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Single-cell integrative analysis 
reveals consensus cancer cell states 
and clinical relevance in breast 
cancer
Lin Pang  1,2 ✉, Fengyu Xiang  1,2, Huan Yang1,2, Xinyue Shen1, Ming Fang1, Ran Li1, 
Yongjin Long1, Jiali Li1, Yonghuan Yu1 & Bo Pang  1 ✉

High heterogeneity and complex interactions of malignant cells in breast cancer has been recognized 
as a driver of cancer progression and therapeutic failure. However, complete understanding of common 
cancer cell states and their underlying driver factors remain scarce and challenging. Here, we revealed 
seven consensus cancer cell states recurring cross patients by integrative analysis of single-cell RNA 
sequencing data of breast cancer. The distinct biological functions, the subtype-specific distribution, 
the potential cells of origin and the interrelation of consensus cancer cell states were systematically 
elucidated and validated in multiple independent datasets. We further uncovered the internal regulons 
and external cell components in tumor microenvironments, which contribute to the consensus cancer 
cell states. Using the state-specific signature, we also inferred the abundance of cells with each 
consensus cancer cell state by deconvolution of large breast cancer RNA-seq cohorts, revealing the 
association of immune-related state with better survival. Our study provides new insights for the cancer 
cell state composition and potential therapeutic strategies of breast cancer.

Introduction
Breast cancer is the most commonly diagnosed cancer1 and a leading cause of cancer-related mortality in 
women2. The efficacies of therapies targeting key genes, like the estrogen receptor (ER), human epithelial growth 
factor receptor 2 (HER2/ERBB2), the mammalian target of rapamycin (mTOR) and the epidermal growth fac-
tor receptor (EGFR), were influenced by the heterogeneous cancer cells and tumor-associated cells which were 
characterized by diverse transcriptional or mutational states3–5. Our lack of understanding of the tumor hetero-
geneity is a major obstacle for implementation of precision medicine6.

Breast cancer is a highly heterogeneous disease, which is clinically stratified based on the expression of ER, 
progesterone receptor (PR), and HER2 into three broad clinical groups that correlate with prognosis and treat-
ment strategies: ER+, HER2+, and triple-negative breast cancer (TNBC)7. Alternative classification based on 
gene expression have been also proposed8–10. Although these stratifications bring improvement of therapy suc-
cess and survival rates, the tumor cell heterogeneity exists and patient responses vary within each subtype6, 
demanding a deeper understanding of cellular compositions and their associations with clinical phenotype.

Since breast cancer intrinsic subtypes showed prominent resemblance to distinct breast epithelial cells, which 
may reflect cells of origin across subtype2, many studies focused on the mammary cell hierarchy and its relation 
with breast cancer11,12. For example, Bhat-Nakshatri et al. performed single-cell RNA sequencing (scRNA-seq) 
of breast biopsies of healthy women and identified three main cell groups including basal/stem, luminal progeni-
tor and luminal mature cells. They further obtained 23 clusters and mapped them to bulk transcriptome of breast 
cancer patients for each molecular subtype13. Recently, the Human Breast Cell Atlas (HBCA) was constructed to 
create a comprehensive atlas of cell types and cell states in normal breast tissues, providing valuable reference for 
studying the mechanism of tumorigenesis and progression of breast cancer14. Moreover, single-cell analyses of 
tumor tissues also provided insights into the cellular architecture of breast cancer and refinement of molecular 
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signatures correlated with malignant transformation and clinical subtype7,15,16. However, the incomplete con-
sistency of results among those studies and their limited clinical value declare the large insufficiency of our 
understanding of the cellular heterogeneity. Further systematic evaluation of tumor cell state compositions, their 
functions and origins, as well as their contributions to breast cancer subtype and clinical outcomes is required.

Single-cell RNA sequencing (scRNA-seq) is a revolutionary technique that enables an unbiased dissection of 
the spectrum of heterogeneous subpopulations and the transcriptional states of single cells within breast cancer 
tissues. Here we elucidated the consensus cancer cell states across breast cancer patients by integrative analysis 
of scRNA-seq data. Cancer cells with each state had distinct functions and subtype-specific distribution, which 
were validated in another three sets of scRNA-seq data of breast cancer. We dissected the intrinsic factors and 
those in the microenvironment that contributed to diverse cancer cell states, the relations of each state with 
clinical phenotype and outcomes. Our study provides new insights for the consensus cellular state composition 
of breast cancer and potential therapeutic strategies.

