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Cataract-1K Dataset for Deep-
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In recent years, the landscape of computer-assisted interventions and post-operative surgical 
video analysis has been dramatically reshaped by deep-learning techniques, resulting in significant 
advancements in surgeons’ skills, operation room management, and overall surgical outcomes. 
However, the progression of deep-learning-powered surgical technologies is profoundly reliant 
on large-scale datasets and annotations. In particular, surgical scene understanding and phase 
recognition stand as pivotal pillars within the realm of computer-assisted surgery and post-operative 
assessment of cataract surgery videos. In this context, we present the largest cataract surgery video 
dataset that addresses diverse requisites for constructing computerized surgical workflow analysis 
and detecting post-operative irregularities in cataract surgery. We validate the quality of annotations 
by benchmarking the performance of several state-of-the-art neural network architectures for phase 
recognition and surgical scene segmentation. Besides, we initiate the research on domain adaptation 
for instrument segmentation in cataract surgery by evaluating cross-domain instrument segmentation 
performance in cataract surgery videos. The dataset and annotations are publicly available in Synapse.

Background & Summary
Following the technological advancements in surgery, operation rooms are evolving into intelligent environ-
ments. Context-aware systems (CAS) are emerging as pivotal components of this evolution, empowered to 
advance pre-operative surgical planning1–3, automate skill assessment4–8, support operation room planning9–11, 
and interpret the surgical context comprehensively12. By enabling real-time alerts and offering decision-making 
support, these systems prove invaluable, especially but not only for less-experienced surgeons. Their capabili-
ties extend to the automatic analysis of surgical videos, encompassing functions like indexing, documentation, 
and generating post-operative reports13. The ever-increasing demand for such automatic systems has sparked 
machine-learning-based approaches to surgical video analysis.

Cataract Surgery, renowned as the most commonly conducted ophthalmic surgical procedure and one of the 
most demanding surgeries worldwide, is a major operation where deep learning can be of great benefit. Cataract, 
characterized by the opacification of the eye’s natural lens, is often attributed to aging and leads to impaired 
visual acuity, reduced brightness, visual distortion, double vision, and color perception degradation. Globally, 
cataracts stand as the primary cause of blindness14. Owing to the aging demographic and increased lifespans, the 
World Health Organization forecasts a surge in cataract-related blindness cases, estimating the number to reach 
40 million by the year 202514. This prevalent disease can be remedied through cataract surgery involving the sub-
stitution of the eye’s natural lens with a synthetic counterpart known as an intraocular lens (IOL). Advancements 
in technology have driven the evolution of cataract surgery techniques. This evolution spans from intracapsular 
cataract extraction (ICCE) in the 1960s and 1970s to extracapsular cataract extraction (ECCE) in the 1980s 
and 1990s. Today, the primary method involves sutureless small-incision phacoemulsification surgery with an 
injectable intraocular lens (IOL) implantation. Throughout this paper, the term “Cataract Surgery” is synony-
mous with “Phacoemulsification Cataract Surgery”. Due to the widespread occurrence of cataract surgery and 
its substantial influence on patients’ quality of life, a significant focus has been directed towards the analysis of 
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cataract surgery content using deep learning methodologies over the past decade. In particular, Surgical phase 
recognition and scene segmentation are joint building blocks in various applications related to cataract surgery 
video analysis13. These applications include but are not limited to relevance detection15, relevance-based com-
pression16, irregularity detection17,18, and surgical outcome prediction. The current public datasets for cataract 
surgery either provide annotations for a particular sub-task such as instrument recognition19, scene and relevant 
anatomical structure segmentation15,20–23, or offer small multi-task datasets targeting specific problems such as 
intraocular lens (IOL) irregularity detection17. As a result of the lack of a comprehensive dataset, there exists a 
considerable gap in exploring deep-learning-based approaches and frameworks to enhance cataract surgery 
outcomes. To facilitate the development of such systems and models, there is a compelling need for large-scale 
datasets that encompass multi-task annotations.

