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A unified dataset for the city-scale 
traffic assignment model in 20 U.S. 
cities
Xiaotong Xu   1, Zhenjie Zheng1 ✉, Zijian Hu1, Kairui Feng   2 & Wei Ma1,3 ✉

City-scale traffic data, such as traffic flow, speed, and density on every road segment, are the 
foundation of modern urban research. However, accessing such data on a city scale is challenging due to 
the limited number of sensors and privacy concerns. Consequently, most of the existing traffic datasets 
are typically limited to small, specific urban areas with incomplete data types, hindering the research 
in urban studies, such as transportation, environment, and energy fields. It still lacks a city-scale traffic 
dataset with comprehensive data types and satisfactory quality that can be publicly available across 
cities. To address this issue, we propose a unified approach for producing city-scale traffic data using the 
classic traffic assignment model in transportation studies. Specifically, the inputs of our approach are 
sourced from open public databases, including road networks, traffic demand, and travel time. Then 
the approach outputs comprehensive and validated citywide traffic data on the entire road network. 
In this study, we apply the proposed approach to 20 cities in the United States, achieving an average 
correlation coefficient of 0.79 in average travel time and an average relative error of 5.16% and 10.47% 
in average travel speed when compared with the real-world data.

Background & Summary
City-scale traffic data, including traffic flow, speed, and density on every road segment of the entire road net-
work, are foundational inputs and building blocks for modern urban research. These traffic datasets offer an 
overview of urban mobility, facilitating a better understanding of traffic conditions and travelers’ behaviors in a 
city. Utilizing the city-scale traffic data, policymakers could develop appropriate transport policies and strategies 
to mitigate traffic congestion1,2. Additionally, the traffic data can also be used to evaluate the noise and air pol-
lution caused by vehicles in urban areas3–5, which are important in enhancing public health and environmental 
conditions6–8. Furthermore, it assists in formulating energy-efficient traffic management and control strategies 
that can substantially reduce energy consumption9–11. In view of this, it is of great importance to produce and 
publish open-access traffic datasets on a city scale to support related studies in interdisciplinary research.

However, it is challenging to directly collect the traffic data on every road segment on the entire road net-
work. This is because the traffic data are typically collected from various traffic sensors (e.g., loop detectors, 
CCTV cameras), which are usually insufficient to cover the entire network due to the associated high installation 
and maintenance costs. For instance, there are over 30,000 links on the road network of Hong Kong, but less 
than 10% of the links (i.e., 2,800) are equipped with volume detectors12. Moreover, data missing or data meas-
urement errors are inevitable problems due to various factors such as sensor failures, software malfunctions, and 
weak communication signal transmission13,14. For example, existing studies indicate that approximately 30% of 
the freeway sensors in California Performance Measurement System (PeMS: https://pems.dot.ca.gov/) are not 
working properly, resulting in data missing15,16. More importantly, directly observing the traffic conditions may 
not be sufficient since the underlying mechanism of the traffic dynamics is not reflected. For example, a reduc-
tion in traffic speed indicates congestion, while it is still not clear how the congestion is formed17.

To address the above challenges, many urban planning or transport departments utilize traffic modeling tech-
niques to estimate the city-scale traffic data in a generative manner. Specifically, the traffic assignment model18,  
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which is a mature model that has been studied extensively in the transportation field, is adopted to estimate the 
city-scale traffic states. The input of the traffic assignment model only includes the Origin-Destination (OD) 
demand information and network structure, both of which are public and openly available. Then, the model 
outputs the city-scale traffic dataset. Traffic assignment models utilize OD data to predict traffic flow and route 
choices for individual travelers, relying on either predefined or data-driven behavioral models. By modeling the 
interactions between travelers’ behaviors and traffic congestion, the traffic assignment model searches for the 
equilibrium condition that mimics real-world traffic conditions. Traffic assignment models can often serve as the 
primary tool for local governments to assess the potential impact of changes in land use or road network expan-
sions on both local and global traffic conditions. These models are indispensable because they inherently focus 
on optimizing travel decisions for local residents, aligning with their individual preferences. This capability ena-
bles the model to predict changes in agent-level behavior in situations that may not be fully reflected in the avail-
able data. Moreover, traffic assignment models demonstrate robust predictive capabilities for estimating future 
traffic conditions. For example, Metropolitan Planning Organizations (MPOs) in urban areas of the United States 
would utilize travel survey data, such as the National Household Travel Survey (NHTS: https://nhts.ornl.gov/),  
to produce traffic data for each local urban area that represent residents’ travel patterns19. However, these traf-
fic assignment models and data are usually maintained by public agencies and generally not available to most 
researchers or the public due to difficulties in information sharing or privacy concerns20,21. Furthermore, the 
data used in traffic assignment models are under the ownership of various institutions and lack standardization 
in terms of their structures, granularity, and output formats. As a result, the data are restricted to a few research-
ers and it is challenging to access the necessary data for traffic assignment models across cities from official 
sources. Given the above, there is still a notable absence of city-scale traffic datasets that include multiple major 
cities within one geographic and cultural region, adhere to consistent standards, collect and validate information 
on a uniform scale, provide comprehensive data types, and meet high-quality standards for public availability.

Although there are a few publicly available datasets22,23 concerning urban areas (see Table 1), the reliability 
and completeness of these datasets limit their applications across broader urban studies, especially in fields like 
energy, environment, and public health24,25. The limitations come from the following aspects: First, the existing 
traffic datasets typically cover some important traffic segments for a single city rather than a city-scale traffic 
dataset for multiple cities. Second, these current datasets often lack the necessary input, including road network 
data and corresponding OD data, directly usable for traffic assignment models. Third, these datasets often suffer 
from incomplete data types and lack of timely updating, resulting in limited convenience when utilizing them. 
In other words, these datasets are often collected by different researchers or volunteers several years ago, leading 
to a lack of uniformity in the data types and formats, as well as infrequent updates and maintenance. Fourth, 
these datasets frequently lack comprehensive validation across multiple variables or fail to offer adequate tools 
for predicting traffic features from behavioral data. For example, a dataset that includes OD numbers may result 
in unrealistic traffic flow predictions when attempting to utilize a traffic assignment model. In light of these 
mentioned facts, currently, there is no unified and well-validated traffic dataset available for multiple cities that 
covers the entire urban road network at a citywide scale, which hinders the feasibility of conducting comprehen-
sive urban studies across cities to unearth novel discoveries.