Results
The relatively minor consistence between the genomic and transcriptomic heterogeneity. To 
decipher the tumor cellular composition of breast cancer cells, we downloaded the scRNA-seq data of 26 primary 
breast cancer patients, which was published by Wu et al.17. After quality control filtering, we performed unsuper-
vised clustering analyses, which captured six major cell types: epithelial cells, B cells, T cells, stromal, endothelial 
cells, myeloid, each defined by singleR18 and canonical markers (see Methods). We further identified malignant 
cells using large-scale chromosomal copy number variation (CNV) inferred by inferCNV19 (see Methods). After 
removing patients without malignant cells, a total of 65,437 cells with 16,681 detected genes were retained from 
16 patients (Supplementary Table 1), and each cell type contained cells from the majority of patients (Fig. 1a).

To determine the contribution of genomic changes to transcriptomic heterogeneity, we first inferred the 
tumor subclonal architecture in each patient based on the CNV profiles (Fig. 1b and Supplementary Fig. 1, 
see Methods). The numbers of subclones were from 3 to 8 with a median of 5 across patients, suggesting high 
genomic heterogeneity. We then re-clustered malignant cells in each patient and aimed to explore whether 
a subclone tended to enrich specific transcriptional cluster (Fig. 1c and Supplementary Fig. 2). We did not 
observe the correspondence between them, as most subclones contained cells within at least two transcriptional 
clusters (Fig. 1d and Supplementary Fig. 3), although a specific subclone may be predominantly enriched for 
one transcriptional cluster, such as clone4 in CID4463. To confirm this, the adjusted Rand index20 (ARI) was 
adopted as measure of agreement between the genomic and transcriptional heterogeneity. Relatively low ARIs 
were observed for all patients (Fig. 1e). Moreover, for each subclone, we used the Jaccard similarity coefficient 
to measure the overlaps between the differential expression genes and subclone-specific CNV genes (Fig. 1f, see 
Methods). The results showed very low Jaccard similarity coefficients for all subclones across patients, suggesting 
partial contributions of genomic changes to the transcriptional heterogeneity of breast cancer cells.

identifying consensus states of breast cancer cells. Next, we focused on the transcriptomic hetero-
geneity of breast cancer cells. In order to determine the cancer cell states that are generalizable across patients, 
we integrated the expression profiles of malignant cells from all the 16 patients using Harmony21 (see Methods). 
This analysis generated 11 clusters of cells (hc0-hc10, Fig. 2a,b). Each cluster contained cells from most patients 
with different proportions (Fig. 2c), except for hc5, hc6, hc8 and hc9, where hc5 and hc6 were mostly composted 
of cells from CID4515, while hc8 and hc9 were mostly composted of cells from CID44991. To learn more about 
the biological functions underlying these cancer cell clusters, we identified their significantly upregulated genes 
as signatures (Fig. 2d and Supplementary Table 2) and performed functional enrichment analysis. The results 
demonstrated quite distinct biological processes involved by each cluster, except for hc4 and hc9 (Fig. 2e). PIP, 
SCGB2A2, ESR1 were enriched in hc0 (Supplementary Fig. 4a, Supplementary Table 2), which was associated 
with hormone-mediated signaling pathway and response. ARG2, ARG3, IFI6 and IFI27 were enriched in hc1 
and hc4, which was involved in muscle cell differentiation and protein folding. Hc2 highly expressed KRT7, 
KRT81 and ERBB2, which participated in lipoprotein metabolic process. Hc3 displayed high cell proliferation 
activity as it was almost exclusively enriched for cell cycle-related genes, such as CDC20, CDK1 and MKI67. 
Immune-related biological processes were enriched in hc5, hc6 and hc7, where both hc5 and hc6 were involved 
in antigen processing and presentation, while hc7 was additionally enriched for the regulation of immune cells 
activation. Hc8 showed the activation of metabolic processes, such as cellular response to hypoxia and glycolysis. 
Hc10 were enriched for mesenchymal-related markers, such as VIM, COL1A1 and ACTA2, which was involved 
in wound healing, extracellular matrix organization and angiogenesis. Cancer hallmarks analysis by gene set var-
iation analysis (GSVA) validated above function annotation, as the meiosis, checkpoint and DNA repair pathways 
were enriched in cells with state hc3 while the EMT, angiogenesis and coagulation pathways were enriched in 
cells with state hc10 (Fig. 2f). Given that hc5, hc6, hc8 and hc9 were individual-specific (Supplementary Fig. 4b), 
we considered that hc0-hc4, hc7 and hc10 respectively represent seven consensus cancer cell states (CCSs) with 
distinct functions in breast cancer.

