSy 8.18 software.

To ensure high-quality measurements, the MBES sensors were calibrated for time, pitch, roll, and yaw off-
sets and regularly checked. The sound velocity speed was measured with SVP15 at least every 6 hours, for each 
change of environmental conditions and always before and after every measurement session. The MBES survey 
was carried out to ensure at least 20% overlap between ship track lines, the measuring density not less than five 
points for a 1 m grid, and a reasonably constant speed (mean speed of 2–2.5 m/s). The MBES survey was planned 
to cover the deepest areas within the study site (Kuźniza Basin, post-dredging pits, harbor entrance), as well as 
the shallower area with the potential archaeological significance (Fig. 4a). MBES measurements were recorded 
in the PL-EVRF2007-NH vertical system and PUWG1992 projected coordinate system, based on the ETRS89 
ellipsoid.

Fig. 3 Aerial photogrammetry dataset acquired in this study. (a) Orthophoto map for areas with measured 
terrain/bathymetry. (b) Bathymetry grid generated with SfM technique from aerial photogrammetry.
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Bathymetry data processing.  Raw bathymetry files from MBESs were processed in Beamworx Autoclean 
software. Data processing included application of Surface Spline filter to automatically remove outlier soundings 
from the measurements. The other filter used for bathymetry data processing was Shift Pings to Neighbors. This 
filter works only when there exists at least some overlap between neighbors and it shifts the survey lines to its 
neighbors by using a best fit algorithm. The datasets were manually checked to remove any remaining erroneous 
soundings30.

MBES Backscatter (Fig. 4b) data processing was performed in Fledermaus Geocoder Toolbox (FMGT) soft-
ware. The cleaned MBES soundings, as well as the bathymetric surface, were imported to an FMGT project. Data 
processing included application of Angle Varying Gain (AVG) filter to compensate backscatter measurements 
for angular variations31. We used the following settings of AVG filter: 300 pings sliding window and “flat” 
algorithm. All radiometric and geometric corrections were automatically applied using the default settings.

Finally, all bathymetry and backscatter datasets were exported to surface grids in GeoTiff data format with 
0.2 m resolution. To ensure unification between all datasets, grids were saved in PL-EVRF2007-NH vertical 
system, UTM34N projected coordinate system, based on ETRS89 ellipsoid.

Satellite-derived bathymetry data acquisition and processing.  Satellite-derived bathymetry (SDB) 
was obtained based on a 4-Band SPOT 6 satellite image acquired on April 19, 2021 (Fig. 5a). The image was pro-
vided by Apollo Mapping LLC, USA in primary data format, without tiling, 16-bit pixel depth, and reflectance 
radiometric processing (without pansharpening and orthorectification). The SPOT satellite image allows reach-
ing a panchromatic resolution of 1.5 m and an RGB pixel resolution of 6 m. The used image has dimensions of 
3070 × 2541 pixels and a pixel size of 5.218 meters x 8.311 meters. The coordinate system of the predicted depths 
is the EPSG:25834 - ETRS89/UTM zone 34 N while the vertical Datum is the PL-EVRF2007-NH.

Empirical SDB methods, like machine learning methods, require certain bands in the visible wavelengths, 
with blue and green being the most widely used as independent variables, and a set of known in situ depths (the 
dependent variable) as the only inputs in simple or complex models trained to deliver bathymetry estimations 
in a given area. For delivering SDB in the optically clear and shallow waters of this dataset, a Random Forest 
approach was implemented, exploiting the blue (0.45–0.52 µm), green (0.53–060 µm) and red (0.62–0.69 µm) 
SPOT6 bands. As a pre-processing step, dry land was masked in order not to affect training. A random forest 
is an ensemble learning method for classification, regression and other tasks that fits a number of decision tree 
classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and 
control over-fitting. For classification tasks, the output of the random forest is the class selected by most trees. 
For regression tasks such as the SDB one, the mean or average prediction of the individual trees is returned32. In 
the performed approach 300 trees were used and Mean Standard Error as a criterion for accuracy. The resultant 
SDB bathymetry has a pixel size of 5.218 × 8.311 meters. The value of −0.293746 m in certain areas was used to 
represent no data.