To facilitate convenient access to citywide traffic assignment models and data for researchers from different 
domains besides transportation fields, this study provides a unified traffic dataset for traffic assignment mod-
els in 20 representative U.S. cities, with populations ranging from 0.3 million to over 8.8 million. Specifically, 
we first obtain the input of the model by fusing multiple open public data sources, including OpenStreetMap, 
The Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics (LODES), Waze, 
and TomTom. Then, we employ a grid-search method to fine-tune the parameters and generate the final traffic 
dataset for each city. The real world’s average travel time and traffic speed serve as validation criteria to ensure 
a reliable and effective traffic dataset for multiple cities. The validation results demonstrate that our approach 
can successfully produce the dataset with an average correlation coefficient of 0.79 for average travel time and 
an average error of 5.16% and 10.47% for average travel speed between real-world data and our data. Finally, we 
upload the validated traffic dataset and the code used in this study to a public repository.

Dataset Cross-validation City-scale Multi-city Traffic Assignment Model

Data Types

Flow Density Speed

Transportation Networks49 ✓ ✓ ✓ ✓ ✓

UTD1950 ✓ ✓ ✓ ✓ ✓

PeMS51 ✓ ✓ ✓ ✓

Road Traffic Statistics52 ✓ ✓

Traffic Volumes AADT53 ✓ ✓

Traffic Volume Counts54 ✓ ✓ ✓

Traffic Data of Strategic/Major Roads55 ✓ ✓ ✓

Vehicle Trajectory Data56,57 ✓ ✓

Traffic Flow Data58,59 ✓ ✓ ✓

Our dataset46 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1.  Comparison between existing open public traffic datasets and our dataset.
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To sum up, we utilize the static traffic assignment model, leveraging annually aggregated statistical data and 
open public data sources, to offer a city-scale traffic dataset for macroscopic urban research. It is worth noting 
that the approach provided in this study can also be applied to other cities. A comprehensive workflow of pro-
cessing multi-source open public datasets to acquire this dataset is provided in Fig. 1.

Methods
Creating a unified traffic dataset in multiple cities involves four main procedures: (1) the identification of repre-
sentative cities; (2) the acquisition of corresponding input data from multi-source open public datasets; (3) the 
fusion of the obtained data; and (4) the implementation of traffic assignment, along with parameters calibration. 
The main procedures are illustrated accordingly below.

Identification of representative cities.  In this study, we select a total of 20 representative cities in the 
United States and generate corresponding traffic datasets using the proposed approach. To ensure diversity and 
exemplarity among the selected cities, we primarily consider factors such as geographic location, urban scale, 
topography, and traffic conditions during the commute. Our selection includes a range of cities, including megac-
ities like New York City, as well as several large cities such as Chicago and Philadelphia. We also included smaller 
but equally representative cities such as Honolulu. The topography of these cities also varies widely. For example, 
New York and San Francisco are separated by several rivers and rely on critical bridges and tunnels for commut-
ing, while Las Vegas and Phoenix have relatively flat and continuous terrain, with surface transportation playing 
a predominant role.

Basic information of the 20 representative cities in the United States is given in Table 2. The population and land 
area data in the year 2020 are sourced from the U.S. Census Bureau (https://www.census.gov/) while the conges-
tion ranking information in the year 2022 is from TomTom (https://www.tomtom.com/traffic-index/ranking/).  
Their geospatial distribution is shown in Fig. 2.

Fig. 1  The workflow of obtaining unified and validated traffic datasets from multi-source open public datasets.
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Data acquisition.  The road network structure and travel demand are two crucial inputs for traffic assign-
ment. In this study, we derive these data from public open-source datasets. This section provides a brief overview 
of the data acquisition procedures.

Road networks.  First, the road network structures of the 20 cities are generated from the OpenStreetMap 
(OSM: https://www.openstreetmap.org/) database, which is an open-source mapping platform that provides 

No. City State Time Zone Census 2020 Land Area (km2) Population Density Congestion Ranking

1 San Francisco California

Pacific Time

873,965 121.5 7,195 3

2 Seattle Washington 737,015 217.0 3,396 7

3 Portland Oregon 652,503 345.8 1,887 16

4 Las Vegas Nevada 641,903 367.3 1,748 25

5 Chicago Illinois

Central Time

2,746,388 589.7 4,657 5

6 New Orleans Louisiana 383,997 439.0 875 19

7 Austin Texas 961,855 828.5 1,161 20

8 Minneapolis Minnesota 429,954 139.9 3,074 27

9 Dallas Texas 1,304,379 879.6 1,483 33

10 Milwaukee Wisconsin 577,222 249.2 2,300 28

11 New York City New York

Eastern Time

8,804,190 778.3 11,312 1

12 Washington District of Columbia 689,545 158.2 4,358 2

13 Boston Massachusetts 675,647 125.1 5,401 4

14 Philadelphia Pennsylvania 1,603,797 348.1 4,607 8

15 Pittsburgh Pennsylvania 302,971 143.5 2,112 9

16 Miami Florida 442,241 93.2 4,743 10

17 Atlanta Georgia 498,715 350.4 1,423 24

18 Phoenix Arizona
Mountain Time

1,608,139 1,341.6 1,199 71

19 Denver Colorado 715,522 396.5 1,805 14

20 Honolulu Hawaii Hawaii-Aleutian Time 350,964 156.7 2,240 13

Table 2.  Basic information on 20 representative U.S. cities.