systemic characterization of consensus cell states and their intrinsic driver factors. To under-
stand how those consensus cell states are related to each other, we calculated the spearman correlation in a pair-
wise manner, which showed two highly correlated groups (Fig. 3a), with one containing hc0, hc1, hc4 and hc10 
(denoted G1), and the other containing hc2, hc3 and hc7 (denoted G2). Given the dominant role of cell-of-origin 
patterns in cancers22, we determined the lineage identity for each CCS by computing expression scores using 
bulk RNA-seq signatures of major epithelial cell types in the breast23,24. States hc0, hc1 and hc4 resemble “mature 
luminal” cells, states hc2, hc3 and hc7 correspond closely to “luminal progenitors” while hc10 matched with cell 
population designated as “Basal/MaSC” (Fig. 3b). To validate this, lineage identity was also determined using 

https://doi.org/10.1038/s41597-024-03127-0


3Scientific Data |          (2024) 11:289  | https://doi.org/10.1038/s41597-024-03127-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

scRNA-seq signatures14. Similar results were observed that hc0, hc1 and hc4 correspond to luminal cells desig-
nated as “LumHR” and “LumSec”, hc3, hc7 and hc10 resemble “basal” cells, while hc2 showed high scores of both 
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Fig. 1 The association between genomic and transcriptomic heterogeneity in breast cancer. (a) UMAP plots of 
major cell types (left) and patients (middle), and distribution of cell counts across major cell types, colored by 
patients (right). (b) In patients CID4463, CID3921, and CID44971, inferCNV heatmaps of all malignant cells 
along with their respective subclones, identified based on the inferred copy number alteration of all patients. 
Each row represents a cell and column represents a gene. (c) TSNE visualization displaying transcriptional 
clusters (top) and subclones (bottom). (d) Relative proportions of transcriptional clusters within each 
subclone. (e,f) Assessment of ARI (e) and Jaccard index (f) measuring the concordance between genomic and 
transcriptomic heterogeneity across 16 patients.
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“LumSec” and “basal” (Supplementary Fig. 5a). Since studies have reported that basal cells contain a subset of 
mammary stem cells (MaSCs)25, we evaluated the differentiation potential of each cell using CytoTRACE26 and 
SCENT27. As expected, hc2, hc3, hc7 and hc10 exhibit higher scores than the others, representing higher stemness 
(Supplementary Fig. 5b,c). And when we reconstructed differentiation trajectory using all the cells of seven CCSs 
by Monocle28 (see Methods), we found that cells from HER2+ /TNBC patients distributed in one branch, whereas 

