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Satellite-based time-series of sea-
surface temperature since 1980  
for climate applications
Owen Embury  1,2 ✉, Christopher J. Merchant  1,2, Simon A. Good  3, Nick A. Rayner  3, 
Jacob L. Høyer  4, Chris Atkinson  3, Thomas Block  5, Emy Alerskans  4, Kevin J. Pearson  6, 
Mark Worsfold  3, Niall McCarroll1,2 & Craig Donlon7

A 42-year climate data record of global sea surface temperature (SST) covering 1980 to 2021 has been 
produced from satellite observations, with a high degree of independence from in situ measurements. 
Observations from twenty infrared and two microwave radiometers are used, and are adjusted for 
their differing times of day of measurement to avoid aliasing and ensure observational stability. A total 
of 1.5 × 1013 locations are processed, yielding 1.4 × 1012 SST observations deemed to be suitable for 
climate applications. The corresponding observation density varies from less than 1 km−2 yr−1 in 1980 
to over 100 km−2 yr−1 after 2007. Data are provided at their native resolution, averaged on a global 
0.05° latitude-longitude grid (single-sensor with gaps), and as a daily, merged, gap-free, SST analysis 
at 0.05°. The data include the satellite-based SSTs, the corresponding time-and-depth standardised 
estimates, their standard uncertainty and quality flags. Accuracy, spatial coverage and length of record 
are all improved relative to a previous version, and the timeseries is routinely extended in time using 
consistent methods.

Background & Summary
Sea surface temperature (SST) is one of the 55 Essential Climate Variables (ECVs) as defined by the Global 
Climate Observing System (GCOS)1. It is a key parameter within the Earth’s climate system as most of the 
climate’s effective thermal inertia is stored in the upper ocean2 and SST is the main factor determining the 
atmospheric response to the ocean3. Uses of SST data include quantification of climate change and variability, 
evaluation of climate and ocean models, input to numerical weather prediction and forecasting systems, and 
applications in oceanography, maritime safety and operations, fisheries, tourism, and transport4. Usable in situ 
measurements of SST date back to the 19th century5. These were initially made from ships using manual meth-
ods. Automated measurements from buoys became increasingly important during the satellite period. Since 
the 1980s, satellite observations of top-of-atmosphere radiances have enabled SSTs to be estimated from space, 
providing more complete spatio-temporal coverage than the in situ networks.

The European Space Agency (ESA) Climate Change Initiative (CCI)6 is generating satellite-based climate 
data records (CDRs) that aim to answer the GCOS requirements7. This paper presents the third version of 
the SST CDR generated within the CCI. This version spans 42 years from 1980–2021 inclusive, with an ongo-
ing extension from 2022 onwards provided as an Interim CDR (ICDR) – funded by the Copernicus Climate 
Change Service (C3S; https://climate.copernicus.eu/) during 2022, with 2023 onwards funded by the UK Earth 
Observation Climate Information Service (EOCIS) and UK Marine and Climate Advisory Service (UKMCAS). 
The SST CCI CDR v3.0 was produced using thermal infrared (TIR) and passive microwave (MW) radiances 
from 22 different satellite platforms. The input radiances were collected by four series of sensors: 15 Advanced 
Very High Resolution Radiometers (AVHRRs), three Along-Track Scanning Radiometers (ATSRs), two Sea 
and Land Surface Temperature Radiometers (SLSTRs), and two Advanced Microwave Scanning Radiometers 
(AMSRs). The spatial footprint of the TIR observations varies from 1 × 1 km (ATSR/SLSTR) to approximately 
15 × 1.9 km (AVHRR Global Area Coverage (GAC) assuming satellite zenith of 60 degrees and altitude of 
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850 km), with valid SSTs produced for cloud-free and ice-free views of the ocean. The MW sensors have a lower 
spatial resolution, ~50 km, and are able to obtain valid SST measurements through non-precipitating cloud; 
however, retrievals are not possible in the presence of rain or close to land or ice surfaces. All SSTs include 
a Quality Level (QL) estimate in the range 0–5, with QLs of 4 and 5 being suitable for climate applications. 
Furthermore, a datum-specific estimate of the associated uncertainty8,9 is provided for all SST values, broken 
down into components representing different length scales of correlation of SST errors (random, locally corre-
lated, and systematic).

All data are generated following the Group for High Resolution Sea Surface Temperature (GHRSST) Data 
Specification (GDS)10. Data are provided at four product levels: Level-2 pre-processed (L2P): single-sensor 
data at their native resolution (orbit view); Level-3 uncollated (L3U): single-sensor files remapped to a 0.05° 
latitude-longitude grid; Level-3 collated (L3C): single-sensor data collated to fixed 24-hour periods (day-time 
and night-time data are collated separately); and Level-4 analysis (L4): combines data from all sensors using an 
analysis to produce a daily gap-filled product.

Inter-comparisons and combination of satellite and in situ measurements of SST are complicated by the 
fact that they are measuring different quantities11. Satellite-based retrievals are sensitive to the thermally emit-
ted radiance over a large area, but very shallow depth dependent on the wavelength used for observations. In 
the case of infrared sensors the sensitivity is to the temperature of the top few micrometres of the ocean skin 
layer12,13, and for microwave sensors it is about a millimetre in the sub-skin layer14. Meanwhile, in situ measure-
ments are typically point measurements at depths from ~10 cm to ~10 m. The temperature difference between 
the skin and depth SST is typically a few tenths of kelvin, but can be larger particularly in cases of sustained 
low windspeed or daytime warming of the upper ocean12–14. While some satellite SST products average over 
skin-depth differences via empirical regression, CCI SSTs are physics based15,16. Therefore, an estimate of the 
skin-to- depth (or subskin-to-depth) SST difference is required in order to use the satellite-based CCI SSTs with 
the historical in situ record. Here, we model these differences relative to a depth of 20 cm, corresponding to the 
nominal depth of drifting buoys17 and the approximate depth of historical bucket SST measurements18

The time of SST measurement is also important due to the diurnal cycle in surface temperature. The diur-
nal cycle in SST has been empirically characterised from sub-daily drifting buoys19,20 and from satellites21. The 
SST undergoes a diurnal warming and cooling cycle with a peak-to-peak range of typically 0.0 to 0.5 K. Under 
low-wind and high-insolation conditions, the diurnal warming can exceed 5 K22. The satellites used to pro-
duce the CDR are in a range of orbits with different, often drifting, local overpass times (Fig. 1) which must be 
accounted for in order to avoid aliasing the diurnal cycle into the long term record19. The SST CCI products 
include an adjustment to the nearest 10:30 or 22:30 local mean solar time, which provides a good approximation 
to the daily mean SST20. The CCI dataset is the only SST CDR to minimise the aliasing of time of day into the 
long-term climate trend in this way.

The complete dataset contains approximately 1.4 × 1012 good-quality pixels, up from 2.7 × 1011 in the pre-
vious version. Figure 2 shows the observation density of the Level 2 SST CCI products contributing to the 
CDR. The addition of the full-resolution MetOp AVHRR and SLSTR sensors in recent decades has significantly 
increased the coverage at the recent end of the record with over 100 SST estimates km−2 yr−1. With the more 
limited satellite coverage in the 1980s the SST CCI dataset becomes more sparse, with only ~5 km−2 yr−1 in 1990 
decreasing to less than 1 km−2 yr−1 in 1980 when only one AVHRR sensor was operating.

Compared to the previous version 2.1 CDR23 the key changes in version 3 (CDR and ICDR) are as follows. 
The time series is longer, covering 1980 to recent time (compared to Sept 1981 to 2016 for v2.1). An improved 
representation of radiative effects of tropospheric aerosol is used for cloud detection and SST retrieval, which 
has greatly reduced the previous few-tenths cold biases associated with desert-dust aerosol. Bias aware optimal 
estimation24,25 is now used to bias-correct radiances prior to single-view AVHRR SST retrieval, which reduces 

Fig. 1 Satellite Equator-crossing times for platforms carrying contributing sensors. Solid lines indicate 
southward crossings; lines with triangles indicate northward crossings; thin grey lines indicate periods when 
the satellite is operational, but the sensor data are not used in this work. “N” = NOAA platform carrying an 
AVHRR. “AT” = ATSR. “M’ = MetOp platform carrying AVHRR processed at full resolution. “S3” = Sentinel 3 
platform carrying an SLSTR.
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systematic instrumental biases. This in part has also facilitated improved spatio-temporal coverage during the 
1980s through the addition of AVHRR/1 sensors and improved AVHRR processing. From 2016 onwards, the 
dual-view SLSTR data are included. MetOp AVHRR data from 2007 onwards are now processed at full resolu-
tion (CDR v2 used lower resolution GAC data for all AVHRRs); this reduces cloud-screening related errors and 
improves overall coverage. Lastly, AMSR SSTs have been included.

