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tOPMed imputed genomics 
enhances genomic atlas of 
the human proteome in brain, 
cerebrospinal fluid, and plasma
Heng Yi1,2,6, Qijun Yang2,6, Charlie Repaci2,3,6, Cheolmin Matthew Lee2,4, Gyujin Heo1,2, 
Jigyasha timsina1,2, Priyanka Gorijala1,2, Chengran Yang  1,2, John Budde  1,2, Lihua Wang1,2, 
Carlos Cruchaga1,2,5 & Yun Ju Sung  1,2,3 ✉

Comprehensive expression quantitative trait loci studies have been instrumental for understanding 
tissue-specific gene regulation and pinpointing functional genes for disease-associated loci in a tissue-
specific manner. Compared to gene expressions, proteins more directly affect various biological 
processes, often dysregulated in disease, and are important drug targets. We previously performed and 
identified tissue-specific protein quantitative trait loci in brain, cerebrospinal fluid, and plasma. We now 
enhance this work by analyzing more proteins (1,300 versus 1,079) and an almost twofold increase in 
high quality imputed genetic variants (8.4 million versus 4.4 million) by using TOPMed reference panel. 
We identified 38 genomic regions associated with 43 proteins in brain, 150 regions associated with 247 
proteins in cerebrospinal fluid, and 95 regions associated with 145 proteins in plasma. Compared to our 
previous study, this study newly identified 12 loci in brain, 30 loci in cerebrospinal fluid, and 22 loci in 
plasma. Our improved genomic atlas uncovers the genetic control of protein regulation across multiple 
tissues. These resources are accessible through the Online Neurodegenerative Trait Integrative Multi-
Omics Explorer for use by the scientific community.

Introduction
Genome-wide association studies (GWAS) have successfully identified a large number of genetic variants asso-
ciated with many human diseases1. Expression quantitative trait loci (eQTL) studies have been instrumental 
for understanding tissue-specific gene expression and regulation2. In particular, comprehensive and accessible 
catalogues provided by the Genotype-Tissue Expression (GTEx) project helped pinpointing functional genes 
for many disease-associated GWAS loci in a tissue-specific manner3. Compared to gene expressions, proteins 
more directly affect various biological processes, often dysregulated in disease, and are important drug targets. 
While several recent protein quantitative trait loci (pQTL) studies that identified genetic variants associated with 
inter-individual protein variability have uncovered intermediate molecular pathways for disease outcomes, they 
have been restricted to circulating plasma proteins4,5.

To address this knowledge gap, we previously obtained protein levels in neurologically relevant tis-
sues—brain, cerebrospinal fluid (CSF), and plasma. By performing pQTL study, we subsequently identified 
tissue-specific pQTLs that were critical for understanding the biology of complex traits, particularly in neuro-
logical diseases6. Our previous pQTL study was evaluated at genetic variants imputed using the reference panel 
from the 1,000 Genomes Project, which consisted of sequence data from 2,504 individuals in human genome 
build 19 (HG19)7. Recently, the NHLBI Trans-Omics for Precision Medicine (TOPMed) project completed 
a deep sequencing of 53,831 individuals across diverse populations and provides a reference panel in human 
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genome build 38 (HG38)8. This improved TOPMed reference panel provides an opportunity to impute more 
genetic variants with a better imputation quality for both rare and common variants.

In this study, we performed genotype imputation by using TOPMed reference panel and pursued multi-tissue 
pQTL study at these high-quality imputed genetic variants. By analyzing more proteins and an almost twofold 
increase in high-quality imputed genetic variants, we identified 38, 150 and 95 genomic regions associated with 
43 proteins in brain, 247 proteins in CSF, and 145 proteins in plasma, respectively. These pQTL findings are 
assessable through the Online Neurodegenerative Trait Integrative Multi-Omics Explorer (ONTIME; ontime.
wustl.edu/) for the scientific community.