This paper introduces the largest cataract surgery video dataset, including 1000 videos of cataract surgery 
recorded in Klinikum Klagenfurt, Austria, between 2021 and 2023. We provide large-scale ground-truth anno-
tations for the semantic segmentation of different instruments and relevant anatomical structures, as well as 
surgical phases. Besides, the dataset features two subsets for major irregularities in cataract surgery, which 
affect surgical workflow, including intraocular lens (IOL) rotation, and pupil contraction in cataract surgery. 
Together, these 1000 videos, annotated datasets, and irregularity subsets form a complete dataset to empower 
computer-assisted interventions (CAI) in cataract surgery.

Methods
This work is performed under ethics committee approval (EK 28/17) from Ethikkommission Kärnten24. All 
patients have given written consent to the video recording and open publication.

Dataset acquisition. Cataract surgery is performed utilizing a binocular microscope, which offers a 
three-dimensional magnified and illuminated view of the eye, ensuring precise observation of the patient’s eye. 
The surgeon manually adjusts the microscope’s focus to optimize visual clarity during the procedure. Additionally, 
a mounted camera within the microscope captures and archives the entire surgical process, facilitating subse-
quent analysis for various post-operative purposes.

Cataract-1K dataset description. The Cataract-1K dataset consists of 1000 videos of cataract surgeries 
conducted in the eye clinic of Klinikum Klagenfurt from 2021 to 2023. The videos are recorded using a MediLive 
Trio Eye device mounted on a ZEISS OPMI Vario microscope. The Cataract-1K dataset comprises videos con-
ducted by surgeons with a cumulative count of completed surgeries ranging from 1,000 to over 40,000 procedures. 
On average, the videos have a duration of 7.12 minutes, with a standard duration of 200 seconds. In addition to 
this large-scale dataset, we provide surgical phase annotations for 56 regular videos and relevant anatomical plus 
instrument pixel-level annotations for 2256 frames out of 30 cataract surgery videos. Furthermore, we provide a 
small subset of surgeries with two major irregularities, including “pupil reaction” and “IOL rotation,” to support 
further research on irregularity detection in cataract surgery. Except for the annotated videos and images, the 
remaining videos in the Cataract-1K dataset are encoded with a temporal resolution of 25 fps and a spatial reso-
lution of 512 × 324. Table 1 provides a comparison between the annotated subsets in the Cataract-1K dataset and 
currently existing datasets for semantic segmentation and phase recognition in cataract surgery. We delineate the 
challenges and annotation procedures for each subset in the following paragraphs.

Phase recognition dataset. Crafting an approach to detect and classify significant phases within these videos, 
considering frame-by-frame temporal details, presents considerable challenges due to several factors:

•	 As shown in Fig. 1, phase recognition datasets for cataract surgery are extremely imbalanced, as the longest 
phase (phacoemulsification) and the shortest phase (incision) cover 28.72% and 2.1% of the annotations, 
respectively.

•	 Videos may exhibit defocus blur stemming from manual camera focus adjustments25.
•	 Unintentional eye movements and rapid instrument motions close to the camera result in motion blur, 

impairing distinctive spatial details.

Dataset CaDIS20 CatRel15 Cataract-1K

Acquisition Time 2015 2017–2018 2021–2023

Task Semantic Segmentation Phase Recognition Semantic Segmentation Phase Recognition

Videos 25 22 30 56

Annotations 4670 Frame-wise 2256 frames Frame-wise

Labels Anatomy, Instruments, Other Four Relevant Phases vs. Rest Anatomy, Instruments Thirteen Phases

Resolution 960 × 540 224 × 224 1024 × 768 1024 × 768

Frame-Rate N/A 25 N/A 30

Table 1. Comparison of annotated subsets in the Cataract-1K dataset with existing datasets for semantic 
segmentation and phase recognition in cataract surgery.
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•	 As illustrated in Fig. 2, instruments, which play a fundamental role in distinguishing between relevant phases, 
share a substantial resemblance in certain phases, leading to a narrow variation between different classes in a 
trained classification model.