Fig. 2 Consensus cell state map of breast cancer cells. (a,b) UMAP visualization of 21,521 malignant cells, 
colored by harmony cluster (a) and patients (b). (c) The percentages of cells from all patients in each harmony 
cluster. (d) The heatmap displaying scaled expression values of discriminative genes per cell cluster as defined in 
the panel. (e) Bubble diagram showing the representatives of enriched GO terms for each cluster. (f) Heatmap 
showing the relative activity scores of cancer hallmark gene sets (n = 50) in each harmony cluster.
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Fig. 3 Dissection of consensus cell states (CCSs) and their intrinsic driver factors. (a,b) Heatmap illustrating 
spearman correlation coefficients (computed using DEGs) between CCSs (a) and the lineage identity of cells, 
including mature luminal, luminal progenitors, and Basal/MaSC (b). (c) Pseudo-time trajectory of malignant 
cells in each tumor, with patients grouped by their clinical subtypes. (d) Proportion of cycling (cells in G2M 
or S phase) and non-cycling cells across the consensus cell states. (e) Percentage distribution of molecular 
subtypes (LumA, LumB, Her2, Basal, and Normal) assigned to each of the seven CCSs. (f) Spearman correlation 
coefficient indicating the relationship between the seven CCSs and each molecular subtype. (g) Heatmap 
depicting the relative activities of regulons in cells of each CCS, accompanied by patient and clinical subtype 
information. (h,i) Pathology annotations and localization of CCSs based on CARD deconvolution: sample 
1160920 F from ST_Wu_2021 (h), and sample M11 from ST_Angele_2023 (i). The proportion of CCSs for each 
spot was calculated using CARD. Red indicates a higher proportion, and blue indicates a lower proportion.
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those from ER+ patients located in the other two different branches (Fig. 3c). These results were accordant with 
that G1 was enriched in ER+ patients while G2 was enriched in HER2+ /TNBC patients (Supplementary Fig. 4b), 
supporting the report that HER2+ breast cancers may originate from luminal progenitors and mature luminal 
cells, while luminal-A/B breast cancers likely originate from mature luminal cells29.

We next examined the tumor cell proliferative property and assessed the proliferation fractions of cells. 
Each individual cell was assigned a cell-cycle state based on its expression score of cell-cycle-related signature 
(see Methods). The results suggested that hc3 had the highest proliferation rate, consistent with its function 
annotation, followed by hc7 and hc2 (Fig. 3d). Considering that the intrinsic subtypes of breast cancer also 
likely reflect distinct features and origins of cells, we aimed to explore the linkage between CCS and molecular 
subtype. PAM50 assignment of each cell was performed using genefu30, showing higher fractions of LumA and 
LumB in G1 and higher fractions of Basal or Normal in G2 (Fig. 3e). Moreover, we calculated the spearman 
correlation coefficient between the proportion of each molecular subtype and that of each CCS across patients. 
This analysis suggested that G1 was mainly associated with LumA/B while G2 was related with Her2, Basal and 
Normal (Fig. 3f). Notably, hc10 showed partial association with Basal, suggesting a mixed state to some extent, 
while hc3 showed extensive associations with each subtype except for LumA, suggesting the wide distribution 
of cycling cells.

To reveal the potential molecular basis driving the consensus cancer cell states, we utilized single-cell regula-
tory network inference and clustering (SCENIC)31 to identify the underlying regulatory network (see Methods). 
Generally, hc0, hc1, hc4 and hc10, referring to most cells from ER+ patients, showed higher activities of ELF3, 
EGR2/3, SOX9, JUNB and FOSB, while hc2, hc3 and hc10, referring to most cells from HER2+ /TNBC patients, 
showed higher activities of TEAD4, YY1, SOX11, SOX4 and BCLAF1 (Fig. 3g). Moreover, each CCS was also 
driven by relevant TFs (Supplementary Fig. 5d and Supplementary Table 3), including EP300, SP1, and HCFC1 
for hc0; MAFF, BCL3, and MYC for hc1; THRA, CEBPA, and GRHL2 for hc2; EZH2, E2F8, and NFYB for 
hc3; SIX1, ZNF44, and TCF7 for hc4; NFATC2, RUNX3, and NR3C1 for hc7; and TEAD1, MEF2A for hc10. 
Notably, EP300 is one of the critical components of the core ER signaling complex, which could facilitate disease 
progression by potentiating ER signaling in breast cancer32, showing high activity in hc0. RUNX3 was enriched 
in hc7, which is a critical transcription factor playing essential roles in development and carcinogenesis and 
has been frequently reported to be a tumor suppressor in breast cancer through diverse mechanisms33. These 
results demonstrated that cells with each CCS contributed to the carcinogenesis and progression through dis-
tinct regulators-mediated signaling pathways in breast cancer.