Methods
Figure 3 presents an overview of the major processing steps and data flows from Level 1 radiances to the various 
SST products for infrared sensors, while Fig. 4 shows the equivalent for microwave products. Physically based 
methods are used wherever possible to minimise the dependence on in situ measurements. For infrared sensors 
this includes both Bayesian methods of cloud screening26,27 and SST retrieval15,28 which both rely on radiative 

Fig. 2 Number of good quality (quality level 4 or 5) SST observations per unit area of ocean (“observation 
density”) per sensor-type over time. The new version 3 dataset adds AMSR, SLSTR, and full-resolution MetOp 
AVHRR sensors to the climate data record (CDR). Version 3 also processes more AVHRR data to improve 
coverage in the 1980s. Note – AVHRR GAC v2 appears to have more observations at times from 2006 onwards 
as MetOp AVHRR was included in AVHRR GAC v2.

Fig. 3 IR Production flowchart. Input data streams are the Level 1b (L1b) satellite imagery (calibrated and geo-
located radiances or brightness temperatures), and atmospheric reanalysis (referred to here to as Numerical 
Weather Prediction – NWP) data. Outputs are SSTs and uncertainties at the same pixel resolution as the input 
imagery (L2P); averaged onto a 0.05 latitude-longitude grid (L3U, one file per input L1b); collated to single-
sensor daily files (L3C); and a multi-sensor gap-filled daily analysis (L4).
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transfer modelling to simulate clear-sky radiances16,29. Microwave retrievals30 of SST are not affected by the pres-
ence of cloud, though the current retrieval is more directly tied to in situ measurements than the infrared. For 
all sensors, physical modelling of the diurnal cycle is used to produce time and depth-adjusted SSTs in order to 
avoid aliasing the daily SST cycle into the long-term trends31,32, and all retrievals include an associated estimate 
of uncertainty which is propagated through to the higher level products33,34. Finally, SSTs from all sensors are 
combined to give a gap-free daily SST analysis35,36. The data and methods are described in more detail in the 
next subsections.

input satellite data. The 22 satellite datasets used to build the CDR are listed in Table 1, with further details 
for the various sensor types given in Table 2. The three ATSR-series sensors (ATSR-137, ATSR-238, and AATSR39) 
and two SLSTRs (SLSTR-A40, and SLSTR-B41) are two-point calibrated, dual-view instruments designed to pro-
duce long-term climate quality measurements for SST estimation. For the ATSR-series we use the version 3/2.1 
level 1b archive (http://data.ceda.ac.uk/neodc/aatsr_multimission/), while SLSTR is the latest reprocessing as 
of 2022 (https://data.ceda.ac.uk/neodc/sentinel3a/data/SLSTR https://data.ceda.ac.uk/neodc/sentinel3b/data/
SLSTR). In the case of SLSTR, the Vis/NIR channels have a higher resolution (500 m) than the thermal infrared 
(1 km) channels; in combination with the conical scanning geometry this can result in an up to 1 pixel misalign-
ment between the two in the regular image grid42. This is addressed by remapping the higher resolution data to 
the 1 km infrared pixel locations using averaging over five nearest neighbours43.

Fig. 4 MW production flowchart. See Fig. 3 for explanation of inputs and outputs.

Sensor Type Data Start Data Stop Daytime Overpass Time

AVHRR-6 AVHRR/1 1979-07-13 1981-08-31 AM

AVHRR-7 AVHRR/2 1981-08-24 1985-02-18 PM

AVHRR-8 AVHRR/1 1983-05-04 1985-10-14 AM

AVHRR-9 AVHRR/2 1985-01-04 1988-11-07 PM

AVHRR-10 AVHRR/1 1987-01-01 1991-03-31 AM

AVHRR-11 AVHRR/2 1988-10-12 1994-09-13 PM

AVHRR-12 AVHRR/2 1991-09-16 1998-12-14 AM

AVHRR-14 AVHRR/2 1995-01-19 2002-10-07 PM

AVHRR-15 AVHRR/3 1998-09-24 2007-12-31 AM

AVHRR-16 AVHRR/3 2002-01-14 2007-06-30 PM

AVHRR-17 AVHRR/3 2002-08-01 2008-12-31 10.00 h

AVHRR-18 AVHRR/3 2005-06-05 2014-12-31 PM

AVHRR-19 AVHRR/3 2009-02-22 2017-12-31 PM

AVHRR MetOp-A AVHRR/3 2007-05-21 2020-12-31 09.30 h

AVHRR MetOp-B AVHRR/3 2013-01-15 2021-12-31 09.30 h

AMSRE AMSR 2002-06-01 2011-10-04 13.30 h

AMSR2 AMSR 2012-07-02 2017-10-26 13.30 h

ATSR-1 ATSR1 1991-11-01 1996-01-09 10.30 h

ATSR-2 ATSR2 1995-08-01 2003-06-22 10.30 h

AATSR AATSR 2002-07-24 2012-04-08 10.00 h

SLSTR-A SLSTR 2016-05-01 2021-12-31 10.00 h

SLSTR-B SLSTR 2018-05-30 2021-12-31 10.00 h

Table 1. Summary of characteristics of satellite level-1 data used. Data start and stop indicates the range used 
to generate the climate data record. The local time of observation varies significantly for the NOAA AVHRR 
sensors as illustrated in Fig. 1.
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The 15 AVHRRs are multipurpose imaging instruments which have used three designs over the years, adding 
further spectral channels and improved sun shielding. They have been used onboard the National Oceanic and 
Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and, since 2007, the 
EUMETSAT Polar System (EPS) MetOp satellites. The AVHRR instrument has a ground resolution of ~1.1 km 
at nadir; however, hardware limitations when the instruments were originally designed meant it was not possible 
to record a full orbit of data onboard for transmission to the ground stations. Therefore, the data are processed 
onboard to produce lower resolution Global Area Coverage (GAC) data. The averaging process for GAC pixels 
uses the mean of four pixels out of every five, every third line. The newer MetOp satellites do not have this limi-
tation and record full orbit data at native resolution, hence the MetOp AVHRRs are listed separately in Table 2. 
We obtained the full archives of AVHRR L1b data from the NOAA CLASS archive and combined these with 
additional orbits obtained from University of Miami (NOAA 6, 7, 9, 11, 15, and 16) and all are now available 
from the UK Centre for Environmental Data Analysis (CEDA)44.

The two passive microwave sensors, AMSR-E onboard EOS-Aqua and AMSR-2 onboard GCOM-W1, can 
retrieve SST through clouds, allowing measurements in all conditions except rain and within 100 km of land or 
sea ice. Ground resolution and SST accuracy are poorer than for the infrared sensors. The AMSR instruments 
use a conical scanning pattern with zenith angle of 55°, which results in an elliptical footprint aligned along the 
view direction. The size of the AMSR footprint varies with the channel frequency, with the 6.9 GHz channel hav-
ing sizes of 43 × 75 km and 35 × 62 km for AMSR-E and AMSR2 respectively, and SST products are assumed to 
have a resolution of ~50 km. AMSR-E L2A Version 3 data were obtained from the NASA NSIDC45, and AMSR-
246 L1R Version 2 data from JAXA (https://gportal.jaxa.jp). We were able to download and process AMSR2 to 
October 2017 within available resources; however, this will be extended in future work.

Auxiliary data. Numerical Weather Prediction (NWP) data are used to drive radiative-transfer modelling of 
Bayesian prior clear-sky radiances which are required for the cloud detection and some retrieval methods. We use 
a combination of the European Centre for Medium-range Weather Forecasting (ECMWF) Re-Analysis Interim47 
(ERA-Interim) and ECMWF Re-Analysis 548 (ERA-5) datasets. The ERA-interim dataset is used when processing 
NOAA AVHRR and ATSR sensors, while ERA-5 is used for the more recent MetOp AVHRR and SLSTR sensors. 
It was necessary to combine the two versions of the reanalysis dataset as the full ERA-5 dataset was not available 
at CEDA during the initial algorithm development work, and ERA-interim ends August 2019. Sensitivity of the 
results to the NWP source is negligible, by design.

In addition to the atmospheric fields included with the ECMWF NWP, we also require a prior estimate of 
the surface temperature. While the NWP datasets do include the input SST field used as the lower boundary 
condition for the atmospheric model, this “NWP SST” is not ideal for our use as the source of the reanalysis 
SST changes over time with different spatial and temporal resolutions. In order to maximise the consistency in 
the CDR reprocessing we use the gap-filled SST CCI analysis v2.123 along with a correction for known dust and 
calibration biases49. Importantly, the process used in gap-filling largely decorrelates SST errors in this prior with 
errors in the TIR imagery even when the same satellite observations are used in both versions, so the assumption 
of prior independence in optimal estimation is not violated. A climatology of the dust-corrected prior SST is 
available as the SST CCI Climatology v2.250 and is used to calculate the SST anomalies and within the Level 4 
Analysis system.

Tropospheric aerosol data are taken from the Copernicus Atmosphere Monitoring Service (CAMS) reanaly-
sis51 and CAMS aerosol climatology52. We use all the aerosol components provided in the climatology, although 
the mineral dust components are the most relevant as they can cause impacts of more than 1 K in the infrared 
observations, while other aerosol components’ impact is typically 0.1 K or less.