•	 Lack of metadata in stored videos precludes additional contextual information.
•	 Variances in patients’ eye visuals generate substantial inter-video distribution disparities, demanding ample 

training data to build networks with generalizable performance.

As shown in Fig. 2, regular cataract surgery can include twelve action phases, including incision, viscoelastic, 
capsulorhexis, hydrodissection, phacoemulsification, irrigation-aspiration, capsule polishing, lens implanta-
tion, lens positioning, viscoelastic-suction, anterior-chamber flushing, and tonifying/antibiotics. Besides, the 
idle phases refer to the time spans in the middle of a phase or between two phases when the surgeons mainly 
change the instruments and no instrument is visible inside the frames. We provide a large annotated dataset 
to enable comprehensive studies on deep-learning-based phase recognition in cataract surgery videos. Table 2 
visualizes the phase annotations corresponding to 56 regular cataract surgery videos, with a spatial resolution of 
1024 × 768, a temporal resolution of 30 fps, and an average duration of 6.45 minutes with a standard deviation 
of 2.04 minutes. This dataset comprises patients with an average age of 75 years, ranging from 51 to 93 years, and 
a standard deviation of 8.69 years. The videos present in the phase recognition dataset correspond to surgeries 
executed by surgeons with an average experience of 8929 surgeries and a standard deviation of 6350 surgeries.

Semantic segmentation dataset. Figure 3 visualizes pixel-level annotations for relevant anatomical objects 
and instruments. As illustrated in Fig. 3, semantic segmentation in cataract surgery videos poses the following 
challenges:

Fig. 1 Total duration of the annotated phases in the 56 annotated cataract surgery videos (in seconds).

Fig. 2 Sample frames from different phases in a regular cataract surgery.
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•	 Variations in color, shape, size, and texture in pupil.
•	 Transparency and deformations in the artificial lens,
•	 Smooth edges and color variations in iris,
•	 Occlusion, motion blur, reflection, and partly visibility in instruments,
•	 Visual similarities between different instruments in case of multi-class instrument segmentation,

The semantic segmentation dataset includes frames from 30 regular cataract surgery videos with a spatial res-
olution of 1024 × 768 and an average duration of 6.52 minutes with a standard deviation of two minutes. Frame 
extraction is performed at the rate of one frame per five seconds. Subsequently, the frames featuring very harsh 
motion blur or out-of-scene iris are excluded from the dataset. We provide pixel-level annotations for three 
relevant anatomical structures, including the iris, pupil, and intraocular lens, as well as nine instruments used in 
regular cataract surgeries, including slit/incision knife, gauge, spatula, capsulorhexis cystome, phacoemulsifier 
tip, irrigation-aspiration, lens injector, capsulorhexis forceps, and katana forceps. All annotations are performed 
using polygons in the Supervisely platform, and exported as JSON files. Within this dataset, the included indi-
viduals possess an average age of 74.5 years, spanning from 51 to 90 years, with a standard deviation of 8.43 
years. Additionally, the videos contained in the semantic segmentation dataset depict surgeries conducted by 
surgeons whose collective experience averages 8033 surgeries, with a standard deviation of 3894 surgeries. The 
provided dataset enables a reliable study of segmentation performance for relevant anatomical structures, binary 
instruments, and multi-class instruments.

Fig. 3 Visualization of pixel-based annotations corresponding to relevant anatomical structures and 
instruments in cataract surgery and the challenges associated with different objects.

https://doi.org/10.1038/s41597-024-03193-4
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Fig. 4 Intra-operative irregularities in cataract surgery.

Irregularity detection dataset. This dataset contains two small subsets of major intra-operative irregularities in 
cataract surgery, including pupil reaction18 and lens rotation17.