To reveal the distribution of CCSs, we accessed public spatial transcriptomics (ST) data of 12 breast can-
cer samples from three datasets, including ST_Wu_202134, ST_Angele_202335, and ST_Amanda_202336 (see 
Methods). After data processing, conditional autoregressive-based deconvolution (CARD)37 was applied to 
calculate the proportion of CCSs at each spatial location (see Methods). The results showed that seven CCSs 
exhibited consistent regional specificity in three datasets (Fig. 3h,i, and Supplementary Fig. 6). For example, hc7 
(immune state) tended to be enriched in the regions with lymphocyte infiltration and inflammation, proximity 
to the peripheral zone of the tumor. However, hc10 was enriched in the stroma regions around tumor margin, 
which was consistent with the EMT-associated functional state. Other CCSs (hc0, hc1, hc2, hc3, and hc4) were 
mainly inside the tumor region. As a validation, multimodal intersection analysis (MIA)38 was also used to gen-
erate the corresponding relationship between the CCSs and ST tissue-specific locations (see Methods), and we 
observed similar results (Supplementary Fig. 7).

Validation of consensus cell states in extra scRNA-seq datasets of breast cancer. To determine 
whether the consensus cell states and their relations with subtypes can be reproduced, we obtained another three 
scRNA-seq datasets. The processing of these validation data was similar with Wu_2021 (see Methods).

For Bhupinder_202139 cohort, based on the clustering result (Fig. 4a and Supplementary Fig. 8a), we retrieved 
28,615 malignant cells from 13 ER+, 6 HER2+ and 6 TNBC patients using CopyKAT40. Integrated analysis fur-
ther divided all malignant cells into 13 clusters (C0-C12, Fig. 4b,c), in which C4, C6 and C10 formed a separate 
group and correspond to hc3 (Supplementary Fig. 8b). C9 and C5 highly expressed gene signatures of hc7 and 
hc10, respectively. When cells were ordered by clinical subtype, we found that signature genes of hc0, hc1 and 
hc4 showed higher expression in ER+ patients, those of hc2 were enriched in HER2+ patients while those of 
hc3 and hc10 were expressed in a part of cells of each subtype (Fig. 4d and Supplementary Fig. 8c). To confirm 
the CCS distribution in each subtype, we assigned each cell a CCS based on expression score of corresponding 
signatures. This analysis suggested that ER+ patients enriched for hc0, hc1 and hc4 except for ER0167 and 
ER0319, while HER2+ /TNBC patients enriched for hc2, hc3 and hc7, except for HER20161 (Fig. 4e). Although 
patients ER0167 and ER0319 were labeled ER positive, their cellular state compositions resembled those of 
HER2+ /TNBC patients. This promoted us to explore the expression levels of markers for ER+ (ESR1, PGR), 
HER2+ (ERBB2) and TNBC (VIM) subtype within patients. Interestingly, both ER0167 and ER0319 expressed 
comparable expression level of VIM with TNBC patients (Fig. 4f), however, ER0319 showed few expression 
of ERBB2 and almost no expression of ESR1 and PGR, and ER0167 also expressed ESR1. These observations 
implied the tendency to HER2+ /TNBC subtypes of two patients. PCA analysis further demonstrated the sim-
ilarity of ER0319 with TNBC patients and ER0167 with HER2+ patients (Fig. 4g). Moreover, HER2+ patient 
HER20161 showed ER-like state composition and expressed not only ERBB2 but also ESR1 and PGR, suggesting 
its transformation from ER+ subtype (Fig. 4e–g). PAM50 analysis supported the correspondence between CCS 
and molecular subtype (Fig. 4h,i). Notably, ER0319 enriched “Normal” and “Basal” cells, highly similar with 
TNBC patients (Fig. 4g).

For Liu_202241 and Xu_202142 cohorts, the same analysis as above revealed similar results (Supplementary 
Figs. 9–S12). Specially, although patient_3 in Xu_2021 cohort was labeled HER2+, her state composition 
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resembled ER+ patients since most cells were assigned hc4 state (Supplementary Fig. 11d). Notably, ERBB2 was 
expressed at very low level but ESR1 and PGR were highly expressed (Supplementary Fig. 11f), implying the mis-
classification of this patient. Molecular subtype analysis also supported this finding (Supplementary Fig. 11h).

