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Large language model enhanced 
corpus of CO2 reduction 
electrocatalysts and synthesis 
procedures
Xueqing Chen  1,2,5, Yang Gao  3,5, Ludi Wang  1,5, Wenjuan Cui  1, Jiamin Huang3, Yi Du  1,2,4 ✉  
& Bin Wang  3 ✉

CO2 electroreduction has garnered significant attention from both the academic and industrial 
communities. Extracting crucial information related to catalysts from domain literature can help 
scientists find new and effective electrocatalysts. Herein, we used various advanced machine learning, 
natural language processing techniques and large language models (LLMs) approaches to extract 
relevant information about the CO2 electrocatalytic reduction process from scientific literature. By 
applying the extraction pipeline, we present an open-source corpus for electrocatalytic CO2 reduction. 
The database contains two types of corpus: (1) the benchmark corpus, which is a collection of 6,985 
records extracted from 1,081 publications by catalysis postgraduates; and (2) the extended corpus, 
which consists of content extracted from 5,941 documents using traditional NLP techniques and LLMs 
techniques. The Extended Corpus I and II contain 77,016 and 30,283 records, respectively. Furthermore, 
several domain literature fine-tuned LLMs were developed. Overall, this work will contribute to the 
exploration of new and effective electrocatalysts by leveraging information from domain literature 
using cutting-edge computer techniques.

Background & Summary
CO2 electroreduction has garnered significant attention from both the academic and industrial communities, 
owing to its potential to effectively mitigate greenhouse gas emissions while simultaneously producing fuels and 
chemicals1–3. Its widespread adoption relies heavily on the development of efficient and reliable electrocatalysts. 
Over the past three decades, scientists have invested substantial efforts in the development of CO2 reduction 
electrocatalysts4,5; However, this trial-and-error approach has proven to be time-consuming and labor-intensive. 
Consequently, it becomes pivotal in accelerating catalyst development to establish a comprehensive database 
for CO2 electroreduction, which should encompass various information pertaining to the composition, syn-
thesis, regulation, and performance of catalysts. Given the substantial workload involved, the manual annota-
tion method by domain experts is deemed unreasonable. In recent years, emerging artificial intelligence (AI) 
technologies have exhibited tremendous potential in facilitating the construction of realm-specific datasets6,7. 
Extracting crucial information related to catalysts from domain literature is the initial step toward accelerating 
catalyst development using AI technologies. Traditionally, Named Entity Recognition (NER) methods have been 
employed for text mining and information retrieval8–11. However, NER often necessitates the establishment of 
algorithms tailored to specific tasks, which are typically undertaken by scientists or engineers with expertise 
in coding, data structures, and computer algorithms. Therefore, this approach is labor-intensive. Furthermore, 
NER algorithms are closely tied to their assigned tasks, lacking generalizable ability and thus making direct 
transfer to other tasks challenging. Additionally, extracted information tends to be intricate, heterogeneous, and 
diverse in the field of catalysis, leading to unsatisfied NER performance and reduced accuracy12. Therefore, the 
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development and utilization of more general and robust methods for extracting domain knowledge are becom-
ing increasingly imperative.

Recently, the emergence of large language models (LLMs), especially the widely acclaimed ChatGPT, has 
brought new prospects to the field of NER tasks13. It can be effectively operated by domain scientists who may 
not be well-versed in computer algorithms. However, ChatGPT is susceptible to information hallucinations, 
a glaring issue that significantly undermines its reliability in scientific domains14–16. Prompt engineering has 
proven to be a potential solution to mitigate the problem of artificial hallucinations17–19. For instance, Zheng 
et al. employed prompt engineering to guide ChatGPT in automating text mining for the synthesis conditions 
of metal-organic frameworks17. Nevertheless, the utility of this approach for more diverse and complex tasks 
within the catalytic science domain remains an area warranting further exploration. Moreover, the high demand 
for computing resources in LLMs also limits their application in various fields. The training and application of 
LLMs usually require a tremendous amount of computational power, which are not only expensive to purchase 
but also consume substantial amounts of electricity.