•	 Pupil Contraction: During the phacoemulsification phase, where the occluded natural lens is fragmented and 
suctioned, there exists a heightened risk of causing damage to the delicate iris. Even very subtle trauma to 
the tissue can lead to undesirable pupil constriction26. These sudden reactions in pupil size can lead to seri-
ous intra-operative implications. Especially during the phacoemulsification phase, where the instrument is 
deeply inserted inside the eye, sudden changes in pupil size may lead to injuries to the eyeâ€™s tender tissues. 
Besides, achieving precise IOL alignment or centration becomes challenging in cases where intraoperative 
pupil contraction (miosis) occurs. Particularly in multifocal IOLs, minor displacements or tilts, which might 
be negligible for conventional mono-focal IOLs, can significantly compromise visual performance. In the 
case of toric IOLs, precise alignment of the torus is crucial, as any deviation diminishes the IOL’s effectiveness. 
Detection of unusual pupil reactions and severe pupil contractions during the surgery can highly contribute 
to the overall outcomes of cataract surgery and provide important insight for further post-operative inves-
tigations. Figure 4-top demonstrates an example of severe pupil contraction during cataract surgery. Pupil 
contraction can be automatically detected via accurate segmentation of the pupil and cornea, and tracking 
the relative area of the pupil over time18.

•	 IOL Rotation: Although aligned and centered upon surgery’s conclusion, the IOL may rotate or dislocate fol-
lowing the surgery. Even slight deviations, such as minor misalignments of the torus in toric IOLs or the slight 
displacement and tilting of multifocal IOLs, can result in significant distortions in vision and leave patients 
dissatisfied. The sole way to address this postoperative complication is follow-up surgery, which entails added 
costs, heightened surgical risks, and patient discomfort. Identification of intra-operative indicators for pre-
dicting and preventing post-surgical IOL dislocation is an unmet clinical need. It is argued that intra-opera-
tive rotation of IOLs during cataract surgery is the leading cause of post-operative misalignments27. Hence, 
automatic detection and measurement of intra-operative lens rotations can effectively contribute to prevent-
ing post-operative IOL dislocation. Figure 4-bottom represents fast clockwise rotations of IOL during unfold-
ing, which occur in less than seven seconds. While intra-operative IOL rotation is a serious irregularity, its 
occurrence within cataract surgery videos is relatively infrequent. Consequently, conventional classification 
techniques designed to discriminate videos exhibiting IOL rotation struggle due to the considerable class 
imbalance present in the training data. Indeed, lens rotation computation entails more complicated frame-
works and accurate computation of lens rotation necessitates more intricate methodologies. In our extensive 
investigation into predicting post-operative IOL dislocation, we have introduced, implemented, and assessed 
a robust framework for precisely calculating IOL rotation. This framework incorporates advanced techniques 
such as phase recognition, semantic segmentation, and object localization networks to precisely measure the 
sum of absolute rotations of the IOL after lens unfolding28.

Experimental settings for phase recognition. Network architectures. We adopt a combined 
CNN-RNN framework for phase recognition. The CNN component, serving as the backbone model, is respon-
sible for the extraction of distinctive features from individual frames within the video sequence. To achieve this, 
two different pre-trained CNN architectures, VGG16 and ResNet50, are employed. The output feature map of the 
CNN is fed into a recurrent neural network (RNN). The RNN component focuses on capturing temporal features 
from the input video clip. We compare the performance of four different RNN architectures, including LSTM, 
GRU, BiLSTM, and BiGRU.

Training settings. We adopt a one-versus-rest strategy to evaluate phase recognition performance15,29. 
Accordingly, we segment all videos corresponding to each phase into three-second clips with an overlap of one 
second. Afterward, the entire dataset is split into two categories: the designated target phase and the remaining 
phases (the “rest” class). We apply offline augmentations to the videos across all categories. Typically, the number 
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of clips in the target category is significantly lower than in the rest category. To rectify this imbalance problem, 
we employ a random selection process from the “rest” category, aligning it with the clip count in the target cate-
gory. This strategy ensures an equivalent number of clips in both classes. The employed augmentations include 
gamma and contrast adjustments with a factor of 0.5, Gaussian blur with a sigma of 10, random rotation up to 20 
degrees, brightness within a range of [−0.3, 0.3], and saturation within a range of [0.5, 1.5]. To maximize diver-
sity within our training set, we employ a random sampling strategy during training. Specifically, we configure 
the network’s input sequence to comprise 10 frames randomly selected from 90 frames within each three-second 
clip. In all settings, the backbone network employed for feature extraction is pre-trained on the ImageNet data-
set. The RNN component is constructed with a single recurrent layer comprising 64 units. This is followed by a 
dense layer with 64 units, and finally, a two-unit layer with a Softmax activation function. To mitigate the risk 
of overfitting, the last four layers of the CNN component are kept frozen during training, and dropout regular-
ization with a rate of 0.5 is applied to the output feature map of the recurrent layer. All models are trained on 32 
videos and tested on non-overlapping clips from the remaining videos. We use a binary cross-entropy loss func-
tion and Adam optimizer, a learning rate equal to 0.001, and a batch size of 16. The network’s input dimensions 
are set to 224 × 224. We compare the performance of the trained models using accuracy and F1 score.