Methods
Data sources. All the data sets used in this study are openly available from the National Institute on Aging 
Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS). In particular, the Knight-ADRC repository 
(https://www.niagads.org/knight-adrc-collection) were created for the Knight Alzheimer’s Disease Research 
Center (Knight ADRC)9 Memory and Aging Project at Washington University School of Medicine. NIAGADS 
is a secure storage and sharing site for NIH-funded genetic studies and is appropriate to host our sensitive data. 
The NIAGADS Data Sharing Service (DSS) utilized cloud technology and was complaint with both Health 
Insurance Portability and Accountability Act (HIPAA) and the Federal Information Security Management Act of 
2002 (FISMA). This study utilized genomics data (accession number NG00127.v1), which is available in https://
dss.niagads.org/datasets/ng00127, and proteomics data (accession number NG00102.v1), which is available in 
https://www.niagads.org/datasets/ng00102. Both data sets can be obtained through NIAGADS. The Institutional 
Review Board (IRB) of Washington University School of Medicine in St. Louis approved the study with IRB num-
ber 201109148, and research was performed in accordance with the approved protocols.

Genomic data, QC and imputation. Knight ADRC samples had been genotyped on multiple Illumina 
platforms (spanning 10 years). As a part of quality control (QC), we considered SNPs and individuals with 
genotyping rate of at least 98% per SNP or per individual and Hardy-Weinberg equilibrium (HWE) test (with 
P ≥ 1 × 10−6). We checked the consistency between sex of individuals and that estimated by genotype data and 
excluded those individuals with inconsistent sex information. Specifically, this sex check was performed using 
PLINK with the “check-sex” option, which provides SNPSEX, genetically determined sex based on the hete-
rozygosity rates of X chromosome data. If the reported sex was inconsistent with this SNPSEX, the sample was 
removed.

Before imputation, genome coordinates from hg19 were lifted over to hg38 using liftOver package in R10,11. 
We subsequently imputed using TOPMED (Version R2 on GRC38)12 with Eagle haplotype phasing (version 2.4).  
Only autosomal variants were imputed. Imputed variants were removed if an imputation quality score was less 
than 0.3, the call rate was less than 98%, or not in HWE. In addition, performed a relatedness check using iden-
tity by descent (IBD) and included only those unrelated individuals. We uploaded these imputed data (accession 
number NG00127.v1) to the NIAGADS (https://dss.niagads.org/datasets/ng00127/). A list of all uploaded files 
is shown in Supplementary Table 1.

Proteomic data. Proteomic data (accession number NG00102.v1) contained data in parietal lobes, CSF and 
plasma from the Knight ADRC samples. These were obtained through multiplexed, aptamer-based SOMAscan 
platform using 1,305 modified aptamers13. Laboratory staff obtaining proteomic assays were blinded to the geno-
types of participants. SomaLogic performed QC at the sample and aptamer level including hybridization control 
normalization, median signal normalization and inter-plate calibration using control aptamers (positive and neg-
ative controls) and calibrator samples. For each sample, hybridization controls on each plate were used to correct 
for systematic variability in hybridization. To correct for within-run technical variability, the median signal over 
all aptamers was assigned to different dilution sets within each tissue. The resulting hybridization scale factors and 
median scale factors were used to normalize data across samples within a run. The calibrator samples were used 
to correct for between-run variability.

To restrict our analysis to unrelated individuals with European ancestry, we performed principal component 
analysis (PCA) after merging the high-quality genomic data of Knight ADRC participants and the sequencing 
data from the 1000 Genomes Project (1KG)14, downloaded from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
data_collections/1000_genomes_project/release/20181203_biallelic_SNV/ (11/29/2021 release). PLINK15 was 
used to compute the first ten PCs. Based on the scatter plot between first two PCs, we selected Knight ADRC 
samples that were genetically similar to European individuals from the 1KG data (Supplementary Figure 1). In 
addition, these computed PCs were subsequently used as covariates in the GWAS analysis to correct for any 
possible bias due to population stratification. We considered proteomic data of 1,300 proteins for 378 individuals 
in brain, 869 proteins for 816 individuals in CSF, and 953 proteins for 529 individuals in plasma in this study. 
We uploaded these data (accession number NG00102.v1) to the NIAGADS (https://dss.niagads.org/datasets/
ng00102/). The demographic data for the samples, including age, sex, and ten PCs, were uploaded with same 
access number. A list of all uploaded files is shown in Supplementary Table 2.