There are three major historical volcanic eruptions (El Chichón53, Mount Pinatubo and Mount Hudson54) 
which affect the current dataset by increasing stratospheric sulphate aerosol concentrations with significant 

Sensor Type Highest resolution / km Swath width / km Zenith angle 0.6 mm 0.8 mm 1.6 mm 3.7 mm 11 mm 12 mm

AVHRR/1 4.4 × 1.1 2900 0-68 Y Y Y Y

AVHRR/2 4.4 × 1.1 2900 0-68 Y Y Y Y Y

AVHRR/3 4.4 × 1.1 2900 0-68 Y Y Na Y Y Y

MetOp AVHRR 1.1 2900 0-68 Y Y Nb Y Y Y

ATSR1 1 512 0-22, 55 Y Yc Y Y

ATSR2 1 512 0-22, 55 Nd Nd Y Y Y Y

AATSR 1 512 0-22, 55 Ne Ne Y Y Y Y

SLSTR 1 750 0-30, 55 Y Y Y Y Y Y

AMSR ~50 1450 55 N/A – microwave instrument

Table 2. Summary characteristics of the different sensor types used. Resolution for AVHRRs is given for nadir 
viewing conditions. For AMSR the resolution varies with channel frequency and is assumed to be ~50 km here; 
representative of the resolution of SST products. Y indicates the presence and use of a channel on an instrument; 
N indicates the channel is present, but not used. a: AVHRR/3 added a 1.6 micron channel which could be 
transmitted during the day instead of the 3.7 micron, but this mode of operation was rarely used. b: MetOp-
AVHRRs always provide 1.6 micron data during the day, and 3.7 micron during the night. c: The 3.7 micron 
channel on ATSR-1 failed early in the mission, but is used where present. d: These channels on ATSR-2 had 
restricted data availability over oceans so were not used. e: Channels were available on AATSR, but not used.
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impacts on the infrared observations used for SST retrieval55. Our estimate of stratospheric aerosol is derived 
from High-Resolution Infrared Radiation Sounders, using an adaption of a published method56. This is the same 
stratospheric aerosol dataset as was used for the previous CDR23.

Sea-ice concentration data from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) 
are used within the Level 4 Analysis system. Two datasets are needed to cover the period processed: OSI-45057 
to end-2015, and OSI-430-b58 for 2016 onwards. These are a CDR and ICDR pair derived from SMMR/SSMI/
SSMIS passive microwave observations.

A global distance-to-land dataset59,60 derived from ESA Land Cover (LC) CCI data61 is used to determine 
if a given satellite pixel is entirely over water, or overlapping land from its centre location and view angle. The 
Caspian Sea (excluding the Garabogazköl Basin) is included as ocean; however, lakes are not processed. The 
same data60 is used to produce a fixed land sea mask at 0.05°, with ice shelfs62,63 excluded, for use in the Level 4 
Analysis system.

Pre-calculated look-up tables (LUTs) are used by the infrared cloud detection scheme (see ‘Cloud Detection’ 
below) and SST retrieval schemes and are available64.

radiance Harmonisation. Harmonisation of the infrared radiances (or brightness temperatures) is used 
for the ATSR and AVHRR-series instruments. This process reconciles the radiometric differences between 
sensors with the expected differences due to the measured differences in their spectral response functions65,66. 
The radiance-level harmonisation for ATSR and AVHRRs used here is the same as the version 2 CDR23. The 
SLSTR-series of instruments do not overlap with the ATSR-series so no direct harmonisation is possible. 
However, an investigation using MetOp-A AVHRR to bridge the gap between AATSR and SLSTR found the 
relative calibration of the two sensors to be compatible24.

For the AVHRR instruments, the radiance harmonisation was done as a metrological analysis of the calibra-
tion and provides an updated set of AVHRR calibration coefficients used for the counts to radiance conversion 
along with the estimated instrument uncertainties. While the radiance harmonisation does reduce both inter- 
and intra-AVHRR retrieval biases, it was still necessary to include a post-hoc adjustment of the AVHRR SSTs in 
CDRv2.1. For this new version, we instead address the residual instrumental biases as part of the SST retrieval, 
which is preferable. Corrections are obtained using bias-aware optimal estimation24,25, in which an ensemble of 
satellite-to-reference matches enables inference of instrumental bias relative to radiative transfer, prior bias (in 
the water vapour profile from NWP), and the error covariances for the measurements and prior.

The NOAA AVHRR instruments were harmonised against in situ observations. While in situ references are 
not used to derive empirical SST retrieval parameters nor in the generation of gap-filled products, the use of 
in situ references to adjust NOAA AVHRR brightness temperatures does introduce an element of dependence 
between some CCI SSTs and the in situ SST record in this version.

The MetOp AVHRR instruments were harmonised against AATSR and SLSTR observations24. ATSRs and 
SLSTR act as satellite references, which, combined with physics-based retrieval, gives full independence from in 
situ measurements for the dual-view instruments and MetOP AVHRR.

radiative transfer modelling. Both the cloud detection and SST retrieval are physically based methods 
using a radiative transfer or forward model to estimate the expected clear-sky radiances. Two radiative transfer 
models are used: a line-by-line model used in the generation of SST retrieval coefficients for dual-view sensors; 
and a fast parameterised model used for cloud detection and single-view SST retrieval.

The design of the ATSR67 and SLSTR68 sensors with dual-view scanning geometry and two on-board black-
body calibration sources allow a highly-accurate, aerosol-robust, coefficient-based retrieval of SST28. With a 
coefficient-based scheme the radiative transfer simulations can be performed “offline” so we may use the most 
accurate model available. Therefore, we use a line-by-line layer-by-layer model to calculate top-of-atmosphere 
spectral radiances based on a published method16. The radiative transfer model is LBLRTM69 v12.2 with AER70,71 
v3.2 spectroscopic data. Channel integrated radiances are calculated by convolving the spectral radiances with 
the instrument spectral response functions. The trace gas concentrations for CO2

72, CH4
73, N2O74, CFC-1175, and 

CFC-1276 have been updated to cover 1991 to 2021 to ensure that secular trends in gas concentrations do not 
result in trend artefacts in the SST retrieval.

The cloud detection and optimal-estimation (used for single-view AVHRR sensors) SST retrieval methods 
require that the radiative transfer simulations are run for each satellite observation to be processed and must 
calculate the top-of-atmosphere radiances and their partial derivatives with respect to changes in the input state. 
Due to the large data volumes, computational speed prevents line-by-line calculation, and so a parameterised, 
fast model has been used, specifically, RTTOV version 12.3 software29 with the “lblrtm_v12.8/aer_v_3.6” coef-
ficients released in October 2020.

Cloud detection (Tir sensors). Clouds are largely opaque at infrared wavelengths meaning it is not possi-
ble for infrared sensors to retrieve SSTs from cloud-filled pixels, while partial presence of cloud can introduce SST 
errors (because clear-sky retrieval assumptions are violated). Therefore, it is necessary to apply a cloud detection 
process to satellite imagery to minimise cloud-related errors in the final SST products. Clouds are typically 
brighter (at visible wavelengths), colder (at infrared wavelengths) and more spatially variable than the underlying 
sea surface, which provides the basis of cloud detection. Partial or thin cloud cover is harder to detect as the mag-
nitudes of the cloud effects are smaller. The approach used here is to use the radiative transfer model to simulate 
the radiances expected under clear-sky conditions. The observations are then compared against the clear-sky 
simulations and a distribution of cloudy-affected radiances to estimate the probability that a given pixel is clear 
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using Bayes’ theorem26,27,77,78. The probability, y xP c( , )a , that a pixel is clear-sky given the satellite observations, 
y, and the prior state, xa, may be written:

y x
y x x

y x x
P c

P c P c P c
P P

( , )
( , ) ( ) ( )

( ) ( )a
a a

a a
=

Where: c indicates the required condition (clear-sky, ice-free ocean); the observation vector y comprises the 
brightness temperatures (BTs) for thermal channels, reflectances for visible / near infrared channels, and the 
local standard deviation of BT over the surrounding 3 × 3 pixels; the prior state xa includes the atmospheric and 
surface state from ECMWF NWP data, tropospheric aerosol CAMS, and stratospheric aerosol as described 
above. The equation is simplified by assuming =x xP c P( ) ( )a a  as the NWP data with length scales ~10 to 
~100 km cannot resolve cloud structures at the pixel scales ~1 to ~10 km. The y xP ( )a  term can be expressed as 
the sum over clear-sky (c) and not-clear (c) states to give:

¯ ¯
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|
| + |

y x y x
y x y x

P c
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The terms on the right-hand side of the equation are calculated as follows. y xP c( , )a  is the probability density 
function (PDF) of the observations given the prior state and assuming clear-sky, which, assuming Gaussian 
errors in the background and observations, can be calculated from the radiative transfer simulations 
following27,79,80:
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Where xF ( )a  is the forward model, the matrix K contains the forward model tangent-linears (the derivatives of 
the forward model output with respect to the prior), Sa is the error covariance matrix for the prior state, and Sε 
is the error covariance for the model and observation differences.