Experimental settings for semantic segmentation. Network architectures. We perform experiments 
to validate the robustness of our pixel-level annotations using several state-of-the-art baselines targetting general 
images, medical images, and surgical videos. The specifications of the baselines are listed in Table 3.

Training settings. For all neural networks, the backbones are initialized with ImageNet’s pre-trained parame-
ters30. We train all networks with a batch size of eight and set the initial learning rate to 0.001, which decreases 
during training using polynomial decay ( )lr lr 1init

iter
total iter
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.
. The input size of the networks is set to 

512 × 512. We apply cropping and random rotation (up to 30 degrees), color jittering (brightness = 0.7, con-
trast = 0.7, saturation = 0.7), Gaussian blurring, and random sharpening as augmentations during training, and 
use the cross entropy log dice loss during training as in Eq. (1),
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where Xtrue denotes the ground truth binary mask, and predX  denotes the predicted mask ≤ ≤i j(0 ( , ) 1)predX . 
The parameter λ ∈ [0, 1] is set to 0.8 in our experiments, and � refers to the Hadamard product (element-wise 
multiplication). Besides, the parameter σ is the Laplacian smoothing factor, which is added to (i) prevent 

Table 2. Visualizations of phase annotations for 56 normal cataract surgeries. The durations of the videos are 
different and normalized for better visualization.
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division by zero and (ii) avoid overfitting (in experiments, σ = 1). We compare the performance of baselines 
using average dice and average intersection over union (IoU).

Data Records
All datasets and annotations including the 1000 raw videos, phase recognition set, semantic segmentation set, 
and irregularity detection set are publicly released in Synapse31.

Frame-level annotations for phase recognition are provided in CSV files, determining the first and the last 
frames for all action phases per video. The preprocessing codes to extract all action and idle phases from a video 
using the CSV files are provided in the GitHub repository of the paper. Table 2 visualizes our phase annotations 
for 56 cataract surgery videos. Furthermore, Fig. 1 demonstrates the total duration of the annotations corre-
sponding to each phase from 56 videos.

Pixel-level annotations are provided in two formats: (1) Supervisely format, for which we provide Python 
codes for mask creation from JSON files, and (2) COCO format, which also provides bounding box annotations 
for all pixel-level annotated objects. The latter annotations can be used for object localization problems. The 
preprocessing codes to create training masks for “anatomy plus instrument segmentation”, “binary instrument 
segmentation”, and “multi-class instrument segmentation” are provided in the GitHub repository of the paper. 
We have formed five folds with patient-wise separation, meaning every fold consists of the frames corresponding 
to six distinct videos. Table 4 compares the number of instances and their appearance percentage in the frames. 
Besides, Table 5 lists the average number of pixels per frame corresponding to each label.

Technical Validation
In this section, we bolster the quality control of our multi-task annotations by rigorously training several 
state-of-the-art neural network architectures for each task. We meticulously evaluate the performance of the 
trained models using relevant metrics to ensure the accuracy and reliability of our annotations.