Multi-tissue pQTl mapping. By integrating proteomic and genomic data, we performed GWAS for pro-
tein levels for each autosomal variant using glm option in PLINK215 version v2.00a2.3LM, including age, sex, 10 
genetic principal components (PC), and genotype array information as covariates. A total of 1,271 individuals 
with 160,506,717 imputed and directly genotyped variants were used for this study. Protein levels were log10 
transformed to approximate the normal distribution. The distributions of 1300 proteins in brain, 869 proteins in 
CSF, and 953 proteins in plasma are presented in Supplementary Figures 2–4, respectively. All proteins used in 
analysis are summarized in Supplementary Table 3.
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Significant association was classified into cis- and trans-pQTLs based on the following criteria. If the var-
iant was within 1 Mb upstream or downstream of the transcription start site (TSS) with a P < 5 × 10−8, it was 
classified as local-acting cis-pQTL. If the variant was outside the cis region ( ± 1 Mb of TSS) at a study-wide 
significance (P < 5 × 10−8/number of proteomic PCs), the association was classified as trans-pQTL. The min-
imum number of PCs needed to explain 95% of the variance in proteomic data was calculated and used. They 
corresponded to 105, 228, and 240, for brain, CSF, and plasma, respectively, resulting in the P thresholds as 
4.67 × 10−10, 2.19 × 10−10, and 2.08 × 10−10; Table 1). The coding genes were annotated by UniProt identifiers16 
and TSS information for each gene was annotated by R package ‘biomaRt’17 with GRCh38.p13.

All significant pQTLs were annotated using ANNOVAR18 version 2018-04-16 with the geneanno function 
in gene-based annotation mode. Genomic features and variants affecting the nearest genes were used for down-
stream analyses. To transfer variant position ID to reference SNP ID (rsID) from dbSNP, VarNote19 was utilized. 
The Target name, UniProt ID, EntrezGene ID, and Organism information were from the annotation file pro-
vided by SomaLogic.

Disentangling independent signals in a locus. To identify independent signals within each pQTL, we 
performed stepwise conditional analysis. For each round, significant variants were selected at the significance 
threshold P < 5 × 10−8. Before conditioning (round 0), each index variant (i.e, a variant with the smallest P in 
the region) was selected. Then, variants in 1 Mb upstream or downstream of the index signal were clumped 
using clump function in PLINK1.915 version v1.90b6.4. For the next rounds, variants that passed the significance 
threshold were included in the analysis and the index signal in the region was included as an additional covariate. 
The rounds repeated until there was no variant passing the significance threshold. When the analysis was done, 
the results were visualized using LocusZoom version 1.320.

Pleiotropic loci. Any significant region associated with more than one protein was identified as a pleiotropic 
region. In order to minimize any influence from LD, independent LD regions in hg38 (Berisa-Pickrell regions21, 
lifted over) were defined based on European LD scores from the 1000 Genomes Project Phase 3 data for the 
HapMap3 SNPs. All significant variants were assigned into a single region per LD (EUR)-defined loci for each 
tissue. The 2-Dimensional Manhattan plots were generated using functions from the R package ggplot2. Circos 
plots were generated using functions from the R package circlize22.

Mendelian randomization and colocalization. We performed a two-sample Mendelian randomization 
(MR) analysis to estimate the causal effect of proteins on Alzheimer’s disease (AD) risk by utilizing genetic vari-
ants as instrumental variables. The latest AD GWAS summary statistics were downloaded from the NHGRI-EBI 
GWAS Catalog23 for study GCST9002715824. MR analysis was conducted with functions from TwoSampleMR25 
package in R. To reduce the potential bias in our MR analysis, we removed pleiotropic regions. Also, we selected 
independent variants as instrumental variables after clumping (clump_r2 = 0.001, clump_kb = 500). Additionally, 
we performed a harmonization process with harmonise_data function using default options to combine datasets 
from different sources. The Wald ratio was used to estimate the causal effects. To determine significant pQTLs 
with a causal effect on the outcome, we corrected for false discovery rate (FDR) with a threshold of p-value < 0.05. 
Finally, we created regional plots using locuszoom20 to visualize the significant pQTLs and those for AD GWAS.