The cloudy-sky PDF, |y xP c( , )a ¯ , is taken from pre-generated lookup tables as documented in ATSR81 and 
AVHRR26. The prior probability of clear-sky, P(c), and cloudy-sky, = −P c P c( ) 1 ( ) , are obtained from the 
NWP cloud fraction, constrained to the range 0.5 to 0.95, representing the probability of cloud at an arbitrary 
point within the NWP grid cell.

retrieval of skin SST (dual-view sensors). For the dual-view ATSR and SLSTR sensors the SST retrieval 
is based on the method developed for the ATSR Reprocessing for Climate project16,28 which is a coefficient-based 
retrieval using the equation:

= +� a yx a0
T

Where �x is the retrieved SST, a0 is the offset coefficient, a is a vector of n weights or coefficients to multiply the 
observed brightness temperatures, y. The coefficients are pre-calculated using a least-squares minimisation tech-
nique from the line-by-line radiative transfer simulations. The coefficients are defined for a range of parameters: 
satellite zenith angle in the nadir-view; satellite zenith angle in the forward (or oblique) view, prior total column 
water vapour, instrument detector temperature (ATSR-1 only), and year (to account for changes in trace gas 
concentration). The coefficients are linearly interpolated to the state of the pixel being processed.

The uncertainty in the retrieval is separated into two components: independent (uncorrelated) and sys-
tematic (correlated). The uncorrelated uncertainty arises from radiometric noise in the satellite observations, 
and can be calculated by propagating the instrument noise (expressed as a covariance matrix So) through the 
retrieval28 as:

= a au Sunc o
T

The systematic (correlated) uncertainties82 arise due to errors in the instrument calibration and characterisa-
tion, forward model simulation, and prior state. The dual-view retrieval algorithm is designed to minimise these, 
and the correlated uncertainty is taken to be given by the fitting error when generating the coefficients. This is 
tabulated along with the retrieval coefficients and interpolated to the pixel conditions28,33.

When deriving the SST retrieval coefficients there is a trade-off between uncorrelated uncertainties, corre-
lated uncertainties, and retrieval sensitivity83 (retrieval response to changes in true SST). For climate products, 
the priority is high retrieval sensitivity and minimised correlated uncertainties, because uncorrelated uncertain-
ties are reduced through averaging in the gridded products and long-term time series. To avoid full resolution 
SST imagery (L2P) being unduly noisy, however, we calculate SST for the full resolution products using “atmos-
pheric correction smoothing”84.

Atmospheric correction smoothing exploits the fact that water vapour in the atmosphere tends to vary on 
longer length-scales than the pixels. A generalised atmospheric correction (a difference between SST and a 
weighted top-of-atmosphere brightness temperature) can be written as:
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δ = − b yx T

where the elements of the vector b satisfy ≥b 0i  for all i and sum to one. We set the nadir elements of b to be 
inversely proportional to the square of the radiometric noise of the corresponding brightness temperature, and 
set non-nadir elements to zero. The correction, δ, can be smoothed over a local area (we use 5 × 5 pixels) to give 
an atmospherically smoothed SST of:

� δ= +⟨ ⟩ b yx T

which is calculated using its equivalent:

⟨ ⟩ ⟨ ⟩b y yx x ( )T�� = + −

This form emphasises that this is not a simple smoothing of the SST itself. In order to avoid cloud contami-
nation affecting the smoothing process, the averaging over the 5 × 5 box only includes pixels with a quality level 
greater than or equal to the central pixel.

retrieval of skin SST (AVHrr-series). Observations from the single-view AVHRR sensors have a lower 
information content than the dual-view sensors, so single-view coefficient-based retrievals are often associated 
with systematic geographic biases83. Therefore, we estimate the SST using an optimal estimation retrieval15,85 
which explicitly includes prior information. The retrieved state, �z, is expressed as the prior state, za (typically taken 
from ERA5 NWP data), plus an increment derived from the satellite observations and radiative transfer 
simulations.

z z y x z y xF FG K S K S K S( ( )) ( ) ( ( ))a a a a a
T 1 1 1 T 1� = + − = + + −ε ε

− − − −

Here, xa includes the full prior state, xF ( )a  is the forward simulation for this prior, the matrix K contains the 
partial derivatives of the simulation with respect to the state variables in za, Sa is the error covariance matrix for 
the prior state, and Sε is the error covariance for the model and observation differences. The reduced state vec-
tors, �z  and za, comprise the SST and total column water vapour.

The uncorrelated and correlated uncertainty components are calculated as:

=u GS Gunc o
T

= + − −ε
′u GS G GK I S GK( ) ( I)cor

T
a

T

where So is the error covariance of the radiometric noise in the satellite observations and Sε
′  is the non-noise 

component of the model-observation error covariance matrix.
Optimal estimation will give the minimum-error retrieval assuming both the prior state and forward model 

are unbiased, and the error covariance matrices are well known85. In practice these assumptions are inexactly 
met. The original specification for the AVHRR instruments was an accuracy of 1 K for the AVHRR/1 and /2 
design and 0.5 K for the later AVHRR/3 design86, as such the calibration accuracy of the AVHRR sensors means 
the forward model cannot be an unbiased representation of the instrument to the accuracy required («0.1 K), 
and the error covariance matrices must be estimated25,87. Here, we correct for the instrument-model bias and 
empirically estimate the error covariance matrices via bias-aware optimal estimation24,25.

retrieval of sub-skin SST (AMSr-series). A two-step multiple linear regression algorithm30 is used for 
microwave SST retrievals as the relationship between the retrieved variables and BT is less linear than the infrared 
case. This first estimates the wind speed, and then uses that estimate in the SST retrieval. The first-guess wind-
speed is given by:

a a t a t aWS ( ) ( 55)a
i

i i i i sat0
1

10

1 2
2

3∑ θ= + + + −
=

Where a0, a1i, a2i, and a3 are global regression coefficients with index i representing the channel number up to 10 
(the 89 GHz channel is not used for wind speed estimation). The vector t contains the observed brightness tem-
peratures as = −t BT 150i i  for all channels except the 23.6 GHz which is t BTln(290 )i i= − . A second-stage 
accounts for the non-linearities using localised retrieval coefficients. This uses the same form as the first-stage 
with a different set of regression coefficients, tabulated as a function of the first-guess wind speed.

The SST retrieval uses a similar two-stage approach with the first guess SST given by:

∑ ∑θ φ φ= + + + − + + +
= =

c c t c t c c c j c jSST ( ) ( 55) WS ( cos( ) sin( ))c
i

i i i i sat
j

j rel j rel0
1

12

1 2
2

3 4
1

2

5 6

Where the initial SST retrieval coefficients, c, are tabulated as a function of latitude and orbit direction. WS is the 
retrieved windspeed, and φrel is the relative azimuth between the satellite view direction and the wind direction 
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(taken from NWP). For the second-stage retrieval the coefficients are tabulated as a function of the retrieved 
windspeed and first-guess SST.

The retrieval uncertainties are given by another set of regression equations of the form:

∑θ θ
φ φ

= + + + + + + +





+



=

u e e e e e e e e
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e
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2
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1
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7 8

With two sets of regression coefficients, e, defined: one to estimate uncorrelated uncertainty, uunc, and one for 
correlated uncertainty ucor.

Quality level. A measure of the SST data quality is provided on a scale from 0 (no data) to 5 (best quality 
data). This follows the international convention for SST products10. Quality levels 4 and 5 are suitable for use in 
climate applications where absolute accuracy of SST is important. Users may find the lower quality level data are 
useful for some applications e.g. detecting SST front locations which only requires relative, not absolute, accuracy.

For the infrared products (ATSR, AVHRR, SLSTR), quality level represents the confidence held both in the 
SST and in the associated SST uncertainty estimate9. A measurement with high uncertainty is still flagged as 
high quality provided a reliable retrieval is obtainable with a valid uncertainty estimate. Factors which affect 
the quality level include: cloud detection (pixels with lower probabilities of being clear-sky are assigned lower 
quality levels), estimated retrieval sensitivity to the true SST, chi-square goodness of fit of retrieval (for optimal 
estimation retrievals). Additionally, pixels with satellite zenith greater than 60° are considered “limb” pixels with 
maximum quality level of 2. Pixels with solar zenith angles between 87.5° and 92.5° are classed as twilight and 
have a maximum quality level of 3. The complete list of quality level checks and thresholds for infrared instru-
ments is shown in Table 3 – pixels will be assigned the lowest level which matches any of the conditions shown.

For microwave sensors the quality level is mainly driven by the estimated uncertainty through the thresholds 
shown in Table 4. Rain and radio frequency interference (RFI) are flagged as bad data using an additional set of 
tests30, while retrievals within 200 km of sea-ice or 100 km of land are set to quality level 2.

Adjustments for depth and time. Satellite estimates of SST are based on the thermal radiance from the 
ocean: this is dependent on the temperature in the top few microns (skin temperature) for infrared sensors, and 
the top few millimetres (sub-skin temperature) for microwave sensors. These will differ from the depth SST as 
measured in situ by buoys and ships14, or used as the upper layer of an ocean model. Therefore, the products 
include an adjustment that can be added to the primary observation (skin or sub-skin) to give an estimate of the 
SST at 20 cm depth (comparable to drifting buoy measurement depth).