Fig. 2  The geospatial distribution of 20 representative U.S. cities.
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crowd-sourced road network geographic information, including network topology, road attributes, and con-
nectivity information. By leveraging OSM data, researchers gain convenient access to a comprehensive and 
up-to-date depiction of the network structure, which facilitates the research in urban studies26–29. The road 
attributes are also sourced from OSM. After the implementation of cleaning and integration procedures, these 
processed data can serve as the input for the traffic assignment. A summary of the road network data is given 
in Table 3.

Specifically, we employ a Python package named osmnx30 (https://github.com/gboeing/osmnx) to down-
load the OSM data. We then use another Python package called osm2gmns31 (https://github.com/jiawlu/
OSM2GMNS) to extract the nodes and links on the road network from the OSM data and save them into 
separate CSV files in GMNS format32,33. We use five main link types including ‘motorway’, ‘trunk’, ‘primary’, 
‘secondary’, and ‘tertiary’ to implement the traffic assignment. For each link type, we initiate the corresponding 
road attributes, including parameters such as road capacity, speed limits, the number of lanes, and so on. For 
the nodes, each node represents the intersection between two links and contains a unique identifier along with 
latitude and longitude information. By establishing the connectivity between nodes and links through their 
corresponding relationships, the network topology and road attributes can be constructed. We use the graphing 
functions of osmnx to visualize the constructed road networks of 20 representative U.S. cities in Fig. 3.

Travel demand.  We then estimate the travel demand, another essential input data for traffic assignment, using 
the data from the LODES dataset (https://lehd.ces.census.gov/data/lodes/) provided by the U.S. Census Bureau. 
The LODES dataset includes commuting data for the workforce in all states across the United States over multi-
ple years, which have been widely used in existing studies34. LODES data collection involves employers report-
ing employee details to state workforce agencies, including work and home locations. The U.S. Census Bureau 
collaborates with state agencies to process and anonymize this data. It’s then used to create Origin-Destination 
(OD) pairs. This dataset, at the finest granularity of block level, documents the block code for both workplace 
census and residence census, along with the corresponding total number of jobs. Essentially, the LODES dataset 
provides an excellent representation of the trip distributions of the U.S. working population that can be used to 
construct the OD matrix. In this study, we mainly focus on producing the traffic dataset for the year 2019 and the 
commuting OD data in that year are collected. Moreover, the data collection process is performed at the block 
level, resulting in the OD data between blocks.

Travel time and speed.  We collect data from two open-source dataset platforms, namely TomTom (https://
www.tomtom.com/traffic-index/ranking/) and Waze (https://www.waze.com/live-map/), as two indicators of 
travel time and average speed respectively for our dataset validation. The detailed procedures of data collection 
can be found in the subsequent sec:Technical ValidationTechnical Validation section.

Data fusion.  In this section, we integrate the road network data and OD data to unify the data format. Since 
the origins and destinations in the OD matrix are not associated with network nodes, it is infeasible to directly 
take these data as input for the traffic assignment. Therefore, we need to establish a connection between network 
nodes and blocks. After establishing the connection, we can employ the traffic assignment model to identify 
appropriate travel paths and allocate traffic flow to the respective links.

No. City TAZs Nodes Links

1 San Francisco 194 4,986 18,002

2 Seattle 139 6,891 27,361

3 Portland 157 8,245 31,939

4 Las Vegas 175 7,823 28,831

5 Chicago 819 14,434 54,469

6 New Orleans 185 7,217 24,073

7 Austin 199 10,717 40,158

8 Minneapolis 130 4,004 15,363

9 Dallas 328 21,389 77,818

10 Milwaukee 234 8,521 30,747

11 New York City 2,005 28,626 99,410

12 Washington 179 6,136 23,573

13 Boston 191 5,542 20,487

14 Philadelphia 389 10,410 38,641

15 Pittsburgh 149 3,532 13,662

16 Miami 108 4,121 15,108

17 Atlanta 141 5,207 20,243

18 Phoenix 378 15,324 58,070

19 Denver 175 9,205 34,724

20 Honolulu 117 2,982 11,205

Table 3.  A summary of the road networks data for 20 U.S. cities.

https://doi.org/10.1038/s41597-024-03149-8
https://github.com/gboeing/osmnx
https://github.com/jiawlu/OSM2GMNS
https://github.com/jiawlu/OSM2GMNS
https://lehd.ces.census.gov/data/lodes/
https://www.tomtom.com/traffic-index/ranking/
https://www.tomtom.com/traffic-index/ranking/
https://www.waze.com/live-map/


6Scientific Data |          (2024) 11:325  | https://doi.org/10.1038/s41597-024-03149-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

To be specific, we begin by aggregating the OD data from its minimum granularity at the block level to a 
higher level, namely, the tract level. According to the United State Bureau35–37, blocks are statistical units with 
small areas, generally defined to contain between 600 and 3,000 people, whereas tracts composed of multiple 
blocks are relatively larger and typically have a population size ranging from 1,200 to 8,000 people. In order to 
achieve a balance between computational complexity and accuracy, we consider tracts as an ideal basic unit for 
the traffic assignment, which is similar to the existing studies38,39. This implies that we use the tract as a Traffic 
Analysis Zone (TAZ) in the traffic assignment model.

Then, the geographical location of each TAZ is determined as the average coordinates of all the blocks within 
a tract. These TAZs (also called centroids) are generated and stored in the existing node file labeled with a 
unique identifier. Finally, we generate connectors to bridge the TAZs and network nodes. These connectors can 
be regarded as a special type of links that are generated from each TAZ center to their neighbor links. Moreover, 
these connectors are incorporated into the existing links labeled with a unique identifier. As a result, the com-
muting trips could start from the origin TAZ, traverse a connector to access the nearby road network, choose a 
suitable path, and then use another connector to reach the destination TAZ.