To investigate whether there is a shared causal variant between AD GWAS and pQTLs at a specific locus and to 
provide additional evidence for MR results, we conducted a Bayesian co-localization analysis. For this analysis, we 
utilized the coloc.abf function in the R package coloc26,27. Initially, we selected regions where the distance between the 
AD GWAS index signals and pQTL index signals was less than 2 Mb. We chose all the variants within a 1 Mb region 
( ± 500Kb) from the index signal for the co-localization analysis. We used posterior probability for hypothesis 4 (PP.
H4) indicating the presence of a single causal variant affecting the two traits. If PP.H4 was greater than 0.8, we con-
cluded that the same functional variant affects both AD GWAS and pQTL at that locus.

Comparison with findings from the 1000 Genomes imputed data. We compared this study with 
our previous study that were based on the 1000 Genomes imputed data7. NCBI Genome remapping was used to 

Study* Tissue # Subjects # Proteins # Indep. proteins** trans pQTL threshold*** MAF threshold Tested genetic variants

This study

Brain 378 1,300 105 4.67 × 10−10 0.01 8.30 million

CSF 816 869 228 2.19 × 10−10 0.005 9.50 million

Plasma 529 953 240 2.08 × 10−10 0.01 8.48 million

Previous study

Brain 343 1,079 75 6.67 × 10−10 0.02 3.70 million

CSF 817 713 169 2.96 × 10110 0.02 4.37 million

Plasma 528 931 230 2.17 × 10−10 0.02 4.40 million

Table 1. Characteristics of genomic and proteomic data used in the current study and those used in the 
previous study (Yang et al., 2021). *This study performed GWAS at the genetic variants imputed based on 
the TOPMed reference panel, whereas the previous study (Yang et al., 2021) performed GWAS at the variants 
imputed based on the 1000 Genomes Project. **The number of independent proteins corresponded to the 
number of principal components (PCs) that explains 95% of variance in proteomics data. **The threshold for 
trans pQTL corresponded to 5 × 10−8 divided by the number of independent proteins. The threshold for cis 
pQTL was genome-wide (5 × 10−8)
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covert genome coordinates between HG38 and HG19. Our main focus was to compare the number and detailed 
information of significant variants, regions, and independent pQTLs between the two studies. We defined loci 
replication as the inclusion of top signals in the HG38 region within the 2 Mb window of the HG19 region.

Web browser for navigating GWAs and PheWAs results. The Online Neurodegenerative Trait 
Integrative Multi-Omics Explorer (ONTIME) (available at https://ontime.wustl.edu) is a web browser that we 
developed using PheWeb version 1.3.1628, an open-source tool for visualizing and sharing GWAS and PheWAS 
results. We have now extended this browser to include results from this pQTL study. One of the key features of 
ONTIME is its interactive plot, which displays pQTL data and allows users to explore the data in detail. ONTIME 
provides intuitive visual summaries at three levels of detail: genome-wide summaries with traits, regional view, 
and phenome-wide associations. For GWAS genome-wide summary results, we utilized Manhattan and QQ 
plots. For a regional view, we used LocusZoom to display the LD among the variants in the region near the gene. 
Finally, phenome-wide summaries were utilized to highlight the association and P at the genetic variant across all 
proteins. All figures generated by ONTIME can be downloaded by users for further analysis.

Results
Multi-tissue pQTl mapping with TOPMed imputed genomics. Proteomic data of 1,300 proteins for 
378 individuals in brain, 869 proteins for 816 individuals in CSF, and 953 proteins for 529 individuals in plasma were 
used for this study. Based on genetic principal components (PC) of samples, we restricted our analysis to unrelated 
individuals with European ancestry. The TOPMed imputed data provided about 9.5 million variants with minor 
allele frequency (MAF) over 1% (or 0.5% in CSF which contains more individuals) for 770 Knight ADRC samples 
with CSF proteomics data (Table 1). Our previous study using genomic data imputed with the 1000 Genomes 
Project reference panel provided 4.4 million variants with MAF over 0.02 for the same 770 samples. Because of an 
improved imputation panel, this study examined association for all variants with MAF over 1% (or 0.5%). The num-
ber of tested variants was twice larger across all three tissues than the previous data (8.3 million versus 3.7 million in 
brain; 9.5 million versus 4.37 million in CSF; and 8.48 million versus 4.4 million in plasma; Table 1).