Furthermore, the local time of observation will depend on the satellite orbit (Fig. 1 and Table 1), with differ-
ent sensors observing at different times of day. The changing time of observation will cause aliasing of the diur-
nal cycle into the final record. So, the products include an adjustment for the observation time to avoid spurious 
inter-annual trends. The adjustment for time-of-day effects is to estimate the SST at the nearest of 10:30 or 22:30 

Level Meaning P(clear) Sensitivity χ2 Other

0 No data <0 No data; land pixel

1 Bad data <0.5 <0.0 >3 SST < 271.15 K; ice detected; NWP missing

2 Worst quality <0.8 <0.10 >2 Limb (θsat > 60)

3 Low quality <0.9 <0.20 >1 Twilight (87.5 < θsol < 92.5)

4 Acceptable quality ATSR: Aerosol detected: DDI > 0.2
AVHRR: solar contamination detected

5 Best quality

Table 3. Quality level definitions and thresholds used for infrared sensors. Pixels will be assigned to the 
lowest level which matches a condition, therefore quality level 4 and 5 pixels will have P(clear) > = 0.9; 
sensitivity >= 0.2; and χ2 <= 1. P(clear) is the posterior probability of the pixel being clear. “Sensitivity” is the 
evaluated retrieval sensitivity to true changes in SST. χ2 is the channel-normalised goodness of fit test on the 
retrieval (optimal estimation SSTs only). θsat is the satellite zenith angle. θsol is the solar zenith angle. “DDI” is an 
index for detecting desert or mineral dust126.

Level Meaning Uncertainty Other

0 No data No data; land pixel

1 Bad data SST < 271.15 K; SST > 308.15 K; Rain; RFI

2 Worst quality u ≥ 1.0 Proximity to sea ice; proximity to land

3 Low quality 0.5 < u < 1.0

4 Acceptable quality 0.35 < u < 0.5

5 Best quality u ≤ 0.35

Table 4. Quality level definitions and thresholds used for microwave sensors.
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local mean solar time, which is a good approximation to the daily mean SST20. The time and depth adjustments 
are combined to provide SST at 20 cm and 10:30 h or 22:30 h local time in the products.

The time and depth adjustments are calculated using a diurnal variability model32,88 which combines a 
skin-effect model89 with a one-dimensional turbulence closure model90. The model is driven by NWP surface 
fluxes and wind stress. The uncertainty associated with this adjustment is also calculated and included in the 
total uncertainty estimate for the daily mean SST at 20 cm depth.

Gridded SST products. Level 3 gridded versions of the infrared data are provided on a 0.05° 
latitude-longitude grid. (The microwave data are not remapped to Level 3 as the sensor resolution is coarser than 
the 0.05° grid used here.) There are two stages to generating gridded products. First, level 3 uncollated grids (L3U) 
are made from the full resolution products (L2P) by averaging only the highest available quality level pixels in 
each gridded cell (so only pixels of the same quality level will be combined). When propagating the uncertainties 
from level 2 to level 3, the uncorrelated uncertainty (from random errors) decreases with the familiar “ n1/ ” 
averaging, while the other components do not as the grid size is much smaller than the correlation length scales. 
When some pixels have been excluded from the final average (e.g. due to cloud cover or a mix of quality levels in 
the input), then there is an additional uncertainty due to under-sampling. The sampling uncertainty is parame-
terised as a function of the fraction of pixels used in the cell and the variability in SST for the observed 
fraction34.

Next, all the L3U SSTs from each individual sensor are collated to daily L3C (gridded daily products). Here 
the content of a L3C grid cell is the “best” L3U SST value acquired in a given 24-hour period, with day and night 
observations provided separately. The “best” observation is taken to as the one with the highest quality level; if 
multiple observations have the same quality level, then the observation with the lowest estimated uncertainty 
is selected.

Analysed SST. The SST analyses were generated using a climate configuration of the Operational Sea Surface 
Temperature and Ice Analysis (OSTIA) system35,91. OSTIA uses the NEMOVAR data assimilation scheme92 
to combine multiple input datasets with a background (first guess) field to generate daily, global, gap-free SST 
and ice concentration analyses. Here we focus on differences in the climate configuration compared to the near 
real-time version91.

For the climate configuration, the only input observational data to the SST analyses are the SST CCI TIR and 
MW SSTs adjusted to 10:30/22:30 local time and 20 cm depth and their uncertainty estimates. To reduce the data 
volume being processed by NEMOVAR in the later part of the record when multiple sensors were operational 
simultaneously, some of the L3U AVHRR data were combined to make super-collated (L3S) input files prior to 
processing in the OSTIA system. AVHRR data were merged in the following periods (highest priority sensor 
listed first): August 2002 to end 2007 – NOAA-18, NOAA-16, NOAA-15, NOAA-14; May 2007 to end-2008 – 
MetOp-A, NOAA-17; February 2009 to end-2014 – NOAA-19, NOAA-18; May 2018 to end-2019 – MetOp-B, 
MetOp-A. MW data were thinned to 25 km to account for their lower resolution compared to TIR data. Only 
data files with file quality level set to the highest value (3) were used except for ATSR2 files between 08/02/2001 
and 05/07/2001, which had a lower file quality value due to a gyroscope failure on the satellite. From the accepted 
files, only SSTs with quality level of 4 or 5 were used with the exception of AVHRR data from NOAA-15, for 
which only data of quality level 5 were utilised. The SST CCI Analysis does not ingest any in situ data and all 
satellite inputs are SST CCI products, so no additional bias correction is performed within the analysis system.

Each daily SST analysis was formed from data from the analysis day and the day either side of it. The uncer-
tainty values for the days either side of the analysis day were inflated by a third to reduce their influence. As 
with the near real-time system, the background to the analyses was formed by damped persistence of anomalies 
from the previous day. However, for the climate configuration the anomalies were derived from the SST CCI 
Climatology version 2.250 (which includes corrections applied for desert dust biases49). Although the SST analy-
sis uncertainty estimates were produced using the same method as the near real-time version91, it was identified 
that some of the auxiliary files used in their calculation in the near real-time system have a blocky appearance 
which propagates into the uncertainty fields. Therefore, for the SST CCI processing, these files were regenerated 
by interpolating equivalent data held on a different grid to remove the blocky effect.

As described previously, the sea ice concentration input data used for the SST CCI analyses were from the 
EUMETSAT OSI-SAF OSI-45057 and OSI-430-b58 products. Visual inspection of the data was performed and 
days containing suspect features were excluded. Interpolation was carried out to create files for days with miss-
ing data using the method described in the SST CCI Algorithm Theoretical Basis Document v193.

Internally within the OSTIA system, the analyses are generated on the extended ORCA12 tripolar grid with 
1/12° nominal resolution94. The analyses are then regridded onto the 0.05° grid used for the final products. This 
allows for some flexibility with the land/sea mask applied to the 0.05° gridded data, with the common SST CCI 
land/sea mask being used in the climate configuration.

Calibration spike adjustment (L4). Comparison of the initial Level 4 SST was against HadSST.4.0.1.05, a 
gappy dataset of gridded in situ data, using a method49 developed for the previous CDR where the CCI analysis is 
averaged to the HadSST spatial resolution before estimating an area-weighted global-mean across observed cells. 
The spatial-mean monthly differences reveal intermittent excursions of 0.1 to 0.2 K in the satellite data during the 
1980s and early 1990s. We attribute these “spikes” mainly to periods of unstable calibration of the early AVHRR 
sensors. Spikes are more noticeable when the record relies on fewer input sensors (see Fig. 1). The magnitudes of 
the spikes are markedly reduced compared to the previous version 2.1 CDR, which had monthly excursions of 
up to 0.6 K23,49.
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To improve the overall homogeneity of the data record at monthly-global scales, we apply a global empirical 
adjustment to the data up to end-1996, the year of the final major spike in Fig. 5 and corresponding to the gap 
in ATSR2 data during 1996 evident in Fig. 1. After this point the ATSR2/AATSR, and later SLSTR sensors, pro-
vide an independent SST estimate and the empirical adjustment is not necessary. The SST CCI analysis minus 
HadSST4 differences are distributed near-normally, with standard deviations 0.083 K before 1997 and 0.048 K 
afterwards. Matching the quantiles of the two distributions results in a near-linear adjustment function (shown 
in the Algorithm Theoretical Basis Document95) that can be used to homogenize the difference distribution of 
the earlier data to the later data49,95. The impact of the adjustment is shown in Fig. 5.

Data Records
All data records96–107 are archived at CEDA: https://archive.ceda.ac.uk/ and made available through the ESA 
Open Data Portal: https://climate.esa.int/en/data/, under the Creative Commons Attribution 4.0 International 
license (CC-BY 4.0; https://creativecommons.org/licenses/by/4.0/).

ESA SST CCI products are provided at four different processing levels as defined by the Group for High 
Resolution Sea Surface Temperature (GHRSST) Data Specification (GDS)10. These are shown in the documen-
tation108 and previous article23 and listed below:

•	 Level 2 pre-processed (L2P): SST retrievals derived from the Level 1 observations on the Level 1 grid (typi-
cally the satellite swath projection), with ancillary data and metadata added following the GDS10.