In recent work, our team has developed a text-mining pipeline to construct a dataset describing the CO2 
reduction process catalyzed by copper-based electrocatalysts, which specifically includes material, regulation 
method, product, Faradaic efficiency and relevant conditions12. In the current work, we built a more advanced 
extraction pipeline based on the knowledge system of CO2 electrocatalytic reduction (Fig. 1), which uses var-
ious advanced machine learning, natural language processing techniques and large language models (LLMs) 
approaches to extract relevant information about the CO2 electrocatalytic reduction process from scientific 
literature. In addition, for the purpose of providing a more detailed and complete guidance scheme for mate-
rials scientists to develop new catalysts, we designed a set of synthesis actions with predefined properties and 
a deep-learning sequence to sequence model based on the transformer architecture, which converts unstruc-
tured experimental procedure text into structured action sequences. By applying the extraction pipeline, we 
present an open-source corpus for electrocatalytic CO2 reduction. The database contains two types of corpus: 
(1) the benchmark corpus, which is a collection of 6,086 records extracted from 1,081 publications by cataly-
sis postgraduates; and (2) the extended corpus, which consists of content extracted from the abstract of 5,941 
documents using traditional natural language processing techniques and large language models techniques. 
Respectively, the Extended Corpus I contains 77,016 records and the Extended Corpus II contains 30,283 
records. In addition, we extracted 476 synthesis procedures for catalytic materials from 2,176 full-text docu-
ments, and the extracted information includes target and preparation materials, synthesis operations and the 
quantity of materials involved in them, and operation properties. The Extended Corpus was evaluated and 
revised by domain experts. This work provides a valuable resource to accelerate research into CO2 reduction by 
supplying structured information and datasets ready for further analysis and hypothesis generation. The tools 
and datasets created could significantly reduce the time and resources required for literature review and data 
gathering, allowing scientists to focus on innovation and experimentation.

Methods
The schematic overview of the extraction pipeline is shown in Fig. 1. We first searched the literature related to the 
electrocatalytic CO2 reduction process following a series of filtering criteria. For scientific article retrieval and 
preprocessing, the raw archived corpus was parsed and organized in paragraphs. After paragraph classification, 

Fig. 1 The schematic overview of dataset construction pipeline. (a) The process of literature search filtering and 
paragraph classification. (b) The top panel shows the schematic diagram of the standard text mining process: 
<i> expert annotation to build a baseline corpus; <ii> extraction of critical information from the literature 
text and construction of an extended corpus; <iii> store in a database for future data mining. The bottom panel 
shows an example of converting a synthesis sentence into action sequences. The key components of an action 
sequence such as starting and target material, synthesis steps and their conditions are found and extracted from 
the paragraph by different text mining algorithms (see Methods). (c) The entity types and their relationships 
extracted from the literature. The final constructed dataset can provide guidance for practical experimental work.
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the paragraphs related to the concrete synthesis procedures were automatically selected. The extracted infor-
mation includes the materials, the target products, their quantities as well as the synthesis operations and their 
attributes. We then constructed action sequences for each synthesis action in a predefined format. Finally based 
on the the system of knowledge defined by domain experts, we published a manually annotated baseline corpus 
and an automatically annotated extended corpus. The final generated dataset can be used for domain data min-
ing and further downstream NLP tasks, as well as provide guidance to material domain scientists for practical 
experimental work.