We performed GWAS for 3,122 proteins (1,300 in brain29–32; 869 in CSF33–35; 953 in plasma36–39), where each 
GWAS result provided an association between a protein and each of about 9 million tested genetic variants 
(Fig. 1). This study identified substantially more pQTL than our previous work6. In brain analysis, we found 
3,131 significant associations for 43 proteins in 38 genomic regions (Uploaded Tables 1, 2), where each region 
is defined as 1 Mb upstream or downstream of the index signal. In CSF, there were 38,774 associations for 247 
proteins in 150 genomic regions (Uploaded Table 2). In plasma, there were 13,344 associations for 145 proteins 
in 95 genomic regions (Uploaded Table 3). We generated the Miami plots (Fig. 2) that compare the findings 
from this study with the previously reported results. Among the 38 pQTL in brain, 26 were reported previously6 
and 12 loci were newly identified (shown in red in Fig. 2). We found 30 newly identified pQTL in CSF and 22 in 
plasma (Table 2). The number of significant pQTL was affected by the sample sizes, as a larger sample at more 
variants (for example in CSF) provides more statistical power for identifying association.

Fig. 1 Study overview. Proteomic data in three tissues and genomic data imputed with TOPMED were 
obtained and integrated to perform GWAS. Protein QTL (pQTL) were identified and further characterized with 
conditional analysis and pleiotropic regions. These results were compared with findings from our previous study 
and included in the ONTIME web browser.
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Disentangling independent signals within each locus. Each pQTL may contain multiple independent 
variants associated with protein levels. To identify such independent signals within each pQTL, we performed 
a conditional association analysis for each locus by including the sentinel (top index) variant as an additional 
covariate. When multiple association signals were present, we continued this iteratively until no associations 
remained. For example, cis pQTL for ARTS1 in brain contained 279 genetic variants reaching genome-wide 
significance (all with P < 5 × 10−8; Uploaded Table 1; Fig. 3). The sentinel variant was observed at the common 
variant (rs151964, MAF = 0.36, β = 0.14, P = 2.69 × 10−40) located in an intron of ERAP1. There was a missense 
variant (rs30187) in LD (r2 = 1). After conditional analysis, we identified a secondary signal at another com-
mon variant (rs13178387, MAF = 0.20) also in intron of ERAP1 (β = −0.15, P = 3.50 × 10−32 before condition-
ing; β = −0.10, P = 4.01 × 10−20 after conditioning). Another missense variant (rs2287987) was in LD (r2 = 0.8). 
Additional conditional analysis identified a third signal at rs26653, a missense variant in ERAP1 (β = 0.14, 
P = 2.90 × 10−39 before conditioning; β = 0.08, P = 2.55 × 10−16 after conditioning; Fig. 3). All the remaining 37 
pQTL in brain contained one independent signal.

In CSF, 47 pQTL had more than one independent signals. There were 29 pQTL with two signals, 12 pQTL 
with three independent signals, 6 pQTL with four independent signals. For example, cis pQTL for Interleukin-9 
in CSF contained 257 genome-wide significant variants (Uploaded Table 2; Fig. 3). This locus had four inde-
pendent signals. The primary signal was observed at the common variant (rs31530, MAF = 0.37, β = −0.08, 
P = 2.42 × 10−32) located at the UTR of LECT2. There was a missense variant (rs31517) in LD (r2 = 0.94). The 
secondary signal was observed at a missense variant (rs2069885, MAF = 0.12, β = −0.12, P = 5.42 × 10−31) in 
IL9. The third signal was observed at the intronic variant (rs80231241, MAF = 0.05, β = 0.13, P = 1.95 × 10−17) 
in SLC25A48. Finally, the fourth independent signal was observed at low frequency variant (rs143938569, 
MAF = 0.02, β = 0.18, P = 4.64 × 10−12), located between IL9 and FBXL21P. The remaining 103 pQTL belonged 
to one single LD block. In plasma, there were 72 pQTL with one independent signal, 17 pQTL with two signals, 
and 6 pQTL with three independent signals.