Traffic assignment.  In this section, we use the traffic assignment model to produce the dataset based on the 
User Equilibrium (UE)40. To be specific, we formulate the UE using an optimization model and calibrate four cat-
egories of parameters used in the model. Using the network structure and OD demand as input, the model would 
output the traffic flow, speed, and density on each link. Moreover, we mainly focus on the static traffic assignment 
and do not consider the influence of temporal variations on traffic conditions.

Fig. 3  Road networks of 20 representative U.S. cities extracted from OpenStreetMap.

https://doi.org/10.1038/s41597-024-03149-8
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User equilibrium.  All travelers naturally make decisions to minimize their own travel costs (either travel time 
or equivalent monetary value). Wardrop’s First Principle41 posits that when every traveler seeks to minimize 
their individual travel costs, traffic flow eventually stabilizes. In this equilibrium state, the travel costs on all uti-
lized paths become equal and minimized. Meanwhile, the travel costs on unused paths for any given OD pair are 
greater than or equal to those on the used paths. In other words, a steady-state traffic condition is reached only 
when no traveler can improve his or her travel time by unilaterally changing routes. The satisfaction of Wardrop’s 
first principle is commonly referred to as User Equilibrium (UE).

The physical transport network including road segments and intersections in an urban area can be repre-
sented as a graph structure G(N, A) containing a link set A and a node set N. For each link α ∈ A, it has the link 
flow xa and the link travel cost ta respectively. For each node r, s ∈ N, it is defined as the TAZ that generates or 
attracts traffic demand. Therefore, the mathematical formulation of the traffic assignment model under the UE 
condition42 can be expressed as follows:
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where ta(xa) denotes the link performance function that indicates the travel cost on link a when the traffic flow 
is xa. f k

rs represents the traffic flow on path k connecting origin r and destination s. qrs indicates the number of 
trips from origin r to destination s. δka

rs is a binary variable indicates whether link a is part of path k between 
origin r and destination s. Equation (2) imposes the flow conservation constraints. Equation (3) expresses the 
relationship between link flow and path flow. Please refer to the book Urban Transportation Networks40 for 
details.

Once the traffic flow on each link is determined, the total travel time, denoted as ck
rs, for a specific path k can 

be calculated by summing the travel time of each link along this path, which can be formulated as follows:
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Although the above optimization model has been proven to be a strict convex problem with a unique 
solution for traffic flow on links40, the computational cost of finding the optimal solution would significantly 
increase when dealing with large-scale city road networks. To alleviate the computational burden, a bi-conjugate 
Frank-Wolfe algorithm43,44 is employed to find the optimal solution. In order to enable convenient usage of 
the provided dataset by users from various disciplines and allow them to easily modify the core parameter 
settings of the traffic assignment process according to their research needs, we employ two traffic modeling 
platforms to generate the final dataset. Subsequent users can either directly view the dataset in a no-code format 
or quickly adjust parameters through a low-code approach to conduct scenario testing under different scenarios. 
Specifically, a commercial software (named TransCAD) and an open-source Python package for transportation 
modeling (named AequilibraE) are utilized simultaneously in this study. For both platforms, the maximum 
assignment iteration time and the convergence criteria are set to 500 and 0.001, respectively. The results of the 
traffic assignment model in 20 U.S. cities are shown in Fig. 4.

Parameters calibration.  The traffic conditions on the network are influenced by many factors related to traffic 
supply and demand. Consequently, the traffic assignment model would be impacted and output different results. 
Since the disturbances in the transport system are nonlinear and challenging to quantify, it is difficult to establish 
a deterministic mapping relationship between various influencing factors and the results of the traffic assign-
ment model. Therefore, we adopt a grid-search approach to calibrate four common categories of factors that 
are closely related to the traffic assignment model. We determine the final model by continuously fine-tuning 
various parameters associated with the traffic assignment model until the transport system reaches the UE con-
dition. In this study, we introduce four categories of factors including road attributes, travel demand, impedance 
function, and turn penalty, as outlined below.

•	 Road attributes
We categorize the entire road network into three major types, namely expressways, arterial highways, and 
local roads. Capacity and free flow speed of each road type are two parameters identified to be calibrated. 
Based on the experimental results, the appropriate range of road capacity for expressways is between 1800 
veh/h/lane and 2200 veh/h/lane, while the range for free flow speed is from 65 km/h to 90 km/h. In the 
case of highways, the corresponding capacity value falls within the range of 1500 veh/h/lane to 2000 veh/h/
lane, and the free flow speed value ranges from 40 km/h to 65 km/h. As for local roads, their capacity varies 
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from 600 veh/h/lane to 1500 veh/h/lane, while the suitable speed ranges between 25 km/h and 45 km/h. The 
detailed information for each type of road can be found in Table 4.

•	 Travel demand
The OD travel demand is another significant factor influencing the outcome of the traffic assignment. In 
this study, we aim to simulate the traffic conditions during the peak hours. As mentioned above, the OD de-
mand matrix is derived from the total number of jobs in the United States in 2019, generated from LODES 
datasets. Although it is reasonable to assume that commuting travel accounts for the majority during peak 
hours, such demand cannot reflect the actual traffic conditions. Therefore, it is necessary to adjust the initial 
OD demand, considering variations in transport modes, travel departure time, and carpooling availability 
during commuting to work. To address this issue, we introduce an OD multiplier to estimate the actual 
traffic demand during the commuting time. We find that stable results can be obtained when the parameter 
ranges from 0.55 to 0.65. We show the travel demand and the percentage of internal travel within each TAZ 
in Fig. 5.