A very important feature of the performed SDB approach is the use of already available in situ bathymetric 
data to train the RF model. Usually, such data are collected by expensive state-of-the-art equipment such as 
airborne LiDAR or MBES systems. In order to cover the complete area to be mapped, a combination of ALB 
and SBES data was used. The use of the SBES was considered necessary since the ALB coverage was limited to 
the shallower parts of the lagoon. Similarly, MBES had limited partial coverage of the area. Towards that, ALB 
missing data were covered by an older SBES campaign performed in the area (the 2012 dataset covered by the 
Hydrographic Office of the Polish Navy mentioned in the Introduction). Predicted SDB is illustrated in Fig. 5b 
in colorscale.

integrated bathymetry.  We combined bathymetry measurements from LiDAR and MBES, integrating 
them into a comprehensive Digital Elevation Model. This integration was executed in the SAGA GIS software, 
utilizing the Mosaicking procedure with specific parameters: feathering of overlapping areas, a blending distance 
of 100, blending boundary for valid data cells, and the regression option for match. Feathering works by estimat-
ing a weighted average to find a target value for overlapping cells, using a fifty-fifty weighting when the boundary 
distance of the two grids is equal. The match option conducts a linear regression based on the values of all over-
lapping cells. This is done to align the values of the processed grid with those that have already been incorporated 
into the mosaic. The integrated bathymetry is provided in Fig. 6.

Feature \ MBES T50-P T20-P

No. of beams 1024 999

Freq. [kHz] 420 420

Pulse length [µs] 30 30

Absorption [dB/km] 70 70

Spreading [dB] 35 35

Swath angle [°] 130–140 130–140

Power [dB] 220 220

Gain [dB] 0 0

Table 2. Summary of MBESs settings.
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Data Records
The remote sensing grids described in this paper can be assessed through the Marine Geoscience Data System 
(MGDS)19. All datasets are provided in GeoTiff raster format, and the files are named according to the data 
acquisition source.

The DEMs with a resolution of 0.2 m are available under the following names: MBES_DEM (from Multibeam 
Echosounder), LIDAR_DEM (from Light Detection and Ranging), PHOTO_DEM (from Photogrammetry), 
and INTEGRATED_DEM (from Integrated MBES/LiDAR data). An additional DEM file, SDB (from 
Satellite-Derived Bathymetry), is also available but with a coarser resolution of approximately 5 m x 8 m.

The last three files represent seafloor/terrain properties at a 0.2 m resolution. They are named as follows: 
MBES_BSS, which represents the backscatter of the acoustic signal; LIDAR_INTENSITY, which represents the 
intensity of the laser signal; and ORTHOPHOTO, an orthorectified mosaic of aerial photographs of the research 
area.

technical Validation
In this section, we present a comprehensive approach for validation of each dataset. Since some of the meth-
ods are not yet frequently used for hydrographic approaches, we have dedicated much more attention to them 
compared to the well-established methods for bathymetry measurements (MBES). It is worth noting that all 
measurement campaigns were performed in favourable weather and environmental conditions that were strictly 
noted and checked during all surveys. It is extremely important not only for marine acoustic surveys, but par-
ticularly for airborne LiDAR or photogrammetry measurements. In fact, ideal environmental conditions for 
such measurements in Southern Baltic Sea may occur only for several days a year33.

LiDAR data quality.  To accurately assess the obtained data, we commenced the evaluation process with 
the analysis of the trajectory alignment, which delineated the path of the aircraft. The fundamental principle 
underlying the approach of trajectory alignment was to acquire data at a single reference station. On average, the 
field-level details exhibited accuracies of approximately 3 cm, providing a robust foundation for alignment and 
subsequent analysis. Hence, it is essential to ascertain additional parameters that represent the geometric quality 
of satellites during the conducted measurement activities. These values are presented in Table 3.

Based on the aligned trajectory and its assessment, laser scanning points were extracted, followed by the 
relative combination of these extracted series into automatic planes and measured points.