Pleiotropic loci. To separate local-acting cis pQTL from trans pQTL, we generated a two-dimensional 
bird’s-eye view of association identified in this study (Fig. 4). Of the 150 associated regions in CSF, 130 (86.7%) 
had cis pQTL only, 16 (10.7%) trans only, and 4 (2.6%) both cis and trans. In plasma, 78 (82%) had cis only, 14 
(15%) trans only and 3 (3%) both. The genomic regions in brain included 32 cis pQTL and 6 trans pQTL.

While most regions were associated with a single protein, we found several pleiotropic loci, genetic regions 
that were associated with multiple proteins. In CSF, there were 49 pleiotropic loci (Supplementary Table 4), 
where 6 loci were associations with more than five proteins. In particular, the APOE locus on chromosome 
19 was associated with 15 proteins (Fig. 5). In brain, there were 33 pleiotropic loci, including 3 loci associated 
with more than 5 proteins. In plasma, there were 21 pleiotropic loci, where 3 loci were associated with more 
than 5 proteins. This included the major histocompatibility complex (MHC) locus on chromosome 6 that were 
associated with 16 proteins (Fig. 6). In brain, there were 4 pleotropic loci, including the SIGLEC gene cluster on 
chromosome 19.

Mendelian randomization and colocalization. As a proof of concept, we investigated whether any of 
proteins with pQTL would be causal for Alzheimer’s disease (AD). We found that 5 proteins in brain, 10 proteins 
in CSF, and 24 proteins in plasma had evidence of being causal for AD risk (Supplementary Table 5). This is more 
than what we previously found (7 proteins in brain, 3 in CSF, and 13 in plasma)6. In addition to more variants 
tested, this study considered 75 AD loci from Bellinguez et al.24, whereas the previous study considered the 21 
AD loci from Kunkle et al.40, the most comprehensive AD GWAS at the time of publication. For each of these 
potentially causal proteins, we further examined a presence of one single functional variant affecting both protein 
levels and AD risk with Bayesian colocalization method, coloc R package27. We found colocalization evidence 
(with posterior probability PP.H4 > 0.8) for two proteins in brain (Cathepsin H and Siglec-9). There was such 
colocalization evidence also for five proteins in CSF and one protein in plasma (Supplementary Table 6).

Tissue Study*
Significant 
associations

Genomic regions 
with pQTL**

Independent 
signals***

Brain

This study 3,131 38 40

Previous study 2,484 26 32

Additional findings 1,038 12 12

CSF

This study 38,774 150 219

Previous study 25,993 127 174

Additional findings 15,076 30 31

Plasma

This study 13,344 95 124

Previous study 9,710 73 90

Additional findings 5,515 22 31

Table 2. The number of significant associations, pQTL and independent signals. *This study performed GWAS 
at the genetic variants imputed based on the TOPMed reference panel, whereas the previous study (Yang et 
al., 2021) performed GWAS at the variants imputed based on the 1000 Genomes Project. **Genomic regions 
showing pQTL (cis or trans) associated with at least one of proteins. ***For each genomic region, independent 
signals were obtained from the conditional analysis.
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In all three tissues, Cathepsin H showed the evidence of being causal and colocalized with AD risk (Fig. 6). 
The minor allele (A) of the top sentinel variant rs34593439, located in intron of CTSH, was associated with 
lower Cathepsin H levels, consistently in all three tissues (β = −0.18, P = 2.47 × 10−17 in brain; β = −0.26, 
P = 2.03 × 10−88 in CSF; β = −0.23, P = 1.59 × 10−31 in plasma). The latest AD GWAS newly identified CTSH 
locus associated with AD risk24. The minor allele (A) of the index variant rs12592898 was associated with lower 
AD risk (OR = 0.94, P = 4.2 × 10−9). These two index variants were in moderate LD (r2 = 0.78). Our MR results 
showed a causality of Cathepsin H levels for AD risk with positive relationship in all three tissues (β = 0.34, 
FDR = 1.10 × 10−4 in brain; β = 0.23, FDR = 3.23 × 10−4 in CSF; β = 0.26, FDR = 4.54 × 10−4 in plasma), indicat-
ing that higher Cathepsin H levels significantly increase AD risk. Furthermore, our colocalization analysis found 
the evidence of one functional variant in CTSH affecting both Cathepsin H levels and AD risk in all three tissues 
(posterior probability PP.H4 = 0.995 in brain; PP.H4 = 0.960 in CSF; PP.H4 = 0.948 in plasma).