Content acquisition. Scientific publications used in this work are journal articles published by Elsevier, 
the Royal Society of Chemistry, American Chemical Society, Wiley, Acta Physico-Chimica Sinica & University 
Chemistry Editorial Office (Peking University), MDPI, the Electrochemical Society, Springer Nature, etc. For 
each publisher, the journals relevant to materials science were manually selected. We used regular expression 
matching20 to obtain the dois of relevant literature in the field of CO2 electrocatalytic reduction. Specifically, we 
searched and exported metadata for more than 27,000 articles by using the keywords “CO2”, “Reduction”, and 
“Electro*” as subject indexes on the Web of Science website. The exported literature metadata was then filtered 
step by step according to expert-defined rules. The title of every article was queried for words “CO2”, “carbon 
dioxide” or “CO(2)”, which yielded 9,850 articles. The abstract of every article was queried for words “electroc” or 
“electror”, which yielded 6,973 articles. Finally the domain experts performed manual filtration to exclude arti-
cles whose titles contained words that were not relevant to the topic, including: “photoc”, “light”, “visible”, “solar”, 
“microbial”, “bacteria”, “culture”, etc. we eventually obtained 5,941 summary texts of the literature related to the 
work on CO2 electrocatalytic reduction and scraped the full text of 2,776 papers from the web. We finally acquired 
the literature in PDF format and used the PyMuPDF tool, a PDF parsing tool21, to automatically process these 
literature data to obtain their metadata such as title, authors, abstract, etc. and the full text in json format. Since 
the processed document contains irrelevant tags, we developed a data cleaning method for parsing the article tag 
strings into consistently formatted text paragraphs while retaining the same chapter and paragraph structure as 
the original paper.

Paragraph classification. We used the Transformers Bidirectional Encoder Representation (BERT) model 
to identify paragraphs containing descriptions of synthesis methods. MatBERT is a BERT model22 specifically for 
material science texts, pre-trained on over 2 million papers in a self-supervised manner, i.e. by predicting masked 
words based on the context around the target sentence. After training the BERT model, we used a paragraph clas-
sification method based on semi-supervised learning23. First we applied latent Dirichlet allocation (LDA)24 on the 
12,643 articles in the field of photoelectrocatalysis to identify the experimental steps implicit in sentences. Then 
we collected all the paragraphs from the literature and manually labelled the paragraphs describing the synthesis 
protocol. The training data ultimately included 760 training examples, with 228 positive examples and 532 nega-
tive examples. We applied the random decision forest (RF) algorithm25, a supervised machine learning method, to 
binary classify the training data. This step yielded 476 synthesis paragraphs from a total of 2,776 articles.

Entity annotation. In order to improve the quality of the training data based on the automatically extracted 
models, we generated a higher-quality dataset, also known as a gold standard corpus26, by manually annotating a 
portion of the sentences from the abstracts and body of literature related to CO2 electroreduction. We developed 
an annotation framework based on the doccano annotation tool27. Annotators can open the framework in a web 
browser and browse through the sentences of the material literature. The page displays the sentence to be anno-
tated along with predefined entity types and related descriptions. The annotator can add new entities, reorder 
them or edit them by opening a separate view. To ensure consistency between annotators, detailed annotation 
guidelines are provided.

Entity extraction. In our previous study, we extracted nine types of entities in the literature based on the 
constructed electrocatalytic reduction system, including material, regulation method, product, faradaic efficiency, 
cell setup, electrolyte, synthesis method, current density, and voltage. Some of these entity labels are provided with 
more detailed labelling subclasses to ensure that materials scientists have access to more complete information. 
In the current construction of the CO2 electrocatalysis literature dataset, We have updated the categories of the 
tag subcategories according to the new knowledge system. In addition, we added information on the material 
synthesis process, which converted unstructured scientific paragraphs describing catalytic materials synthesis 
into pre-defined “coded recipes” of synthesis. The recipes includes not only the starting materials and final target 
products but also the synthesis actions and their attributes.

Construction of extended corpus. Traditional entity extraction methods follow the pattern of “expert 
annotation, model training, model application” and use automatic extraction models to build a wider and larger 
corpus of lower quality, also known as a silver standard corpus(SSC)26. The Large Language Models (LLMs) such 
as GPT-3, GPT-3.5, and GPT-4 have been used for this purpose28–30. Its emergency provides a new paradigm 
for natural language processing modelling, i.e., building prompts with a small amount of expert annotation to 
directly fine-tune GPT models that have been pre-trained on large-scale data. Traditional NER methods are less 
general, but have higher domain confidence, while large models may produce uncontrollable illusions. Herein, 
in this paper, we used two model training approaches separately to generate an extended corpus based on the 
construction standard of the silver standard corpus(SSC).