•	 Link performance function
The link performance function, also known as the impedance function or volume delay function, refers to 
the relationship between travel time and traffic flow on a road. Typically, travel time increases non-linear-
ly with the increase in traffic flow, which also significantly affects the traffic assignment. One of the most 
commonly adopted functions in the literature is called the Bureau of Public Roads (BPR) function45, which 
is expressed as follows:

α=




 + 












 .

β

t t v
c

1
(6)

0

In the function above, t indicates the actual travel time on the road while t0 represents the free flow travel 
time on the corresponding road. v and c are the traffic flow and capacity of the road, respectively. α and β 

Fig. 4  Results of the traffic assignment model in 20 representative U.S. cities.
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are parameters needed to be fine-tuned. We find that the results are satisfactory when parameter α ranges 
from 0.15 to 0.6 while parameter β changes from 1.2 to 3. The specific values of parameters for each city are 
provided in Table 5.

•	 Turn penalty
�The turning delay at intersections is also a significant factor that should not be dismissed. When vehicles 
pass through road intersections, their speed typically decreases, either due to signal control or the necessity 
to make turns. However, this behaviour cannot be adequately represented in solving traffic assignment prob-
lems. To ensure that the results of the traffic assignment model are in accordance with real-world scenarios, 
we uniformly set corresponding parameters for all junctions to simulate the turning delay effects. In other 
words, the turn penalty parameters are an average value for the turning delay at all intersections in the road 
network and these intersection types include signal-controlled intersections, roundabouts, yield or stop 
intersections, and others. Specifically, the time delay for right turns varies between 0 and 0.25 minutes, while 
the penalty for making a left turn ranges from 0 to 0.35 minutes. The delay for through traffic is between 0 
and 0.15 minutes. U-turn is prohibited in the traffic assignment simulation. The specific parameter setting 
is demonstrated in Table 5.

No. City

Capacity Free Flow Speed

Expressway Highway Local Roads Expressways Highway Local Roads

1 San Francisco 2,200 2,000 1,400 90 60 40

2 Seattle 2,200 2,000 1,400 90 65 45

3 Portland 2,200 2,000 1,400 90 65 45

4 Las Vegas 2,200 2,000 1,400 90 60 40

5 Chicago 2,000 1,900 1,400 90 60 40

6 New Orleans 2,200 2,000 1,400 90 60 40

7 Austin 2,200 2,000 1,400 90 65 40

8 Minneapolis 2,200 2,000 1,300 90 65 40

9 Dallas 2,200 2,000 1,400 90 65 45

10 Milwaukee 2,200 2,000 1,400 90 65 45

11 New York City 2,200 2,000 1,400 90 60 40

12 Washington 1,800 1,500 600 60 40 25

13 Boston 2,200 2,000 1,300 60 45 30

14 Philadelphia 2,000 1,800 1,200 90 60 30

15 Pittsburgh 2,200 2,000 1,200 90 60 30

16 Miami 1,800 1,500 900 65 50 35

17 Atlanta 2,200 2,000 1,400 70 50 35

18 Phoenix 2,200 2,000 1,500 90 65 45

19 Denver 2,000 1,800 1,300 90 60 35

20 Honolulu 2,200 2,000 1,400 90 60 40

Table 4.  Capacity (veh/h/lane) and free flow speed (km/h) of roads.

Fig. 5  Total travel demand and the percentage of internal travel demand for 20 U.S. cities.
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Data Records
We share the traffic dataset on a public repository (Figshare46). In this dataset, each folder, named after the city, 
contains the input and output of the traffic assignment model specific to that city. We elaborate on the details as 
follows:

Input data.  This folder contains all the input data required for the traffic assignment model, namely the OD 
demand data and network data. The network data contains both node and link files in a CSV format. The data in 
this file folder specifically includes the following contents:

•	 the initial network data obtained from OSM
•	 the visualization of the OSM data
•	 processed node/link/od data

The detailed meanings of the fields contained in different input data are given in Table 6.

TransCAD results.  This folder contains all the input data required for the traffic assignment model in 
TransCAD, as well as the corresponding output data. The data in this file folder specifically includes the following 
contents:

•	 cityname.dbd: geographical network database of the city supported by TransCAD
•	 cityname_link.shp/cityname_node.shp: network data supported by the GIS software, which can be imported 

into TransCAD manually
•	 od.mtx: OD matrix supported by TransCAD
•	 LinkFlows.bin/LinkFlows.csv: results of the traffic assignment model by TransCAD
•	 ShortestPath.mtx/ue_travel_time.csv: the travel time (in minutes) between OD pairs by TransCAD

The detailed meanings of the fields contained in output data generated from TransCAD are given in Table 7.

AequilibraE results.  This folder contains all the input data required for the traffic assignment model in 
AequilibraE, as well as the corresponding output data. The data in this file folder specifically includes the follow-
ing contents:

•	 cityname.shp: shapefile network data of the city support by QGIS or other GIS software
•	 od_demand.aem: OD matrix supported by AequilibraE
•	 network.csv: the network file used for traffic assignment in AequilibraE
•	 assignment_result.csv: results of the traffic assignment model by AequilibraE

The detailed meanings of the fields contained in output data generated from AequilibraE are given in Table 8.