Table 6 showcases the phase recognition performance of several CNN-RNN architectures. In our evalua-
tions, we have combined the phases of viscoelastic and anterior-chamber flushing due to their shared visual 

Category Class Name All Videos Fold1 Fold2 Fold3 Fold4 Fold5

Anatomy

Iris 2256 (100.0%) 561 (100.0%) 459 (100.0%) 420 (100.0%) 385 (100.0%) 431 (100.0%)

Pupil 2256 (100.0%) 561 (100.0%) 459 (100.0%) 420 (100.0%) 385 (100.0%) 431 (100.0%)

Intraocular Lens 537 (23.8%) 107 (19.07%) 119 (25.93%) 102 (24.29%) 106 (27.53%) 103 (23.9%)

Instruments

Slit/Incision Knife 50 (2.22%) 12 (2.14%) 10 (2.18%) 12 (2.86%) 4 (1.04%) 12 (2.78%)

Gauge 426 (18.88%) 103 (18.36%) 90 (19.61%) 79 (18.81%) 76 (19.74%) 78 (18.1%)

Spatula 728 (32.27%) 214 (38.15%) 132 (28.76%) 148 (35.24%) 105 (27.27%) 129 (29.93%)

Capsulorhexis Cystotome 85 (3.77%) 20 (3.57%) 18 (3.92%) 12 (2.86%) 11 (2.86%) 24 (5.57%)

Phacoemulsifier Tip 547 (24.25%) 148 (26.38%) 91 (19.83%) 101 (24.05%) 95 (24.68%) 112 (25.99%)

Irrigation-Aspiration 456 (20.21%) 122 (21.75%) 91 (19.83%) 98 (23.33%) 71 (18.44%) 74 (17.17%)

Lens Injector 66 (2.93%) 14 (2.5%) 11 (2.4%) 14 (3.33%) 13 (3.38%) 14 (3.25%)

Capsulorhexis Forceps 108 (4.79%) 33 (5.88%) 21 (4.58%) 22 (5.24%) 21 (5.45%) 11 (2.55%)

Katena Forceps 29 (1.29%) 8 (1.43%) 3 (0.65%) 8 (1.9%) 3 (0.78%) 7 (1.62%)

All 1778 (78.81%) 462 (82.35%) 345 (75.16%) 344 (81.9%) 296 (76.88%) 331 (76.8%)

Table 4. Number of instances and presence in the frames (% of total number of frames in each fold).

Model Backbone Params. Upsampling Target Reference

DeepPyramid VGG16 33.57 M Bilinear Medical Images 22

Adapt-Net VGG16 24.69 M Bilinear Medical Images 17

UNet++ VGG16 24.24 M Bilinear Medical Images 33

ReCal-Net VGG16 22.93 M Bilinear Medical Images 21

CPFNet VGG16 | ResNet34 39.17 M | 34.66 M Bilinear Medical Images 34

CE-Net VGG16 | ResNet34 33.50 M | 29.90 M Trans Conv Medical Images 35

FED-Net ResNet50 59.52 M Trans Conv & PixelShuffle Liver Lesion 36

scSENet VGG16 | ResNet34 22.90 M | 25.25 M Bilinear Medical Images 37

DeepLabV3+ ResNet50 26.68 M Bilinear Scene 38

UPerNet ResNet50 51.26 M Bilinear Scene 39

U-Net+1 VGG16 22.55 M Bilinear Medical Images 40

Table 3. Specifications of the proposed and alternative approaches. In “Upsampling” column, “Trans Conv” 
stands for Transposed Convolution. 1Note that UNet + is an improved version of UNet, where we use VGG16 
as the backbone network and double convolutional blocks (two consecutive convolutions followed by batch 
normalization and ReLU layers) as decoder modules.
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features. The collective findings reveal commendable and satisfactory phase recognition performance across 
diverse backbones and recurrent network setups. Notably, the incorporation of bidirectional recurrent layers has 
consistently amplified detection accuracy and F1-Score across all configurations. Furthermore, networks lev-
eraging the ResNet50 backbone display marginally superior performance compared to those utilizing VGG16. 
This outcome can be attributed to the deeper architecture of ResNet50, facilitating the extraction of intricate 
features essential for accurate recognition. The results also reveal the distinguishability of different phases in 
cataract surgery. Precisely, the phacoemulsification phase consistently attains the highest accuracy and F1 score, 
attributed to the distinctive phacoemulsification instrument and the unique texture of the pupil during this 
phase. Conversely, the least robust detection performance aligns with the viscoelastic/AC flushing phases, accen-
tuating the visual resemblances shared between these phases and other phases within cataract surgery videos.