Our evaluation of the acquired data encompassed the determination of height point errors (for the abso-
lute model data). The alignment process was conducted employing the ‘least squares’ method, utilizing both 

Fig. 4 Multibeam echosounder dataset acquired in this study. (a) Bathymetry grids. (b) Grids of backscatter 
intensity of acoustic signal.
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manually and automatically established control points. Each data row featured several parameters consid-
ered variable for compensation: Roll [degrees], Pitch [degrees], Yaw (heading) [degrees], East [meters], North 
[meters], and Height [meters]. In total, there were 345 free parameters, with 40,000 planes serving as observa-
tions. Manual control points were acquired through the differential GNSS technique, with reference to the refer-
ence base station. Automatic control points were identified using an iterative algorithm that searched for planes 
within cubic regions utilizing the octree method. This method involved fitting a plane among points located 
within a cube, ensuring an error value not exceeding the user-defined threshold. Subsequently, the radius and 
angular deviation were set, serving as the maximum acceptable values for the compensation process. The align-
ment process was iterative, where each iteration introduced adjustments within the specified tolerance. A tol-
erance threshold of 0.0001 meters was employed. The evaluation of alignment quality was gauged through the 
standard deviation between points. The average standard deviation error for the scan lines of the whole flight 
was computed to be 0.0647 meters.

In the final phase of our technical test, we performed feature extraction based on covariance matrix. This 
matrix helps determine the directions of our data. The number of directions, or eigenvectors, matches the num-
ber of dimensions in our dataset. Since our point cloud data exists in three dimensions (X, Y, Z), each point in 
the dataset has three eigenvectors and three corresponding eigenvalues, which indicate the variances along each 
direction. These eigenvalues are essentially coefficients linked to the eigenvectors, providing insights into how 
much the data varies in specific directions. Computations were performed in CloudCompare software. In our 
study, we used the following tools for this purpose:

Roughness. It refers to local deviations from the plane. The feature is equal to the distance between the 
selected point to the fitted plane (minimum of 3 points is required to fit the plane). Different values of the feature 
can indicate, among other things, areas contaminated with noise, differences in registered points on the bottom, 
or local irregularities. The distribution of roughness values is presented in Fig. 7a.

 1. The eigenvalues of a covariance matrix provide insights into the patterns of variation and changes within 
the data’s local structure. The first eigenvalue is associated with the first eigenvector of the covariance 
matrix for a given point, indicating the direction of the greatest variance. The second and third eigenvalues 
represent, respectively, the mean and the smallest covariance values, thus indicating the average and the 
least variable data directions. Significant local deviations in each of these directions within a specific object 
fragment may imply noticeable changes in its orientation. The results are presented on Fig. 7b.

 2. Principal Component Analysis (PCA). PCA is a technique used to reduce the dimensionality of datasets, 
minimizing data loss. It’s based on eigenvectors and eigenvalues. For a three-dimensional dataset, there are 

Fig. 5 Satellite-derived bathymetry approach utilised in this study. (a) The SPOT6 MS image used. (b) 
Estimated Satellite Derived Bathymetry superimposed to the used SPOT6 image (only dry land visible in RGB).
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three principal components. The first principal component (PCA1) captures the maximum variance in the 
dataset, while the second (PCA2) captures the second highest. Subsequent components contain less data 
and can be omitted to reduce dataset size with minor accuracy loss. In the software used, PCA1 and PCA2 
are point clouds derived from dividing the first and second eigenvalues by the sum of all three, assess-
ing the significance of data variation directions. Dividing an eigenvalue by the sum of all three gives its 
percentage contribution to total data variance, ranging from 0 to 1 due to normalization. A value close to 1 
indicates a significant contribution, while a value closer to zero is less significant. If no principal compo-
nent is dominant, their values will be in the middle range. Results of PCA analyses are shown in Fig. 7a.

Fig. 6 Overview on integrated bathymetry from MBES and LiDAR measurements. Vertical Exaggeration used: 
5.0. (a) Map on the integrated dataset. Capital letters on the map represent panel images provided on the right 
side. (b) Part of dredging pit with the artificial structure remaining on the seafloor. (c) Shipwreck graveyard on 
the Seagull Shore. (d) Oval shoal formerly considered to be a submerged settlement. (e) Mouth of the Reda river 
flowing into Puck Lagoon.