Fig. 4 The consistency verification of CCSs, clinical subtypes, and molecular subtypes in the Bhupinder_2021 
dataset. (a) UMAP visualization of all cells in the Bhupinder_2021 cohort. Clusters were annotated based on 
predicted cell types using canonical markers. (b,c) Clusters of all malignant cells from patients with at least 10 
malignant cells, colored by clusters (b) and patients (c). (d) The expression levels of signature genes of CCSs 
within cancer cells of each clinical subtype. (e) Percentage distribution of CCSs assigned to each patient.  
(f) The expression levels of subtype markers within each patient, including ESR1 and PGR for ER+, ERBB2 
for HER2+, and VIM for TNBC subtypes. (g) PCA analysis of expression profiles from all patients, colored by 
subtypes. (h) Percentage distribution of molecular subtypes (LumA, LumB, Her2, Basal, and Normal) assigned 
to each patient. (i) Spearman correlation coefficient indicating the relationship between CCSs and  
each molecular subtype.
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All these results suggested that CCSs were general across breast cancer patients and could help to make more 
accurate classification and further therapeutic strategy.

specific intercellular communication contribute to the consensus cancer cell states. Breast can-
cer is characterized by distinct cellular microenvironments, where various non-tumorous cells exert significantly 
varied influences on tumor initiation and progression, therefore, we employed CellChat43 to explore the impact 
of the tumor microenvironment (TME) on CCSs. Among the 11 cell types in TME (Fig. 5a,b), cancer-related 
fibroblasts (CAFs), perivascular-like cells (PVLs) and endothelial cells exhibited substantial cellular commu-
nication with each CCS (Fig. 5c and Supplementary Fig. 13a). A majority of immune cells (dendritic cells, 
macrophages and monocytes) interacted with all CCSs via the LGALS9-CD44 ligand-receptor pair (Fig. 5d). 
Similarly, CAFs and PVL engaged with CCSs through ligand-receptor pairs involving PTN signaling (PTN-SDC4 
and PTN-NCL), MDK signaling (MDK-SDC4) and ANGPTL signaling (ANGPTL4-SDC4) pathways. This sug-
gested that SDC4 and NCL played a fundamental role in cancer cellular processes or were involved in regulatory 
mechanisms that were essential for various cell states. Evidently, unique signaling pathways underlined the influ-
ences of distinct microenvironmental cell types on tumor cells (Supplementary Figs. 13b, 14a). The VISFATIN 
and IGF signaling exclusively occurred in interactions between non-malignant cell types and hc1, hc4, and hc10. 
Similarly, the GRN signaling uniquely appeared in interactions with hc2. Moreover, the CXCR and MIF signaling 
pathways specifically manifested in interactions with hc7, and the PDGF signaling pathway exclusively emerged 
in interactions with hc10. Interestingly, in EGF signaling, hc1, hc4, and hc10 interacted with non-malignant cell 
types using ERBB4 and ERBB2+ ERBB4 complexes as receptors, while hc2 and hc3 communicated with the same 
cell types using EGFR and EGFR+ ERBB2 complexes as receptors. This observation might reflect the mechanism 
of the same cell types shaping the subtype-specific cancer cell states.

Apart from the common interactions, we also discerned a distinctive pattern where plasmablasts engaged 
exclusively with hc7 through ligand-receptor pairs MIF-(CD74 + CXCR4) and MIF- (CD74 + CD44) (Fig. 5d 
and Supplementary Fig. 14b). Macrophage migration inhibitory factor (MIF), a widely expressed cytokine, 
stimulates immune and epithelial cell proliferation, migration, and survival pathways through CD7444. 
CD74 is implicated in immune cell activation signaling, playing a pivotal role in histocompatibility complex 
II (MHCII)-restricted antigen presentation and anti-tumor immunity45. Consistently, MHCII-related genes 
were overexpressed in hc7 (Fig. 5e and Supplementary Fig. 14c) and known immunological pathways were 
enriched in hc7 (Fig. 5f), implying that plasmablasts potentially facilitated the presentation of exogenous anti-
gens to T lymphocytes via interaction with the CD74 receptor on the surface of hc7 cells, thereby eliciting 
an immune-activated response. Accordingly, hc7 exhibited the most pronounced interaction signal strength 
with T cells (Fig. 5g and Supplementary Fig. 14d). Moreover, we observed distinct interactions between stro-
mal cells (CAFs, endothelial cells, and PVL) and hc10 through the receptor SDC2 (Fig. 5d). The SDC2 down-
stream genes in the pathway of proteoglycans in cancer also showed relatively high expression levels in hc10 
(Supplementary Fig. 14e). SDC2 has been demonstrated to contribute to cellular morphological changes, focal 
adhesions, and motility in breast cancer, ultimately inducing cell migration46. This alignment with the results 
of functional enrichment for hc10 supported the notion that hc10 might possess characteristics indicative of 
epithelial-mesenchymal transition (EMT), invasion and metastasis.