Entity extraction using traditional NER methods. Regarding the hierarchical structure of entity labelling, 
we designed a two-step entity recognition model which consists of coarse-grained entity recognition and 
fine-grained entity classification. In the first step, we used the SciBERT model31 to convert each word token 
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into an embedding vector. The embedding vector was then passed to a bi-directional long-short-term memory 
neural network with a conditional random-field top layer(BiLSTM-CRF)32,33 to identify which class of entity 
labels the corresponding token was. Considering that the representations of some entities usually have regu-
larities, such as the chemical formula expressions of material entities and the numerical expressions of faradaic 
efficiency entities, we proposed a regular rule-based approach to assist the deep learning model34. The results of 
the two models were selected using a voting scheme26. In the second step, each coarse-grained type entity was 
classified into finer-grained entity classes using a classification algorithm combining dictionary and maximum 
entropy model. The dictionary-based recognizers used lists of words built on expert-annotated data35. For data 
that cannot be matched, the word embedding vectors, context vectors, word cluster clustering information and 
coarse-grained entity category information for each entity were passed through a simple mapping function. The 
final mapping results were used as entity features for classification probability prediction through a maximum 
entropy model.

A typical synthesis procedure in the electrocatalytic reduction literature contains information on the pre-
pared and target materials, synthesis operations and operating conditions. These items are organized into mate-
rial synthesis “recipes” and are extracted from the synthesis paragraph as shown in Fig. 2. Our extraction process 
consists of multiple algorithms that analyze the passages and identify the relevant materials, the synthesis actions 
performed, and the condition information associated with those synthetic actions. The method used in each step 
of the extraction process is described in detail below.

Step 1: Materials entity recognition. The first step is the labelling of the preparation material. The synthesis 
of the target material involves the names of all the reagents that need to be prepared. We used pattern matching 
against a database of common reagent names and then used a plain Bayesian classifier to determine whether a 
candidate phrase is a reagent name, excluding some specific phrases36. Through iterative trials, we eventually 
chose reagent names from the Reaxys database and non-reagent-name texts from the Brown English language 
corpus to train the classifier.

Step 2: Synthesis actions To identify and classify synthesis actions described in passages, we imple-
mented an algorithm that combines Recurrent Neural Networks (RNN) and rule-based sentence dependency 
tree parsing22. The neural network labelled the sentences in the synthetic passages into nine categories: NOT 
OPERATION, ADDING, HEATING, CURING, ELECTROCHEMICAL ANODIZATION, FILTERING, 
DRYING, DIPPING and REACITON, which are the main operations in catalytic materials synthesis. We used 
ChemDataExtractor’s ChemWordTokenizer37 to tokenize the lemmatized sentences. For each synthesis 
action obtained, we used the SpaCy library38 to parse the syntactic information of the dependency subtree for 
linguistic features of the tokens, such as their lexical properties and their dependency on the root token.

Step 3: Synthesis action conditions For each synthesis action, we used dependency tree parsing and 
rule-based regular expression methods39 to extract the relevant attributes of the synthesis action, such as 
heating time, heating temperature, and potential voltage values. In addition, if there were materials involved 
such as ADDING and REACTION operations, we used pattern-matching techniques to extract the names and 

Fig. 2 Schematic diagram of the process of converting a synthetic paragraph into action sequences.
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corresponding quantities of the reagents involved. For example, one of the patterns used for finding solutions is 
“a/an XX solution containing Reagent” in which “Reagent” represents a phrase previously tagged as a reagent. 
An example phrase that would be matched by this pattern is “an aqueous solution containing HAuCl4(10 mol, 
125 mL)”. The contents of the parentheses are regularly matched to the corresponding quantities of the reagents.