No. City

BPR Function Turn Penalty

α β Left Right Through U-turn

1 San Francisco 0.5 1.8 0.3 0.2 0.1 −1

2 Seattle 0.6 3 0.3 0.2 0.1 −1

3 Portland 0.5 1.2 0.2 0.15 0.1 −1

4 Las Vegas 0.5 1.3 0 0 0 −1

5 Chicago 0.5 1.2 0.3 0.2 0.1 −1

6 New Orleans 0.6 1.8 0.15 0.1 0.05 −1

7 Austin 0.5 1.5 0.3 0.2 0.1 −1

8 Minneapolis 0.15 1.8 0.15 0.1 0.05 −1

9 Dallas 0.6 1.3 0.25 0.15 0.1 −1

10 Milwaukee 0.5 1.5 0.1 0.05 0 −1

11 New York City 0.25 1.5 0.2 0.15 0.1 −1

12 Washington 0.5 1.5 0.2 0.1 0.05 −1

13 Boston 0.25 2 0.2 0.1 0.05 −1

14 Philadelphia 0.5 1.2 0.3 0.2 0.1 −1

15 Pittsburgh 0.5 2 0.35 0.25 0.15 −1

16 Miami 0.5 1.5 0.35 0.25 0.15 −1

17 Atlanta 0.2 1.5 0.25 0.15 0.1 −1

18 Phoenix 0.15 1.2 0 0 0 −1

19 Denver 0.5 1.5 0.3 0.2 0.1 −1

20 Honolulu 0.5 1.5 0.1 0.05 0 −1

Table 5.  Parameters for BPR function and turn penalty (minutes).
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Technical Validation
To ensure the consistency between the traffic assignment model’s output and real-world traffic conditions, we 
conduct validation using two different public open sources of traffic data. Specifically, the travel time between 
different OD pairs and the overall average travel speed are employed as two validation indicators to ensure the 
reliability and accuracy of the provided dataset. The validation results are shown in Tables 9, 10 and we can see 
that the provided dataset for each city is accurate and valid.

Travel time.  In examining the travel time metric, we obtain the travel time between different OD pairs both 
from traffic assignment models and map service providers. As for the model side, the travel time under both UE 
and free flow conditions are calculated respectively using traffic assignment models. First, under UE conditions, 
the travel time between different OD pairs could be generated by summing the link travel time determined by the 
corresponding assigned traffic flow along the shortest path as shown in Eq. (5). Then, under free flow conditions, 
the travel time between OD pairs is the travel time associated with the shortest path, disregarding congestion on 
road segments. Furthermore, the average value of Travel Time (in minutes) under UE conditions (UETT) as well 
as free flow conditions (FFTT) for all OD pairs can be expressed as follows:

=
∑ ∑

∑ ∑
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Data Field Description

Node

Node_ID The unique identifier for each node.

Lon Longitude.

Lat Latitude.

Tract_Node A binary to determine whether a node point is a TAZ.

Link

Link_ID The unique identifier for each link.

From_Node_ID The node ID of the starting point of this link.

To_Node_ID The node ID of the ending point of this link.

Capacity The default link capacity (veh/h).

Length The link length (meters).

Free_Speed The default link free flow speed (km/h).

Lanes The number of lanes.

Link_Type The supported link types in osm2gmns.
(1 for motorway, 2 for trunk, 3 for primary, 4 for secondary, 5 for tertiary)

OD

O_ID The node ID of the origin TAZ point.

D_ID The node ID of the destination TAZ point.

OD_Number The corresponding travel demand between the origin and destination.

Table 6.  Fields description for the input data folder.

Data Field Description

Output

ID The unique identifier generated automatically by TransCAD.

Flow The output assigned traffic flow (veh/h).

Tot_Flow The total traffic flow (veh/h) for both directions.

Time The loaded travel time (in minutes) for each link.

Max_Time The maximum loaded travel time (in minutes) for links in both directions.

VOC The Volume to Capacity (V/C) ratio for each link.

Max_VOC The maximum V/C ratio for links in both directions.

VKmT The Vehicle-Kilometre Travelled for each link.

Tot_VKmT The total Vehicle-Kilometre Travelled for both directions.

VHT The Vehicle-Hours Travelled for each link.

Tot_VHT The total Vehicle-Hours Travelled for both directions.

Speed The loaded travel speed (km/h) for each link.

VDF The loaded cost (result from the Volume Delay Function) for each link.

Max_VDF The maximum loaded cost for links in both directions.

Table 7.  Fields description for the TransCAD output data folder.
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where cue
rs  and c ff

rs denote the travel time between origin r and destination s under the UE and free flow conditions 
respectively. Additionally, the difference as well as the ratio between these two types of travel time give the aver-
age travel delay (in minutes) and delay factor for each city.

In terms of the real-world data for validation, since nowadays many map service providers have the capability 
to offer travel time estimates between two location points at different departure times based on users’ historical 
navigation records, in this study, we choose Waze as the data source to obtain the actual travel time between 
each OD pair by using its WazeRouteCalculator API (https://github.com/kovacsbalu/WazeRouteCalculator) 
with Python code.

The results of travel time are shown in Table 9. It can be seen that Honolulu experiences the least travel 
time under free flow conditions, at about 8.70 minutes, while Minneapolis has the shortest average travel time 
during commuting hours, at about 10.25 minutes. Minneapolis also has the lowest delay travel time among all 
cities, merely 0.47 minutes, indicating that the commuting travel time in this city is almost the same as the travel 

Data Field Description

Output

link_id The unique identifier generated automatically by AequilibraE.

matrix_ab The output assigned traffic flow (veh/h) for the AB direction.

matrix_ba The output assigned traffic flow (veh/h) for the BA direction.

matrix_tot The total output assigned traffic flow (veh/h) for both directions.

Congested_Time_AB The congested link travel time for the AB direction.

Congested_Time_BA The congested link travel time for the BA direction.

Congested_Time_Max The maximum congested link travel time for both directions.

Delay_factor_AB The ratio of congested travel time to free flow travel time for the AB direction.

Delay_factor_BA The ratio of congested travel time to free flow travel time for the BA direction.

Delay_factor_Max The maximum ratio of congested travel time to free flow travel time for both directions.

VOC_AB The Volume to Capacity (V/C) ratio for the AB direction.

VOC_BA The Volume to Capacity (V/C) ratio for the BA direction.

VOC_max The maximum V/C ratio for both directions.

PCE_AB The output assigned traffic flow (PCE/h) for the AB direction.

PCE_BA The output assigned traffic flow (PCE/h) for the BA direction.

PCE_tot The total output assigned traffic flow (PCE/h) for both directions.

Table 8.  Fields description for the AequilibraE output data folder.