Patients enriched for immune-related state (hc7) showed better outcome. To investigate the 
association of consensus cancer cell states with the clinical metadata, we deconvoluted breast cancer profiles of 
the TCGA and METABRIC cohorts using CIBERSORT algorithm47 (see Methods), respectively. Molecular sub-
type results revealed that, in both cohorts, the percentages of hc0, hc1, hc4 and hc10 were higher in LumA and 
LumB subtypes while those of the other states were higher in Her2 subtype (hc2) or Basal subtype (hc3 and hc7, 
Fig. 6a). Consistent results were observed according to clinical subtype in METABRIC cohort (Supplementary 
Fig. 15a). Older women (aged more than 50 years) were correlated with significant increases in hc0 and hc4 and 
decreases in hc7 (Supplementary Fig. 15a).

Based on the CCS frequencies, all of cases were divided into clusters corresponding to each state or mixed 
state (Fig. 6b). Then we performed survival analysis of these tumor clusters either globally or in a subtype-specific 
manner. In the global analysis (using all patients with all molecular subtypes) of TCGA cohort, C5 (designated 
hc7) showed better outcome, followed by C7 with mixed states of hc7 and hc10 (Fig. 6c). In subtype-wise com-
parisons (using patients with Her2/Basal/Claudin-low subtypes), patients with high percentage of hc7 state 
displayed significantly longer survival period than others (Fig. 6d). In METABRIC cohort, although no patients 
with hc7 as the only predominant state, C3 with mixed states of hc7 and hc10 showed better outcome than the 
others, in both global and subtype-wise comparisons (Fig. 6e,f). These observations seem to imply the associ-
ation of hc7 with good survival. To confirm this, patients were divided into two groups based on the cell per-
centage of hc7 state. In Her2/Basal subtypes, patients enriched for cells with hc7 state had a significantly longer 
survival time, in both TCGA and METABRIC cohorts (Supplementary Fig. 15b,c). Similar results were observed 
in a global analysis of TCGA cohort but not METABRIC cohort.

Discussion
In this study, we revealed seven recurring breast cancer cell states with distinct functions by integrated analysis. 
These cancer cell states showed different cells of origin and close relation with breast cancer subtypes, including 
clinical and molecular subtypes, which may permit better classification of breast cancer patients.

Unlike previous studies that define cell states by identifying gene modules across cancer types48,49 or dissect 
the heterogeneity of cancer cells using few samples with small number of cells50, we focused on the breast cancer 
cells and took advantage of the batch correction method to remove batch effect from individual variation for 
data integration. This permitted us to handle large datasets and directly determine consensus cancer cell states 
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of breast cancer, effectively eliminating the influence of intertumoral heterogeneity. The results revealed cancer 
cell states including hormone response (hc0), protein folding (hc1), lipid metabolism (hc2), proliferation (hc3), 
immune (hc5-hc7), hypoxia (hc8) and EMT (hc10). Although functional annotations of hc4 and hc9 were failed, 
the hallmark analysis suggested that hc9 was similar with hc2 and hc8 and may be involved in metabolism pro-
gresses, such as bile acid and cholesterol metabolism, while hc4 resembled hc0 and hc1 that may participate in 
estrogen and androgen response (Fig. 2f). Notably, hypoxia has been reported to be commonly associated with 