Statistics Min Max Mean

Baseline length [km] 13.09 44.82

Number of GPS SV 6 9 8

Number of GLONASS SV 4 6 5

Number of QZSS SV 0 0 0

Number of BEIDOU SV 0 0 0

Number of GALILEO SV 0 0 0

Total number of SV 11 15 13

PDOP 1.28 2.12 1.47

QC Solution Gaps 0.00 0.00

Solution Type Fixed Float No solution

Epoch (sec) 1705.00 0.00 0.00

Percentage 100.00 0.00 0.00

Table 3. GNSS geometrical statistic values during flight mission.
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The quality of a LiDAR dataset was assessed by examining the spread, skewness, and peaks of the provided 
features (Fig. 7). A high degree of skewness in the roughness or eigenvalues might suggest inconsistencies in the 
data collection process, whereas a wide spread in the PCA features could indicate a diverse and complex terrain.

The roughness (green) is highly skewed towards lower values. This skewness towards lower roughness values 
indicates that the majority of the LiDAR data points represent a relatively smooth bathymetry. In terms of data 
quality, this suggests that the LiDAR system was able to accurately capture the smoothness of the terrain, which 
is a positive indicator of data quality. PCA1 (blue) is moderately distributed but still skewed, suggesting a cer-
tain level of variability in the data. This variability in PCA1 could be indicative of the LiDAR system’s ability to 
capture different terrain features, which is another positive aspect of data quality. PCA2 (yellow) appears almost 
normally distributed, indicating a balanced dataset in terms of this feature. A balanced distribution in PCA2 
suggests that the LiDAR system was able to evenly capture the features of the terrain, further supporting the 
quality of the data.

In addition, the 1st eigenvalue (green) is highly skewed towards lower values, suggesting that for most points 
in the dataset, the direction of greatest variance is small. This could indicate that the points are closely packed 
along one direction, which might be the case if the LiDAR data represents a flat surface or linear feature. The 
2nd and 3rd eigenvalues show more balanced distributions, indicating that these components contribute more 
evenly to the total variance. This suggests that the average and least variable directions in the data have a wider 
range of values. In terms of data quality, this balanced distribution in the 2nd and 3rd eigenvalues suggests that 
the LiDAR system was able to capture a variety of terrain features, which is a positive indicator of data quality.

In summary, the skewness, spread, and peaks of the features in the LiDAR dataset provide valuable insights 
into the quality of the data. The skewness in the roughness and 1st eigenvalue, the variability in PCA1, the 
balance in PCA2, and the even contribution of the 2nd and 3rd eigenvalues all suggest that the LiDAR system 
was able to accurately and comprehensively capture the terrain, which is indicative of high-quality LiDAR data.
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Fig. 7 Plots representing technical validation of LiDAR dataset. Variables are marked with representative 
colours. (a) distribution of roughness, PCA1 and PCA2 features. (b) distribution of 1st, 2nd, and 3rd eigenvalues.
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Aerial photogrammetry and refraction correction data quality.  Image alignment and dense image 
matching quality. Structure-from Motion and image overlap allowed to capture a total of 4,384 images from a 
flying altitude of 676 m, however, due to the poor bottom texture, only 3,473 of these images were aligned cor-
rectly. In total 1,649,970 tie points were found with 6,143,715 projections and a reprojection error equal to 1.19 
pixels. The dense point cloud counted 236,775,975 points. Estimations of camera positions errors confirmed that 
larger errors are apparent in the outer region of the block and over areas with poor bottom texture. Regarding 
the camera location estimation, the average camera location error equals with 1.21 cm for the X axis, 1.29 cm for 
the Y axis, 2.39 cm for the Z axis resulting in an average total error of 2.97 cm. The same errors for the 22 GCPs 
used are calculated as follows: 1.15 cm for the X axis, 0.71 cm for Y axis, 0.69 cm for Z axis and 1.52 cm in total. 
The larger errors can be found in the northern part of the study area, and as expected, this negatively affected the 
image-based bathymetry estimated for this area.

During the SfM-MVS processing and refraction correction, it was decided to deliver orthoimages only for 
the areas were refraction corrected point cloud was available, rather than use hole filling tools etc. to deliver an 
orthoimage of the whole area, however, with limited accuracy in the areas with incorrect DEM.