Fig. 2 Improvement with TOPMed imputed data. Miami plots comparing pQTL findings from this study 
(upper) with findings from our previous study (lower) in brain (panel a), CSF (panel b), and plasma (panel c).  
Newly identified hg38 findings were shown in red. The y-axis was restricted to P > 1.0 × 10−15 in brain and 
P > 1.0 × 10−20 in CSF and plasma.

Fig. 3 Complexity of pQTL in ERAP1 and LECT2 regions. Brain cis pQTL for ARTS1 in ERAP1 contains 
279 variants at P < 5 × 10−8 belonging to multiple LD blocks (a), resulting in three independent signals (local 
plots in b). CSF cis pQTL for Interleukin-9 in LECT2 contains 257 genome-wide significant variants (LD in c), 
resulting in four independent signals (local plots in d).
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Fig. 4 Global two-dimensional view of pQTL mapping. We identified both cis pQTL (red points) and trans 
pQTL (blue points) in brain (a), CSF (b), and plasma (c). The x-axis is the position of genetic variants regulating 
the protein levels. The y-axis is the location of transcription start site (TSS) of the gene encoding the protein for 
the pQTL signal.

Fig. 5 Circos plots of pleiotropic regions. The APOE locus on chromosome 19 was associated with 15 proteins 
in CSF (a), and the major histocompatibility complex (MHC) locus on chromosome 6 was associated with 
16 proteins in plasma (b). Lines link the genomic location of the variant with genes encoding the associated 
proteins. Line thickness is proportional to effect size of association (red, positive; blue, negative).

Fig. 6 Colocalization of Cathepsin H with AD risk across three tissues. Cathepsin H showed the evidence of 
being causal (indicating that higher Cathepsin H levels significantly increase AD risk) and colocalized (PP.
H4 > 0.94) with AD risk at CTSH. Local association plots of Cathepsin H are shown for brain (a), CSF (b), and 
plasma (c) along with the local plot of AD risk (d).
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Web browser for navigating GWAs and PheWAs results. Our pQTL study generated GWAS results 
for 1300 proteins in brain, 869 proteins in CSF and 953 proteins in plasma, where each GWAS provided an 
association at about 9 million genetic variants. To enable other interested researchers to navigate the association 
results from this study, we have now extended our web browser, the Online Neurodegenerative Trait Integrative 
Multi-Omics Explorer (ONTIME) using PheWeb28. The site includes Manhattan plots to display association for 
each of the 3122 GWAS results and regional view (LocusZoom) plots to visualize association at a particular 
locus for each protein. In addition, the site provides a phenome-wide association studies (PheWAS) plot for each 
genetic variant to show association for the variant across all proteins in all three tissues. To illustrate our ONTIME 
resource, Fig. 7 presents a Manhattan plot of Cathepsin H protein in CSF, a LocusZoom plot at CTSH locus on 
chromosome 15, and a phenome-wide view for the variant rs34593439, showing the consistent associations in all 
three tissues.