No. City

Traffic Assignment Results Correlation Coefficient (R2)

UETT FFTT Delay
Delay 
Factor

Waze vs. 
TransCAD

TransCAD vs. 
AequilibraE

1 San Francisco 17.60 13.09 4.51 1.34 0.83 0.86

2 Seattle 19.43 15.74 3.69 1.23 0.70 0.78

3 Portland 18.14 14.82 3.31 1.22 0.72 0.94

4 Las Vegas 16.19 12.95 3.25 1.25 0.83 0.96

5 Chicago 27.48 16.68 10.80 1.65 0.86 0.94

6 New Orleans 14.44 12.15 2.29 1.19 0.89 0.96

7 Austin 23.69 18.80 4.89 1.26 0.82 0.96

8 Minneapolis 10.25 9.78 0.47 1.05 0.75 0.97

9 Dallas 26.16 20.20 5.96 1.30 0.79 0.93

10 Milwaukee 12.87 10.60 2.26 1.21 0.78 0.97

11 New York City 44.14 19.67 24.47 2.24 0.88 0.80

12 Washington 17.32 13.83 3.49 1.25 0.75 0.91

13 Boston 17.50 14.80 2.70 1.18 0.77 0.93

14 Philadelphia 22.94 17.43 5.51 1.32 0.85 0.92

15 Pittsburgh 15.62 14.82 0.80 1.05 0.72 0.92

16 Miami 14.20 13.22 0.98 1.07 0.73 0.93

17 Atlanta 17.85 16.91 0.93 1.06 0.72 0.98

18 Phoenix 20.32 16.68 3.64 1.22 0.77 0.93

19 Denver 19.76 17.47 2.28 1.13 0.78 0.97

20 Honolulu 12.84 8.70 4.14 1.48 0.86 0.94

Average 0.79 0.92

Table 9.  Correlation analysis for the average travel time (min) among Waze, TransCAD and AequilibraE.
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time under free flow conditions. In contrast, New York City experiences significant delays, with a delay time of 
24.47 minutes, revealing that the travel time during peak periods in New York is more than double that of the 
free flow condition. In terms of the delay factor, New York City has the highest value, reaching 2.24, followed 
by Chicago with a value of 1.65. Minneapolis and Pittsburgh have the lowest delay factor values, both at 1.05.

To evaluate the results, we use the Pearson Correlation Coefficient (PCC)47 to measure the correlation 
between the actual travel time and the travel time produced by our model. The PCC rxy is defined as follows:

∑ ∑ ∑

∑ ∑ ∑ ∑
=

−

− −
r

n x y x y

n x x n y y( ) ( )
,

(9)
xy

i i i i
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2 2 2 2

where rxy denotes the Pearson’s Correlation Coefficient. xi and yi are the individual sample points indexed with 
i. n represents the sample size.

Since the turning penalties are not incorporated in the traffic assignment algorithm of AequilibraE, the 
parameter settings in TransCAD and AequilibraE are not identical. Consequently, results of the two platforms 
are not entirely consistent. Considering the more comprehensive parameter settings in TransCAD, we adopt the 
results of TransCAD as the primary benchmark. We perform PCC analysis between Waze and TransCAD, as 
well as between TransCAD and AequilibraE, with the evaluation results presented in Table 9.

From the correlation analysis, we can find that all correlation coefficients R2 are greater than 0.7, which con-
firms the accuracy and reliability of the results to some extent. We also visualize the correlation coefficient for 
each city in Fig. 6. It can be seen that the simulated travel time is consistent with the travel time in the real world.

Average speed.  The overall average speed of the entire road network is another important indicator for val-
idation. In this study, we use the speed data collected from TomTom Traffic Index as the actual speed to validate 
our model. We first calculate the average link-based speed of our model through dividing Vehicle Hours Travelled 
(VHT) by Vehicle Kilometers Travelled (VKMT). Then, the average OD-based speed values are derived from 
the ratio of distance to travel time between each OD pair. The Mean Absolute Percent Errors (MAPE) and Mean 
Absolute Errors (MAE) for both the link-based speed and the OD-based speed are used to measure the reliability 
of our model:
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No. City