Refraction correction and final 3D point cloud quality. After performing SfM-MVS, the generated 3D dense 
point clouds and refraction corrections have been compared to the ALB data collected and described above. In 
this context, it is reported that before the refraction correction steps, by comparing to the ALB data, an RMSE of 
0.956 m, a mean of 0.707 m, and a standard deviation of 0.643 m were calculated. However, after the refraction 
correction steps, the same metrics were formed as follows: RMSE equals to 0.420 m, mean to −0.0427 m, and 
standard deviation to 0.416 m. The majority of the points present distances to ALB around 0 m. However, there 
are still some points with much larger differences, being responsible for the RMSE and standard deviation value. 
Remaining errors are mainly due to noise in the point cloud because of the mainly homogenous bottom in the 
majority of the area as well as errors in the areas covered by the image-based point cloud neighbouring with the 
areas of “optically” deep waters. It is certain that the lack of proper texture in the bottom of the lake affected 
the SfM-MVS processing of the aerial data in a quite negative way. Also, errors are introduced due to issues in 
the GCPs of the northern part of the area.

MBES data quality.  According to the IHO standards, the quality of the MBES data was very high. Almost all 
of the MBES footprints (99.83%) met the IHO Special Order standard34, which requires the following maximum 
parameters of Total Vertical Uncertainty at 95% confidence level: a = 0.25 m, b = 0.0075 m. The variable ‘a’ rep-
resents the systematic uncertainty that remains constant regardless of the depth. On the other hand, the variable 
‘b’ represents the random uncertainty that varies with depth34. Only 0.09% of the footprints were rejected due to 
errors or outliers. The total number of accepted footprints was 2,576,203,403, while the total number of rejected 
footprints was 2,206,654. Table 4 shows more details about the validation statistics.

SDB data quality.  The horizontal accuracy of SDB is a function of the spatial resolution of the satellite sensor 
used and the uncertainty contained in the in-situ bathymetric data used for training the Random Forests model. 
However, in Satellite Derived Bathymetry, the achieved vertical accuracy is crucial. This is heavily affected by 
the water column characteristics and seabed texture and habitat, meaning that areas with highly turbid waters, 
chlorophyll-a concentrations or dark colored sediments would deliver depths with larger uncertainties.

In the presented work, the estimated Satellite Derived Bathymetry as well as the efficiency of the Random 
Forest model were evaluated. For the validation approach, we used and provided pixel-based quality informa-
tion on the reliability of the deliverables. To that end, unseen data to the model, i.e. the remaining 10% of the 
data not used for training, were used to calculate the RMSE, MAE and R2. Specifically, the total size of the avail-
able data for training was 1,214,456 points of which the 1,093,010 points (90.0% of used sample) were used for 
training while the remaining 121,446 points (10.0% of used sample) for testing the model and calculating the 
RMSE which equals to 0.498 m, the MAE equal to 0.297 m and the R² equal to 0.917.

In large parts of the Puck Lagoon, SDB achieved a very high accuracy. However, there are still areas of erro-
neous predictions, attributed mainly to the lack of visibility of the bottom, i.e., optically deep waters, where the 
method is unable to deliver depths, since bottom reflectance is not captured by the satellite sensor. Whereas the 
majority of the vertical differences present values close to 0 m, there were some outliers up to 6 m of difference.

integrated DEM data quality.  The quality of the integrated dataset was assessed through a cross-validation 
process between the integrated dataset and the MBES/ALB datasets. In the reference area, which represents 
the densest coverage between MBES and ALB (indicated by the dashed line in Fig. 8), we generated regression 
scatterplots to track their correlation with the integrated DEM dataset. The R-squared results demonstrated an 
extremely high correlation between the MBES and Integrated dataset (R2 = 0.9998; Fig. 8a), as well as between 
the Lidar and Integrated dataset (R2 = 0.9992; Fig. 8b).

Attribute Mean Minimum Maximum

Span 0.01 0.00 21.49

95% Confidence Level 0.01 0.00 17.36

Survey Accuracy −0.24 −0.27 17.11

Table 4. Attribute statistics for MBES survey.
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The merging of spatial datasets often leads to issues at the intersection or overlap of different datasets. Since 
these are often not visible in bathymetry, we derived the slope feature of bathymetry to monitor subtle changes 
that may occur in these locations (Fig. 8c). The slope feature reveals varying degrees of smoothness between 
bathymetric areas of different origins. Generally, areas derived from MBES appear to have a smoother relief 
compared to areas of LiDAR origin. A more detailed examination of further close-up examples (Fig. 8d-f) 
reveals a smooth transition between the datasets. Based on these results, we can confidently assert that the inte-
grated dataset is of high quality and can be utilized as input for further analysis and interpretation of the Puck 
Lagoon.
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