Table 7 provides a quantitative analysis of “anatomy plus instrument” segmentation performance for various 
neural network architectures. The results notably highlight that segmenting the relevant anatomical structures 
emerges as a comparatively less challenging task than instrument segmentation for all networks. Specifically, 
the best performance corresponds to pupil segmentation, attributable to its distinct features and sharp bound-
aries. In contrast, lens segmentation demonstrates relatively lower performance due to its transparent nature 
and an inherent imbalance issue (outlined in Table 4). The segments involving instruments, however, confront 
significant challenges. This class is marked by major distortions, encompassing motion blur, reflections, and 
occlusions, collectively contributing to the relatively low performance of the networks. The best performance 

Table 6. Phase recognition performance of several CNN-RNN architectures.

Category Class Name
All 
Videos Fold1 Fold2 Fold3 Fold4 Fold5

Anatomy

Iris 45939 41874 47792 44867 47963 48494

Pupil 36013 38594 33578 35900 35291 35999

Intraocular Lens 9135 7056 10017 9153 10405 9748

Instruments

Slit/Incision Knife 1140 1088 1179 1163 1206 1086

Gauge 299 222 337 454 168 326

Spatula 2613 3163 2078 2893 2309 2466

Capsulorhexis Cystotome 5523 4760 4773 6551 6345 5580

Phacoemulsifier Tip 5230 4388 5526 7646 4451 4354

Irrigation-Aspiration 1083 790 1138 1311 1153 1123

Lens Injector 512 465 543 673 318 556

Capsulorhexis Forceps 172 288 104 225 23 176

Katena Forceps 823 906 678 1065 1133 357

All 17397 16069 16357 21981 17105 16025

Table 5. Average pixels corresponding to different labels per frame.
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corresponds to the DeepPyramid network with a VGG16 backbone, consistently yielding optimal results across 
all classes.

Figure 5 visually compares the Dice and IoU metrics’ averages and standard deviations across five folds for 
the evaluated neural networks. According to the results, DeepPyramid, AdaptNet, and ReCal-Net are the three 
best-performing networks for anatomy and instrument segmentation in cataract surgery videos.

Within Table 8, a thorough comparison is made between the performance of various neural network archi-
tectures concerning intra-domain and cross-domain scenarios. These architectures are trained using our binary 
instrument annotations. The results clearly indicate statistical differences between Cataract-1k and CaDIS 
datasets. Concretely, the average dice coefficient for binary instrument segmentation equals 77% within the 
Cataract-1k dataset. However, this performance metric markedly contracts, remaining confined to around 67% 

Fig. 5 Average and standard deviation of “anatomy plus instrument” segmentation results for neural network 
architectures listed in Table 3.

Table 7. Quantitative evaluations of “anatomy plus instrument” segmentation performance for neural network 
architectures listed in Table 3.
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(with AdaptNet illustrating 66.23%) when extended to the CaDIS dataset. This considerable variance starkly 
underscores the substantial domain shift inherently present between these two datasets. These results demon-
strate the necessity of strategically exploring semi-supervised and domain adaptation techniques to elevate 
instrument segmentation performance in cataract surgery videos with cross-dataset domain shifts32.

Usage Notes
The datasets are licensed under CC BY. For further legal details, we kindly request the readers to refer to the 
complete license terms. Besides, anyone can view the sample videos and images from the dataset and access the 
GitHub repository for dataset preparation codes.

Code availability
We provide all code for mask creation using JSON annotations and phase extraction using CSV files, as well as the 
training IDs for four-fold validation and usage instructions in the GitHub repository of the paper (https://github.
com/Negin-Ghamsarian/Cataract-1K).
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