•	 Level 3 uncollated (L3U): Level 2 data remapped to a regular latitude/longitude grid without combining 
observations from multiple input files.

•	 Level 3 collated (L3C): SST observations from a single instrument combined into a space-time grid. For ESA 
SST CCI products this means collation to daily files.

•	 Level 4 analysis (L4): SST observations from multiple instruments combined using an analysis system to 
produce a gridded gap-free product.

The climate data record comprises 14 datasets: 13 for individual sensor families and product levels (L2P to 
L3C), and one spatially complete analysis product (L4). All files are in netCDF-4 classic format109 following: 
Climate-Forecast (CF) metadata conventions110, GHRSST Data Specifications10, and ESA CCI Data Standards111. 
The dataset title, full name, description, and other details are given in Tables 5 to 9. The key variables present in 
the files are listed in Table 10 (Level 2 and 3 products) and Table 11 (Level 4 products).

ATSR. The single-sensor ATSR processing (Table 5) has not changed from the previously published ver-
sion23, so the existing v2.1 datasets were used as input to the CDRv3 analysis.

SLSTR. The dual-view SLSTR products are listed in Table 6, these start in June 2016 and continue to the 
end of the CDR. Unlike other sensors processed here, the input SLSTR data are provided in 3-minute granules 
resulting in ~365 L2P and L3U files per day.

AVHRR. Table 7 lists the AVHRR data products which cover the full period of the CDR, with NOAA 
AVHRR available from 1980 to end-2017, and MetOp AVHRR from May 2007 to 2021.

AMSR. The AMSR product is shown in Table 8. Level 3 products are not produced from AMSR-E and 
AMSR2.

Analysis. The spatially complete Level 4 SST CCI analysis product is shown in Table 9.
Climatology. A 30-year (1991–2020) daily climatology of the SST CCI analysis product calculated using a 

5-day running mean.
All data are released under the Creative Commons Attribution 4.0 International License (CC-BY 4.0, https://

creativecommons.org/licenses/by/4.0).

Fig. 5 Timeseries of daily global-mean difference of SST CCI analysis minus HadSST4 (K).
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Technical Validation
Validation against in situ measurements. The SST products are validated against in situ measurements 
as outlined in the Product Validation Plan112 and complete results are presented in the Product Validation and 
Intercomparison Report (PVIR)108. An overview of validation is presented here for the Level 3 and 4 products (as 
used by the majority of users). The in situ SST measurements are extracted from the Met Office Hadley Centre 
Integrated Ocean Dataset (HadIOD) v1.2.0.0113, the reference data are referred to as the SST CCI Independent 
Reference Data Set (SIRDS), see https://www.metoffice.gov.uk/hadobs/hadiod/sirds.html. Collocations between 
the satellite and in situ products are generated using the Multi-sensor Matchup System (MMS)114. Due to the 
changes in the in situ coverage since 1980 it is necessary to vary the matchup criteria used as shown in Table 12. 
For recent sensors (operating since mid 1990s) we can get sufficient validation data with good global coverage 
using in situ drifting buoys (aka “drifters”).

Title ESA SST CCI ATSR L2P v2.196 ESA SST CCI ATSR L3U v2.197 ESA SST CCI ATSR L3C v2.198

Full name
European Space Agency Sea Surface Temperature Climate Change Initiative: Along-Track Scanning Radiometer

level-2 pre-processed product version 
2.1 level-3 uncollated product version 2.1 level-3 collated product version 2.1

Basic description (quotable 
when citing data)

global sea surface temperatures from Along Track Scanning Radiometers,

presented on the native geometry of 
observation, and spanning 1991 to 2012

presented on a 0.05° latitude-longitude 
grid, and spanning 1991 to 2012

daily collations on a 0.05° latitude-
longitude grid, and spanning 1991 to 2012

Data volume 2.6 T 270 G 242 G

Acronym (product) SST CCI ATSR Gridded SST CCI ATSR Gridded daily SST CCI ATSR

Acronym (SST) CCI ATSR SST CCI gridded ATSR SST CCI gridded daily ATSR SST

Table 5. Data record information for SST CCI ATSR products.

Title ESA SST CCI SLSTR L2P v3.099 ESA SST CCI SLSTR L3U v3.0100 ESA SST CCI SLSTR L3C v3.0101

Full name
European Space Agency Sea Surface Temperature Climate Change Initiative: Sea and Land Surface Temperature Radiometer

level-2 pre-processed product version 3.0 level-3 uncollated product version 3.0 level-3 collated product version 3.0

Basic description (quotable 
when citing data)

global sea surface temperatures from Sea and Land Surface Temperature Radiometers,

presented on the native geometry of 
observation, and spanning 2016 to 2021

presented on a 0.05° latitude-longitude 
grid, and spanning 2016 to 2021

daily collations on a 0.05° latitude-
longitude grid, and spanning 2016 to 2021

Data volume 5.0 T 915 G 175 G

Acronym (product) SST CCI SLSTR Gridded SST CCI SLSTR Gridded daily SST CCI SLSTR

Acronym (SST) CCI SLSTR SST CCI gridded SLSTR SST CCI gridded daily SLSTR SST

Table 6. Data record information for SST CCI SLSTR products.

Title ESA SST CCI AVHRR L2P v3.0102 ESA SST CCI AVHRR L3U v3.0103 ESA SST CCI AVHRR L3C v3.0104

Full name
European Space Agency Sea Surface Temperature Climate Change Initiative: Advanced Very High Resolution Radiometer

level-2 pre-processed product version 3.0 level-3 uncollated product version 3.0 level-3 collated product version 3.0

Basic description (quotable 
when citing data)

global sea surface temperatures from Advanced Very High Resolution Radiometers,

presented on the native geometry of 
observation, and spanning 1980 to 2021

presented on a 0.05° latitude-longitude 
grid, and spanning 1980 to 2021

daily collations on a 0.05° latitude-
longitude grid, and spanning 1980 to 2021

Data volume 28 T (23 metop) 5.2 T (1.9 metop) 4.3 T (1.4 metop)

Acronym (product) SST CCI AVHRR Gridded SST CCI AVHRR Gridded daily SST CCI AVHRR

Acronym (SST) CCI AVHRR SST CCI gridded AVHRR SST CCI gridded daily AVHRR SST

Table 7. Data record information for SST CCI AVHRR products.

Title ESA SST CCI AMSR L2P v3.0105

Full name European Space Agency Sea Surface Temperature Climate Change Initiative: Advanced 
Microwave Scanning Radiometer level-2 pre-processed product version 3.0

Basic description (quotable 
when citing data)

global sea surface temperatures from Advanced Microwave Scanning Radiometers, 
presented on the native geometry of observation, and spanning 2002 to 2017

Data volume 391 G

Acronym (product) SST CCI AMSR

Acronym (SST) CCI AMSR SST

Table 8. Data record information for SST CCI AMSR product.
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As with the previous CDR assessment23, three categories of validation were performed. “Skin-raw” directly 
compares the satellite retrieved skin SST with in situ data without accounting for the understood geophysical 
differences between the two14,31. This approach was primarily used for internal development and verifying the 
expected geophysical differences. Secondly, in “skin-skin” validation the in situ observations are matched to the 
satellite time and adjusted to the skin layer temperature. This approach validates the primary satellite retrieval 
and includes the minimal adjustments to account for geophysical differences at the observation time. Finally, 
in “depth-depth” comparisons the time and depth adjusted SST at 20 cm and 10:30 h or 22:30 h local time is 
compared to in situ data matched to those standard times. Depth and time adjustments are made using the same 
skin-effect and diurnal model as used to generate the SST products, so the distinction between skin-skin and 
depth-depth validation may not be obvious: the key difference is the magnitude of the time correction. In the 
skin-skin case the time correction is minimal, typically zero-mean, and for in situ platforms reporting hourly 
will be less than 30 minutes. In the depth-depth case the time correction is a function of the satellite overpass 
time (Fig. 1), reaching a maximum average value of six hours. Thus, depth-depth comparisons validate the full 
combination of skin SST retrieval and skin-depth adjustment model.

Comprehensive validation results are available in the PVIR108 and a brief overview is presented here. Figure 6 
shows the time-series for the depth-depth validation of the infrared sensors (SST CCI ATSR, AVHRR, and 
SLSTR) using robust statistics. The statistics used are the median, and robust standard deviation (RSD, 1.4826 
times the median absolute deviation, a scaling that means the RSD of a normal distribution equals the standard 
deviation). The relative performance of the various sensors is evident. The dual-view SLSTRs achieve similar 
accuracy and stability as the ATSR-2 and AATSR sensors. The MetOp AVHRR records are generally more stable 
around the annual cycle than other AVHRRs. The comparison for AVHRR SSTs in general improves through the 
timeseries, reflecting improvements in both the satellite instruments and the in situ network.