Entity extraction using LLMs. In previous study, we attempted to construct a corpus using an NLP model, 
but the accuracy of the intelligent model is easily affected by the volume of training data. Herein, we demon-
strate that LLMs, including original LLMs and fine-tuned LLMs, can act as assistants to collaborate with human 
researchers, facilitating entity recognition and text mining to accelerate the research process.

In the realm of catalyst-related tasks, LLM’s performance can be significantly enhanced by employing prompt 
engineering (PE) which can steer LLMs toward generating precise and pertinent information. Although LLMs, 
including fine-tuned LLMs, can answer general questions, their knowledge depth, accuracy and timeliness are 
limited in vertical domain filed. To solve this problem, we use vector databases to enhance the reasoning ability 
of LLMs in vertical domains. Vector databases can transform literature and data into vector representations by 
embedding vectors. Sci-BERT31 was used as embedding model for construct the vector database.

Figure 3 shows the process of knowledge extraction using LLMs and vector database. Firstly, we processed 
and cleaned the full text of 12,643 photoelectrocatalytic scientific literature, and used them for LLMs fine-tuning. 
In this step, we chose Vicuna-33b-v1.3 as the basic LLMs. Secondly, we extracted the title, abstract and doi from 
articles associated with standard corpus, then we use Sci-BERT as the embedding model to transform title and 
abstract into vector. When performing entity recognition, user first input the text to be extracted, embedding 
model transform it into vectors. Then the similar articles will be obtained by calculating the vector distance, and 
will be used to generate precise and pertinent information, which be shown in Fig. 4. The prompt will be input 
to the fine-tuned LLMs for entity recognition.

Data records
The both types of datasets constructed in this work are available in ScienceDB, a public, general-purpose data 
repository designed to serve data to researchers, research projects/teams, journals, institutions, universities, 
and others. The metadata contained in the article dataset includes: article DOI, year of publication, and title. 
Each record corresponds to the process of CO2 electrocatalytic reduction and its metadata includes: the entity 
extracted from the paper, the label of the entity, and the sentence in which the entity is located. In addition, the 
datasets for the catalytic material synthesis methods are available as a single json. Each record corresponds to a 
synthesis procedure extracted from a paragraph and is represented as a separate json object. The metadata for 
each reaction includes the DOI of the paper from which the reaction is extracted as well as a fragment of the 
corresponding synthesis paragraph, the target product, the preparative material used in the reaction, and a tree 
of seven types of synthesis operations and their corresponding conditions. Table 1 gives extended details of all 
the dataset format.

The sequence of synthesis steps for the reaction (if specified in a paragraph) is listed as a data structure with 
the following fields: the original paragraph in the text (synthesis_paragraph), its type (operation_
string) specified by the classification algorithm (see Methods), and the conditions associated with this oper-
ation step (conditions). We classified the types of operations involved in the synthesis of catalyst materials 
into eight categories and give detailed descriptions of the types of operations and condition attributes in Table 2.

The corpus is publicly available at Science Data Bank (ScienceDB), which is a public, general-purpose data 
repository aiming to provide data services for researchers, research projects/teams, journals, institutions, 

Fig. 3 The schematic overview of extraction using LLMs and vector database.
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universities, etc. The benchmark corpus is publicly available at https://doi.org/10.57760/sciencedb.1329040. The 
extended corpus I and extended corpus II are publicly available at https://doi.org/10.57760/sciencedb.1329241, 
where include other extendedcorpuscorpus exacted by LLM model. The two types of Corpus are provided as 
a file in CSV format, and the details of them are shown in Table 3. A complete dataset of 476 catalytic material 
synthesis processes is publicly available at https://doi.org/10.57760/sciencedb.1329342.

technical Validation
Extraction accuracy. To demonstrate the utility of the extended corpus, we first evaluated the model against 
other current state-of-the-art traditional entity extraction methods. We selected several generic neural network 
tagging models, including bi-directional LSTM layers with conditional random field (CRF) layer33,43,44, bi-direc-
tional recurrent neural network Bi-GRU45, and BERT model with CRF layer. We then chose a multi-feature based 
maximum entropy machine learning model46 using two types of features, Parts-of-Speech features generated by 
GENIA Parts-of-Speech Tagger47and lexical features. Table 4 shows the results of the experimental comparison. 