Discussion
We previously performed pQTL study for protein levels in neurologically relevant tissues and identified 
tissue-specific pQTLs6. We have now expanded and enhanced this work, with an almost two-fold increase in 
the number of genetic variants (around 9 million variants). In this study, we identified 38 genomic regions 
associated with 43 proteins in brain, 150 regions associated with 247 proteins in CSF, and 95 regions associated 
with 145 proteins in plasma. They included trans-associated loci for 6 proteins in brain, 52 proteins in CSF, and 
47 proteins in plasma. In addition, we have expanded our web portal ONTIME (https://ontime.wustl.edu/) to 
include this pQTL study for use by the scientific community.

Our comprehensive study uncovering genetic regulation of protein levels provides an opportunity to deliver 
improved understanding of the mechanistic basis of disease. As a proof of concept, we performed Mendelian 
randomization and colocalization with the AD GWAS24. We identified the evidence for Cathepsin H being 
causal and colocalized with AD risk at CTSH in all three tissues, indicating that higher Cathepsin H levels 
significantly increase AD risk. Cathepsins, a group of lysosomal proteases, play a central role in several cellu-
lar processes including degradation of intracellular proteins, extracellular matrix remodeling, and apoptosis. 
Cathepsins B, D and E are shown to play a key role in neuroinflammation and ß-Amyloidosis41–43. Up-regulated 
microglial Cathepsin H expression, release, and activity in brain is shown to lead to neuronal death in neuroin-
flammation44. Recently, causality of CTSH gene for AD was reported with mass-spectrometry brain proteomic 
ROS/MAP data45. Our findings support this causality in brain and extend it further to CSF and plasma. While 
we demonstrated this analysis with AD, our pQTL findings are a useful resource for studying neuropsychiatric 
and neurodegenerative disorders. We hope that this will be valuable for the scientific community.

Fig. 7 Web browser ONTIME for Cathepsin H protein. The ONTIME browser includes tabular information, 
where any user can search a particular protein (a), a Manhattan plot of Cathepsin H in CSF (b), a LocusZoom 
plot at CTSH locus on chromosome 15 (c), and a phenome-wide view for the variant rs34593439 showing 
association with multiple proteins (d).
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Data availability
The genomics data (accession number NG00127.v1) was uploaded to https://dss.niagads.org/datasets/ng00127. 
The proteomics data and all pQTL results (accession number NG00102.v1) were uploaded to https://www.
niagads.org/datasets/ng00102.

As these pQTL results are very large, we created multiple Zenodo. The brain pQTL results are stored in 
four archived files accessible through the following DOIs: https://doi.org/10.5281/zenodo.819091729, https://
doi.org/10.5281/zenodo.819099930, https://doi.org/10.5281/zenodo.819100531, and https://doi.org/10.5281/
zenodo.819100832. The CSF pQTL results are in three archived files, accessible via the following DOIs: https://
doi.org/10.5281/zenodo.819101433, https://doi.org/10.5281/zenodo.819101834, and https://doi.org/10.5281/
zenodo.819102735. The plasma pQTL results are available in four archived files with the following DOIs: 
https://doi.org/10.5281/zenodo.819103236, https://doi.org/10.5281/zenodo.819104837, https://doi.org/10.5281/
zenodo.819105238, and https://doi.org/10.5281/zenodo.819105539.

In addition, significant pQTL results are provided in a file named ‘pQTL-hg38 Uploaded Tables.xlsx’ (https://
doi.org/10.5281/zenodo.10011473).

Code availability
Analysis in this study was performed with the following open-access programs.

plink1.9 v1.90b6.4: https://www.cog-genomics.org/plink/1.9/
plink2 v2.0, alpha software for processing genetic data and performing GWAS: https://www.cog-genomics.

org/plink/2.0/
TOPMed genotype imputation on GRC38: https://imputation.biodatacatalyst.nhlbi.nih.gov/
R package liftOver: https://www.bioconductor.org/help/workflows/liftOver/
R package TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/news/index.html
R package Coloc: https://github.com/chr1swallace/coloc
PheWeb v1.1.19, a web server for browsing phenome-wide associations: https://github.com/statgen/pheweb
In addition, we uploaded the R code for conducting Mendelian randomization and colocalization (as the file-

names ‘mr.R’ and ‘coloc.R’, resepectiviely) to Zenodo: (https://doi.org/10.5281/zenodo.10011473).
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