During the first decade there are periods where the CCI AVHRR SST biases fluctuate by a few tenths of kelvin 
due to problems with the calibration of the early sensors. Coverage is limited prior to September 1981 as we are 
able to retrieve SSTs from AVHRR/1 instruments only during the night. There is also a short period in early 2001 
when the AVHRR SSTs become less stable – this corresponds to a brief period when data was only available from 
two sensors (AVHRR14 and AVHRR15) both of whose performance was unreliable at this point.

From 2010 to 2018, the CCI AVHRR SSTs from NOAA platforms show a divergence of up to ~0.05 K between 
the daytime and night-time SSTs. We attribute this to systematic error in the time-of-day adjustment. For these 
afternoon-orbiting sensors (see Fig. 1), the skin SST observations are retrieved close to the diurnal minimum 
or maximum in this period, so the required time adjustment incorporated into this depth-depth validation is 
maximised and most uncertain. The “skin-skin” validation108 shows consistency between day and night. (The 

Title ESA SST CCI Analysis v3.0106 ESA SST CCI Climatology v3.0107

Full name European Space Agency Sea Surface Temperature Climate 
Change Initiative: Analysis product version 3.0

European Space Agency Sea Surface Temperature Climate 
Change Initiative: Climatology product version 3.0

Basic description (quotable 
when citing data)

daily-mean sea surface temperatures, presented on global 
0.05° latitude-longitude grid, with gaps between available daily 
observations filled by statistical means, spanning 1980 to 2021

daily climatological mean sea surface temperature on a 
global 0.05° latitude-longitude grid, derived from the SST 
CCI analysis data for the period 1991 to 2020 (30 years)

Data volume 230 G 20 G

Acronym (product) SST CCI analysis SST CCI climatology

Acronym (SST) CCI analysis SST CCI climatology SST

Table 9. Data record information for SST CCI Analysis product.

Name Units Description

sea_surface_temperature K SST as measured by the satellite sensor (Retrieved SST). For infrared radiometers this is the 
skin temperature, corresponding to a depth of approximately 10 µm.

sea_surface_temperature_total_uncertainty K Total estimated uncertainty in sea surface temperature variable.

sea_surface_temperature_depth K SST adjusted to a standard depth of 20 cm and 10:30 h or 22.30 h local solar time (usable as a 
daily average estimate).

sea_surface_temperature_depth_total_uncertainty K Total estimated uncertainty in SST0.2m.

sea_surface_temperature_depth_anomaly K Difference between SST0.2m and SST CCI Climatology v2.250.

Table 10. Key data variables present in Level 2 and 3 files.

Name Units Description

analysed_sst K Daily mean estimate of SST at 0.2 m depth (Analysed SST).

analysed_sst_uncertainty K Estimated uncertainty in Analysed SST.

sea_ice_fraction — Areal fraction of sea ice, from 0 to 1.

Table 11. Key data variable present in Level 4 Analysis files.

https://doi.org/10.1038/s41597-024-03147-w


1 4Scientific Data |          (2024) 11:326  | https://doi.org/10.1038/s41597-024-03147-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

Analysis SST for this period is more strongly influenced by the Metop AVHRR data because of their coverage at 
full resolution, and which do not show the same divergence.)

The previous CDR v2.1 was affected by intermittent, localised cold biases in AVHRR SSTs of up to 1 K caused 
by desert dust23,49. These biases have been greatly reduced in version 3 shown in Fig. 7. There are some residual 
cold biases in the night-time CCI AVHRR SSTs to the west of Africa and in the Arabian Sea of magnitude 0.1 K.

An overview of the SST CCI Analysis for the complete timeseries is shown in Fig. 8. Differences relative to 
in situ are larger in the early record when the Analysis is based on only one or two AVHRR sensors, although 
these are reduced compared to the previous CDR. A localised cold bias of a few tenths of kelvin is evident in the 
tropics immediately following the Mount Pinatubo eruption (1991, marked with a cross). Between 2012 and 
2016 there is a cold mean difference in the Arctic of a few tenths of kelvin.

Validation of uncertainties. The uncertainty estimates provided with SSTs are defined as standard uncer-
tainty, i.e., one standard deviation of the estimated error distribution. Uncertainty estimates are validated through 
comparison against the observed satellite − in situ difference distributions as shown in Fig. 9 for MetOp-A 
AVHRR. These plots compare the observed satellite − in situ discrepancy as a function of the estimated uncer-
tainty33,108. Given an estimate of the uncertainty in the in situ (we assume 0.2 K for drifting buoys for the main 
distribution, neglecting outliers), the expected spread in the satellite − in situ comparison is ins satσ σ σ= + . 
This expected spread is shown as a solid blue line. In this case, the majority of the estimated day-time uncertain-
ties lie between 0.25 and 0.5 K, with extremes up to nearly 1 K. The spread (using RSD) of satellite − in situ differ-
ences is generally narrower than expected. This indicates that the daytime uncertainties are over-estimated, for 
reasons we do not yet understand. In the night-time comparison, the estimated uncertainties are mostly less than 

Product / Sensors Spatial Criterion Temporal Criterion In situ types

NOAA-06 to 12 12 km 12 hours All non-ship observationsa

NOAA-14 to 19 12 km 4 hours Drifters

ATSR-1 1 km 4 hours All non-ship observationsa

ATSR-2 / AATSR 1 km 4 hours Drifters

MetOp AVHRR 0.025° 2 hours Drifters

SLSTR 0.025° 2 hours Drifters

Analysis (to 1996) 0.025° 12 hoursb CTD, Drifter, GTMBA, Moorings, XBT

Analysis (1996+) 0.025° 12 hours Drifters

Table 12. Matchup criteria used for different sensors and products. Where spatial criterion is specified in 
kilometres the matchup is initially generated against the pixel-level 1 and 2 data; when criteria are specified in 
degrees the initial matchup was against the 0.05° gridded products. a: “Non-ship” observations include Bottle, 
CTD, Drifter, MBT, Moorings, and XBT in these time periods. b: The Analysis is a daily product with a nominal 
time of midday, therefore a limit of 12 hours will match all in situ observations for the specified day.

Fig. 6 Timeseries of Level 3 validation results. Monthly robust standard deviation (K, top panel) and median 
discrepancy (K, lower panel) for comparison of SST 0.2 m @ 10:30 local time and reference in situ. Vertical 
dashed lines show time of El Chichón (April 1982) and Mount Pinatubo (June 1991) eruptions.

https://doi.org/10.1038/s41597-024-03147-w


1 5Scientific Data |          (2024) 11:326  | https://doi.org/10.1038/s41597-024-03147-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

0.25 K and in good agreement with the expected satellite − in situ spread, meaning the satellite uncertainty esti-
mates are quantitatively credible. The night-time MetOp AVHRR SSTs with larger uncertainties tend to be biased 
cool relative to in situ by about 0.1 to 0.2 K.

Day-time CCI AVHRR SST uncertainties are also found to be over-estimated in general (not shown here). 
The night-time CCI AVHRR uncertainties and the uncertainties for all other sensors are well estimated.

The spread in uncertainties associated with the CCI analysis SSTs (not shown) is marginally narrower than 
the expected envelope by 20% to 30%, implying either that the estimated analysis uncertainties are slightly too 
large, or the assumed in situ uncertainty is slightly too large. The CCI analysis SST uncertainties are mostly less 
than 0.5 K, peaking between 0.25 and 0.3 K, with higher corresponding to areas which were not well observed by 
the available sensors. These include persistent cloud cover, data gaps in the 1980s, and coastal areas (particularly 
in the 1980s when only lower resolution AVHRR GAC data is available).

Climate Assessment. The Climate Assessment Report (CAR)115 presents an assessment of trends and var-
iability in the SST CCI products and comparison to other SST products. To assess the multi-annual and dec-
adal behaviour of the new products, comparisons are made to existing long-term (generally coarser resolution) 
SST data sets used in high profile climate monitoring activities. Differences between the SST CCI products and 
the comparison datasets are highlighted. The comparison datasets used are: HadSST.4.0.1.05, HadISST1.1116, 
ERSSTv5117, COBE-SST2118, OI.v2119, DailyOIv2.1120, CMC v2.0 and v3.0121, and gridded drifting buoy and 
Argo observations taken from the SIRDS. The SST CCI products are also assessed against the precursor SST 
CCI v2.1 release to determine what progress has been achieved. This process is not validation but does provide 
important context for potential users to allow them to determine whether the products are credible CDRs and 
may prove useful. It can also identify features in the SST CCI products that may warrant future investigation or 
improvement.

Fig. 7 Spatial variation of median CCI AVHRR SST minus reference in situ SST (K). Data from all NOAA 
platforms.

Fig. 8 Time/latitude variation of CCI Analysis minus reference in situ SST (K) averaged zonally and monthly. 
Reference in situ is drifters-only from 1996, with other sources included prior to this (see Table 12). X symbols 
mark major volcanic eruptions: El Chichón (April 1982), Mount Pinatubo (June 1991), and Mount Hudson 
(September 1991).
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Monthly time series of SST anomalies referenced to the SST CCI climatology v3.0 (1991–2020) are calculated 
and compared for 61 regions of the world’s oceans, including relevant indices, such as for the El Niño Southern 
Oscillation. Linear trends in these regional series are presented. Maps of decadal average anomalies and their 
zonal averages are used to identify any large-scale differences between the new products and the comparison 
data sets.