Fig. 4 The prompt using in the entity extraction.

Data Description Data Key Label Data Type

DOI of the original paper doi string

Title of the original paper title string

Entity extracted from the paper entity string

Label of the entity entity_label string

Sentence where the entity is located context string

Target material data target_string list of strings

Equipment where the reaction is operated hardware list of strings

Material data of the preparation process reagent list of strings

Sequence of synthesis steps and corresponding conditions operation

list of Objects (dict):

-string: string

-vessel: string

-reagent: list of Objectsa

-speed: string

-temp: list of Objectsb

-time: list of Objectsb

-potential: list of Objectsb

-condition: string

-stir: boolean

-reflux: boolean

Table 1. Format of each data record: description, key label, data type.
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We found that our constructed entity extraction model consistently outperforms other methods, achieving an 
overall F1 score of 85.16 in recognizing four coarse-grained categories of entities. This also demonstrated an 
advantage in the subsequent classification of fine-grained entities.

To estimate the quality of the synthesis process dataset, we had a human expert test 100 randomly selected 
entries. The human expert manually extracted the information provided in the synthesis paragraphs and com-
pared the results with those extracted by the pipeline. Table 5 presents the accuracy statistics, which include the 
precision, recall, and F1 scores calculated from the test entries.

We also validated the entity recognition results of the LLMs in this paper. We validate the answers of the 
LLMs by an expert with 160 randomly selected entries, and ensure that each category has 20 test data. The eval-
uation result is shown in Table 6. The Count means the total amount of samples from different categories, the 
Correct means the number of correctly identified entities, and the Existence means the number of entities of this 
type does exist in the text input to the large model. It is worth mentioning that if there is indeed no correspond-
ing entity in the text input to the large model, the situation where the large model answers empty should also be 
considered as correct recognition. Therefore, we use Modified Correct to remove the above influence. Ultimately, 
we utilize Modified Correct and Count to calculate the evaluation of LLMs, which is Modified accuracy. Using 
large models for entity recognition also causes significant time loss. We used two NVIDIA A100 GPU graphics 
processing units for entity recognition, and cost almost 10 hours to process 5,941 literature abstracts.

From the results, we can see that the LLMs perform better in entity extraction for numerical classes (faradaic 
efficiency, potential, etc.), but perform poorly in entity extraction for descriptive classes. This may be due to the 
objectivity of data entities, which reduces the possibility of hallucinations in large models.

Dataset mining. To present the recent trends in the development of CO2 reduction electrocatalysts, we 
showcased and analyzed the information in the database. Firstly, we demonstrated the publication trends of CO2 
reduction electrocatalysts over the past 30 years. As depicted in Fig. 5a, articles on CO2 reduction electrocatalysts 
have experienced a rapid surge since 2010, indicating the burgeoning interest of scientists in this field. Figure 5b 
illustrates the proportional distribution of various types of CO2 reduction electrocatalysts. It is evident that the 
current research predominantly focuses on E (single metal), E/C (metal-carbon composites), E-M (binary or 
ternary metal systems), and EOx (metal oxides), with a notable increase in attention toward E/C in recent years.