Traffic Assignment Results Comparison Results

Total VKMT Total VHT
Link-based 
Speed

OD-based 
Speed

TomTom 
Speed

Link-based 
MAPE

Link-based 
MAE

OD-based 
MAPE

OD-based 
MAE

1 San Francisco 1,064,455 38,297 27.79 25.33 25 11.18% 2.79 1.32% 0.33

2 Seattle 1,122,897 32,232 34.84 27.10 35 0.46% 0.16 22.57% 7.90

3 Portland 1,350,385 33,513 40.29 34.40 37 8.90% 3.29 7.03% 2.60

4 Las Vegas 994,459 21,477 46.30 37.39 43 7.68% 3.30 13.05% 5.61

5 Chicago 5,219,394 178,194 29.29 29.68 27 8.48% 2.29 9.93% 2.68

6 New Orleans 519,398 12,552 41.38 36.79 38 8.89% 3.38 3.18% 1.21

7 Austin 2,869,374 68,516 41.88 36.47 38 10.21% 3.88 4.03% 1.53

8 Minneapolis 395,714 8,842 44.75 34.22 43 4.08% 1.75 20.42% 8.78

9 Dallas 3,110,055 73,012 42.60 36.02 40 6.49% 2.60 9.95% 3.98

10 Milwaukee 940,291 21,068 44.63 38.73 44 1.44% 0.63 11.98% 5.27

11 New York City 22,955,902 1,112,278 20.64 23.02 20 3.19% 0.64 15.10% 3.02

12 Washington 761,414 30,147 25.26 21.90 24 5.24% 1.26 8.75% 2.10

13 Boston 791,389 30,018 26.36 23.94 26 1.40% 0.36 7.92% 2.06

14 Philadelphia 2,298,316 67,212 34.19 30.05 32 6.86% 2.19 6.09% 1.95

15 Pittsburgh 325,372 8,883 36.63 31.51 36 1.74% 0.63 12.47% 4.49

16 Miami 244,779 7,196 34.02 32.35 34 0.05% 0.02 4.85% 1.65

17 Atlanta 596,929 14,961 39.90 32.61 39 2.30% 0.90 16.38% 6.39

18 Phoenix 5,152,506 99,152 51.97 43.67 53 1.95% 1.03 17.60% 9.33

19 Denver 1,222,654 32,359 37.78 32.14 35 7.95% 2.78 8.17% 2.86

20 Honolulu 779,801 23,275 33.50 29.27 32 4.70% 1.50 8.53% 2.73

Average 5.16% 1.77 10.47% 3.82

Table 10.  Comparison of the average speed (km/h) generated from our model and TomTom Traffic Index.
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where yi is the actual observed value, �yi
 is the predicted value, and n is the number of samples.

The results are summarized in Table 10. We find that the average MAPE and MAE values for the link-based 
speed metric are 5.16% and 1.77 km/h, respectively. Moreover, the average MAPE and MAE values for the 
OD-based speed indicator are 10.47% and 3.82 km/h, respectively. This implies that our approach can produce 
satisfactory and reliable results.

Network traffic impact on model performance.  To validate the effectiveness and robustness of our 
model across cities, we further investigate how traffic conditions of a city affect the model performance. The 
MAE and MAPE values for link-based average speed metrics obtained in Table 10 are used to evaluate the model 
performance. The traffic conditions are characterized by two different indicators. One is the ratio of the total OD 
travel demand to the number of links for the entire road network, which can characterize the average OD demand 
and represent the traffic conditions of a city. The other is the average speed (km/h) in rush hour obtained from 
TomTom (refer to Table 10). If the values of average traffic demand are large, it reveals a congested city network 
experiencing substantial traffic demand, exemplified by cities like New York and San Francisco. Conversely, a 
small value suggests a city road network with low traffic demand, as observed in cities like Atlanta and Dallas. We 
can draw similar conclusions with respect to the average traffic speed.

The results are shown in Fig. 7. The red dashed line represents the linear regression trendline that has been 
fitted to the data points. The R2 values of Fig. 7a and Fig. 7b are 0.0049 and 0.0218, respectively. This implies that 
there is no evident relationship between the model performance and the varying traffic demand of the network. 
Similarly, the R2 values of Fig. 7c and Fig. 7d are 0.0212 and 0.0177, respectively. This suggests that the model 

Fig. 6  Correlation analysis results between Waze and TransCAD.
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performance is not affected by the varying traffic speeds in different cities. In summary, the proposed model 
exhibits low sensitivity to variations in city traffic conditions and achieves satisfactory performance across cities.

Usage Notes
The acquisition of OD data is crucial in performing the traffic assignment and producing the citywide traf-
fic dataset. In this study, we utilize the commuting OD data (LODES) provided by the U.S. Census Bureau to 
generate the OD matrix. For cities in other countries, OD data can be substituted with alternative open data 
sources, such as OD data provided by TomTom (https://developer.tomtom.com/od-analysis/documentation/
product-information/introduction).

Moreover, we use the average traffic time and average travel speed between different OD pairs in the real 
world to validate the results of our approach, ensuring its reliability and accuracy. If additional data sources 
are available, such as traffic flow data obtained from traffic detectors, we can also use the corresponding data to 
further evaluate the effectiveness of the provided dataset.

It is worth noting that the provided dataset is mainly used for macroscopic urban research and policy devel-
opment across interdisciplinary studies. In view of this, the given dataset provides full spatial coverage of the 
entire road network, unlike existing traffic datasets that focus on specific areas. Hence, the provided traffic 
dataset and existing traffic datasets complement each other, which can better facilitate research in urban studies. 
Specifically, the full spatial coverage of the provided dataset makes it valuable for comprehensive macroscopic 
urban research and policy development, making a notable contribution to the literature, such as public transport 
planning, road expansions, the determination of bus routes, the estimation of the transport-related environmen-
tal impact and so on. In contrast, existing traffic datasets (e.g., PeMS) may exhibit incomplete spatial coverage, 
making them less suitable for the aforementioned macroscopic urban studies. Actually, the datasets containing 
fine-grained temporal information are more suitable for investigating regional traffic dynamics by leveraging the 
spatiotemporal relationship between the traffic data, such as traffic prediction, spatiotemporal propagation of 
shockwaves, calibration of fundamental diagrams, traffic data imputation, and so on.

In this study, the provided dataset lacks fine-grained temporal information due to the limited availability 
of input data. To fully understand dynamic traffic patterns, it is essential to consider both spatial and temporal 
dimensions within the traffic data. Consequently, developing a dynamic traffic assignment model that effectively 
captures the spatiotemporal interdependencies of traffic data is important. Moreover, employing daily traffic 
data for more fine-grained validation would enhance further urban research.

Code availability
The guidelines for data retrieval and utilization have been uploaded to GitHub48. The specific contents comprise:

1. Input data introduction.ipynb: A brief introduction and data demonstration about the input data for the 
traffic assignment process in the dataset.

2. A guide for TransCAD users.md: It is a guide for users who want to view and modify the dataset in the 
Graphical User Interface (GUI) of TransCAD.

Fig. 7  The model performance in relation to different traffic conditions for 20 U.S. cities. (a) The MAPE values 
(%) regarding the average OD demand for different cities. (b) The MAE values (km/h) regarding to the average 
OD demand for different cities. (c) The MAPE values (%) regarding the average speed for different cities. (d) 
The MAE values (km/h) regarding the average speed for different cities.
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3. AequilibraE_assignmnet.py: A Python code file for users who want to get access to the traffic assignment 
results by using the AqeuilibraE.
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