Some key findings are: (1) The SST CCI products are in good agreement with the comparison data and each 
other (to order a few tenths kelvin) in terms of resolving global (Fig. 10) and hemispheric climate variability; (2) 
The SST CCI AVHRR product (and the SST CCI analysis which assimilates it) has been improved versus v2.1, 
with fewer timeseries spikes, better stability, and better agreement with other SST CCI and comparison datasets, 
notably in the northern tropical Atlantic and Indian Oceans where the handling of the impact on the retrievals 
of dust aerosol has been significantly improved; (3) Trends for the SST CCI data and the comparison data are in 
general in good agreement, including over the full 1980–2021 CDR period, where for most regions the spread 
of trends is within 0.1 K per decade, comparable to GCOS stability requirements7; (4) Regionally the SST CCI 
AMSR data can be persistently warmer/cooler than the other SST CCI products by a few tenths kelvin and shows 
relative seasonal anomalies that in higher latitudes can approach several tenths kelvin peak-to-peak magnitude; 
(5) On decadal timescales a coolness of the SST CCI data (except AMSR) in the mid-high latitudes relative to the 
comparison data of order a tenth kelvin or more is apparent; (6) The Southern Ocean is a region with relatively 
greater disagreement amongst the comparison datasets and SST CCI products.

The CAR also presents voluntary reports received from early adopters of the SST CCI v3.0 products, describ-
ing their application and what they have discovered from using the data. Overall, the SST CCI v3.0 products 
represent a mature climate data record for SST and their length of record, stability, resolution and ease of use 
allow them to be used in a wide range of local and large-scale climate applications.

Usage Notes
Known issues. Coverage is limited in the 1980s – especially prior to the start of AVHRR-7 data in August 
1981 (see Fig. 2). Early AVHRRs show intermittent bias fluctuations of a few tenths of kelvin, this is mostly evi-
dent in the 1980s, and a brief period at the start of 2001 (see Fig. 6). AVHRR data may be affected by solar con-
tamination of the Earth scene that is not detected in the current version (solar contamination of the calibration 
system is detected, corrected, and flagged). Smaller coastal features (enclosed bays etc.) cannot be resolved in the 
AVHRR “GAC” data, these areas will have few or no observations before start of ATSR data in 1991, and the CCI 
analysis will contain extrapolations from open-sea observations. This will be reflected in the analysis uncertainty, 
for instance the Seto Inland Sea in the 1980 has a mean uncertainty over 1.5 K.

reading the products (quick start)? All data are stored in netCDF-4 classic format109 files following: 
Climate-Forecast (CF) metadata conventions110, GHRSST Data Specifications10, and ESA CCI Data Standards111. 
The files make use of “packed” data such that the add_offset and scale_factor attributes must be applied to get 
values in the correct units – many tools will do this automatically, but users writing low-level code may need to 
apply the conversion explicitly. The key data variables for the single-sensor Level 2 and 3 products are listed in 
Table 10, and for the Level 4 SST CCI analysis product in Table 11.

What software packages can be used to read the data? Generic Python tools which can be used to 
read ESA SST CCI data include Iris122 and xarray123. Two open source toolboxes are available for visualisation and 
exploration of CCI data: the Climate Analysis Toolbox (Cate) is available from http://climatetoolbox.io/ and the 
Scientific Toolbox Exploitation Platform (STEP) from http://step.esa.int/main/

Which product level should i used? Most users select the Level 4 SST CCI analysis product as it provides 
an easy-to-use, globally-complete combination of all available sensors, which can be used as a daily average SST 

Fig. 9 Validation of estimated uncertainty for CCI AVHRR SST from MetOp-A. Plot shows satellite − in situ 
discrepancy against retrieval estimated uncertainty (K). Shaded area shows robust standard deviation (RSD) of 
difference. Solid blue line shows expected dependence (assuming in situ uncertainty of 0.2 K). Orange error bars 
show median difference for each bin. Green violin plot shows distribution of data.
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at 20 cm depth. However, users should be aware that it only contains the daily average SST, and that the process 
of interpolation does degrade the feature resolution124 which varies spatially and is typically coarser than 15 km 
(lower than the grid resolution of 0.05°).

Level 3 C data are suitable for users who require convenient single-sensor data on the regular 
latitude-longitude grid, and who can tolerate spatial data gaps. These files retain all the variables present in lower 
levels, including both skin and depth adjusted SSTs along with times of observations, though with some spatial 
averaging to reduce the resolution to 0.05°.

Level 2 P products should be used when the highest possible resolution is required, for example when work-
ing on SST features such as fronts and eddies, the disadvantage of this processing level being that SSTs are gappy 
and located on non-repeating latitude-longitude coordinates.

L3U files are available but are only recommended for specialist users who require gridded data without it 
being collated to daily files.

Which type of SST? There are two different SST estimates in the single-sensor Level 2 and 3 SST CCI prod-
ucts. The first is the primary quantity observed by the sensor: this is the temperature of the skin layer (~10 μm) at 
time of observations for infrared instruments and the temperature of the sub-skin layer (~1 mm) for microwave 
instruments14. The second is an SST adjusted to represent a depth of 20 cm (comparable to in situ drifting buoy 
measurements) at the 10:30 or 22:30 local time of day (when the diurnal cycle in SST is usually near its daily 
average). The blended Level 4 product contains a daily SST analysis based on the time-and-depth adjusted Level 
2/3 data.

How should i use the quality and uncertainty information? Quality 4 and 5 SSTs are recommended 
for use in climate applications where the absolute accuracy and stability of the SSTs are important. Lower quality 
levels may be used where maximising coverage is more important than accuracy.

Uncertainty information is provided for the single-sensor products as both a total estimated uncertainty, and 
broken down into components representing random, correlated, and systematic uncertainties. When using the 
CCI SSTs at their native resolution users should find the total estimate is sufficient. However, for applications 
where the data are aggregated to coarser spatio-temporal scales, the errors contributing to the total uncertainty 
cannot be assumed independent from pixel to pixel. The length scales for the correlated component are not fully 
quantified, but an appropriate approximation is to treat this component as “systematic” for scales under ~100 km 
and ~1 day125, and “random” at much larger scales.

Fig. 10 Global average monthly SST anomalies (K, relative to 1991-2020) for the SST CCI products and the 
comparison data (top panel) and spatial coverage as percent of the global oceans (excluding areas of sea ice) 
sampled for 5-degree monthly gridded data (lower panel). Anomalies for HadSST.4.0.1.0 comparison data 
are presented as an ensemble of 200 interchangeable realisations which capture the uncertainty in the bias 
adjustments applied to the in situ observations; the combined uncertainty associated with all measurement and 
sampling errors is shown as a pale grey envelope enclosing the ensemble. Other comparison data are shown 
in grey. Anomalies for DailyOIv2.1 comparison data are relatively cool compared to other datasets prior to 
the mid-2000s and are highlighted in lighter grey. Anomalies for AVHRR-15 from August-October 2000 and 
SLSTR-B for May 2018 are not shown due to low coverage associated with low data volumes and data beginning 
on the 30th May respectively. For the comparison data, only coverage for HadSST.4.0.1.0 is shown which 
approximates the coverage of the combined in situ ship and buoy networks.
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The Level 4 files contain uncertainty estimates for each SST value. The majority of all data have an analysis 
uncertainty under 0.5 K, peaking around 0.2-0.3 K. This does increase in coastal and sparsely observed regions 
and in extreme cases may reach 3 K or more. These higher values indicate that there were no valid SST obser-
vations input to the analysis, and the output was effectively extrapolated from more distant (either spatially or 
temporally) observations.

How should i refer to the products in publications? Experience has shown that it is sometimes difficult 
to infer which datasets have been used in publications, especially as the datasets become available from multiple 
repositories where they may be presented with different titles. We recommend that the first reference to the data-
set in a publication should give the dataset title and/or full dataset name from Table 5 to Table 9 including the 
version number. After the first usage, the shortened acronym forms are recommended as appropriate. For exam-
ple, when referring to the products write “using the SST CCI ATSR products” or when referring to the SSTs in a 
product “frontal features in CCI analysis SSTs”. We strongly encourage restatement of the data version number in 
captions, legends, slides, or other elements that may circulate independently. Publications should reference this 
paper and the data citation.

Will the climate data record be extended in time? Yes – an extension is available as an interim climate 
data record (ICDR) which is generated using the same software and systems as the dataset presented in this paper. 
The version 3.0 SST CCI climate data record covers the period 1980 to end-2021. The Copernicus Climate Change 
Service (C3S) funded the production of the ICDR for 2022, while the period 2023 and onwards is funded by the 
UK Earth Observation Climate Information Service (EOCIS, see https://eocis.org) and UK Marine and Climate 
Advisory Service (UKMCAS). The extension in time is in a delayed mode of up to a month.

Code availability
The Multi-sensor Matchup System114 is available from https://github.com/bcdev/MMS 127.
SLSTR pre-processing code to regrid Vis/NIR channels to match infrared bands43.
Code used to validate level 3 and 4 products is available128
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