In addition to the overall development of electrocatalysts, another intriguing aspect lies in the correlation 
between catalysts and products, which is crucial for product-oriented catalyst design. Figure 6 presents an allu-
vial plot illustrating the intricate associations between catalysts and products. Notably, for clarity, less reported 
catalyst categories have not been included. E/C and E-M are favorable choices for generating CO, while E-M 
and EOx exhibit the capability for formic acid production. For C2 products, such as C2H4 and C2H5OH, both 

Operation Type Condition attributes Data description

ADDING

-left_reagent The name and quantity of materials involved in the operation

-right_reagent The name and quantity of materials involved in the operation

-speed Speed of adding operations

-stir Stirring or not during addition operation

HEATING

-vessel Vessel in which the heating operation takes place

-temp Final temperature for heating operations

-time Time for heating operations

-stir Stirring or not during heating

-reflux Whether the heating process requires reflux

CURING

-condition Curing conditions, deliberately stated in the paragraph

-temp Temperature during curing operation

-time Time for curing

ELECTROCHEMICAL ANODIZATION

-reagent Name of electrode solution

-potential Potential values for anodic oxidation reactions

-time Time for the electrochemical anodization

FILTERING
-condition Filter conditions, the original sentence text extracted directly

-reagent Name of the reagent being filtered

DRYING -condition Dry conditions, the original sentence text extracted directly

DIPPING

-left_reagent Name of material to be dipped

-right_reagent Name of material immersed in

-time Time for the immersion

REACTION

-left_reagent Name and quantity of materials involved in the reaction

-right_reagent Name and quantity of materials involved in the reaction

-temp Temperature at the time of reaction

-time Time for the reaction

-reflux Whether reflux is required for the reaction

Table 2. Format of each synthesis operation record: operation type, condition attributes, data description.
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E and EOx are viable options. Furthermore, Fig. 6 also reveals some potential research topics that warrant fur-
ther exploration. For instance, although a few catalysts demonstrate the ability to produce C3 products, such 
as n-propanol and acetone, the optimal catalysts have yet to be well-established. While composite systems are 
gaining increasing attention, their advantages over individual compounds remain to be fully elucidated.

Corpus Type

Benchmark Corpus Extended Corpus I Extended Corpus IIEntity Type

Material 1,092 18,184 5,977

Regulation method 1,086 35,780 5,488

Product (including the second and third product) 1,340 19,080 6,700

Faradaic efficiency (including the Faradaic efficiency of second and third product) 1,135 3,496 3,152

Cell setup 435 — 170

Electrolyte 475 — 3,919

Synthesis method 228 476 —

Current density 393 — 3,852

Voltage 801 — 1,025

Total 6,985 77,016 30,283

Table 3. Summary of the three corpus.

Entity(freq. in test set) MaxEnt BiLSTM-CRF BiGRU-CRF BERT-CRF BERT-BiLSTM-CRF

MATERIAL(92) 40.12 50.43 52.01 59.96 60.59

METHOD(97) 38.25 46.89 49.67 57.12 58.02

PRODUCT(94) 70.21 82.45 86.12 91.10 92.34

FARADAIC EFFICIENCY(62) 88.16 91.18 91.98 94.56 96.82

Macro-avg F1 51.26 66.90 68.02 71.48 73.90

Micro-avg F1 68.89 81.02 82.33 82.73 85.16

Table 4. Compare the F1 scores of entity recognition in various models.

Pipeline Component Extraction Method F1:(precision | recall)

Article filtering Regular match 0.88:(0.84 | 0.93)

Synthesis paragraph classification BERT classification 0.80:(0.82 | 0.78)

Materials entity recognition BiLSTM + CRF (BERT embedding) & Regular match
0.96:(0.98 | 0.94) - materials

0.84:(0.86 | 0.82) - targets

Synthesis actions BiLSTM (Word2Vec embeddings) 0.89: (0.92 | 0.86)

Synthesis conditions Rule-based

-Temperature 0.95: (0.98 | 0.93)

-Time 0.96: (0.98 | 0.94)

-Potential 0.88: (0.91 | 0.86)

Material quantities Rule-based 0.90: (0.93 | 0.87)

Table 5. Accuracy of synthesis information extraction models.

Entity Count Correct Existence Modified Correct Modified accuracy

MATERIAL 20 15 17 15 75%

METHOD 20 13 19 13 65%

PRODUCT 20 17 17 17 85%

FARADAIC EFFICIENCY 20 11 11 18 90%

ELECTROLYTE 20 9 10 10 50%

POTENTIAL 20 7 7 16 80%

CURRENT DENSITY 20 7 7 12 60%

CELL SETUP 20 6 6 9 45%

OVERALL 160 85 94 110 68.75%

Table 6. The evaluation of entity recognition of LLMs.
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Moreover, the type of metal, particularly the presence of Cu, is crucial for the performance of catalysts in 
CO2 electroreduction. Therefore, we annotated whether the catalysts contained Cu in the database. To illustrate 
this contrast clearly, we generated doughnut charts to display the percentage of different products from several 
types of catalysts with or without Cu. As shown in Fig. 7a, the majority of the products for E/C are CO, while 
Cu/C can generate various C1 and C2 products. For single metal systems (Fig. 7b), the primary products of E 

Fig. 5 (a) Histograms of the number of publications of CO2 reduction electrocatalysts over the past thirty years. 
(b) Stacked histograms of the percentage of CO2 reduction electrocatalysts in the last ten years.

Fig. 6 Alluvial plot illustrating the relationships between catalysts and products.
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are C1 products, whereas Cu yields predominantly C2 products. In the case of binary or ternary metal systems, 
Cu-M exhibits a stronger capability for producing C2 products compared to E-M. Regarding metal oxides, the 
products of EOx are predominantly formic acid, while CuOx yields primarily C2H4. These findings underscore 
the significant impact of the presence of Cu on the selectivity of C2 products for catalysts.

The choice of synthesis method also has a significant impact on the performance of catalysts, so we analyzed 
the correlation between catalysts and synthesis methods. As shown in Fig. 8, thermal treatment and solvother-
mal methods are the two most widely used material synthesis methods. In addition, different catalysts also have 
their conventional synthesis methods. For example, the synthesis of Cu/C, which usually refers to carbon-coated 
metal nanoparticles or anchored single atoms, is mainly through thermal treatment. The synthesis of E and E-M 
is mainly electrochemical methods, especially electrochemical reduction treatment. For EOx and its composites, 
the solvothermal method, wet chemical method, and electrochemical method are commonly used methods. 
This analysis is helpful for the screening of target catalyst synthesis methods.

The database encompasses various catalyst types and diverse regulation strategies, which can be utilized 
to guide the design and optimization of novel catalysts. One feasible approach involves integrating multiple 

Fig. 7 Doughnut charts showing the percentage of different products of catalysts with or without Cu.

Fig. 8 Heatmap showing the number of publications of CO2 electrocatalysts with different synthesis methods.
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strategies by drawing inspiration from well-performing catalysts and regulation methods in the literature, thus 
facilitating the development of highly efficient catalysts. For example, CuS serves as a potential efficient catalyst 
for C2H4 production, while nano-sized polymer coatings can enhance the selectivity of C2H4. Consequently, CuS 
nanoparticles coated with an a-few-nm-thick polymer layer represent an effective method for selectively pro-
ducing C2H4. Similarly, coupling Cu2O nanocrystals with (111) facets with functionalized graphene nanosheets 
can be employed for C2H5OH production. Furthermore, utilizing fine-tuned domain LLMs is also a viable strat-
egy for developing novel catalysts, and further efforts are required in fine-tuning LLMs and prompt engineering.

Code availability
The scripts utilized to parse articles and extract entities are home-written codes which are publicly available at the 
github repository https://github.com/cxqwindy/CO2_reduction_electrocatalysts_db. The underlying machine-
learning libraries used in this project are all open-source: rxn4chemistry(rxn4chemistry), ChemDataExtractor 
(chemdataextractor.org)37, gensim (radimrehurek.com)48, PyMuPDF(PyMuPDF), Pytorch (www.pytorch.org) 
and scikit-learn (scikit-learn.org)49.
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