Fig. 5 The cell-cell communication between CCSs and cell types in TME. (a) UMAP visualization of all non-
malignant cells. (b) Percentage distribution of cell types across each patient. (c) Circular plots illustrating the 
inferred network connections among non-malignant cell types and CCSs. The edge width is proportional to 
the inferred communication amount. (d) Signal identification by comparative analysis of communication 
probabilities mediated by ligand-receptor pairs between non-malignant cell types and CCSs. (e) Expression of 
genes specific for hc7 that were involved in antigen presentation. (f) Heatmap showing the activities of immune-
related pathways in each CCS. Pathway information sourced from Gene Ontology, MSigDB (hallmark), and 
KEGG. (g) Circular Plots displaying the strength of interactions from hc7 to all non-malignant cell types.
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cancer, including shaping tumor microenvironment, promoting tumor progression and conferring resistance to 
conventional therapies51,52. However, hc8, the state associated with hypoxia and energy metabolism, showed an 
individual-specific pattern that it only enriched in one TNBC patient. Although the dataset we used contained 
abundant cells, more samples and cells may be required to perform deeper exploration of the universality or 
individuality of hypoxia state in breast cancer. Moreover, we also observed that hc5 and hc6, showing higher 
antigen processing and presentation pathway activities, only enriched in one TNBC patient (CID4515), suggest-
ing strong crosstalk between tumor cells and microenvironment.

Among the seven consensus cancer cell states, although hc0, hc1, hc4 and hc10 showed close correlation, 
lineage analysis revealed their different cell of origin, as hc0, hc1 and hc4 may originate from mature luminal 
cells while hc10 may originate from basal/stem cells. Hc0, hc1 and hc4 were enriched in ER+ patients which 
are predominately composed of LumA and LumB subtypes, consistent with previous study that luminal-A/B 
breast cancers likely originate from mature luminal cells29. Given that the number of cells with hc10 state were 
relatively small but they existed in patients without subtype-tendency, we deduced that hc10 represents transient 
state between luminal and basal phenotypes. This was supported by the observations that although hc10 showed 
the expression similarity with luminal cells, the higher expression of mesenchymal and basal markers like VIM, 
COL1A2, ACTA2 and FN1 also indicated another identity of hc10. Consistently, the functional enrichment 
and hallmark analyses of hc10 suggested its relation with EMT, angiogenesis, extracellular matrix and collagen 
metabolism, which are frequently reported to be mediated by mesenchymal cells53 and commonly associated 
with caner progression54. However, hc2, hc3 and hc7 were enriched in HER2+ /TNBC patients, which was 
coincident with their cells of origin and previous reports that luminal progenitors are the source of basal-like 
breast cancers23,55 and HER2+ those may originate from luminal progenitors29. Cells with these three states also 
displayed higher differentiation potential than the others. Notably, the association between CCSs and subtypes 
can help to more accurately classify patients. For example, one patient (ER0319) in Bhupinder_2021 dataset 
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Fig. 6 Deconvolution of breast cancer cohorts through CCS signatures unveils molecular subtype associations 
and patient survival. (a) Histograms depicting the distribution of each CCS within the four molecular subtypes 
(LumA, LumB, Her2, and Basal) across two breast cancer cohorts (TCGA and METABRIC). P values were 
calculated by a two-sided Wilcoxon rank-sum test (P-values denoted by asterisks: *p < 0.05, **p < 0.01, 
***p < 0.001 and ****p < 0.0001.). (b) Clustering of all samples (columns) within the TCGA cohort (left) and 
the METABRIC cohort (right) showing 8 and 4 CCS-related clusters respectively. (c–f) Kaplan-Meier plots 
illustrating survival outcomes: overall TCGA cohort (c), TCGA subsets with Her2 or Basal subtypes (d), overall 
METABRIC cohort (e), and METABRIC subsets with Her2, Basal, or claudin-low subtypes (f). P-values were 
calculated using the log-rank test.
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was considered as ER+ subtype, however, we speculated that this patient should be TNBC subtype based on the 
CCS composition and low expression of luminal markers as well as high expression basal markers. All above 
results were validated in another three independent datasets, suggesting the reproducibility and clinical value 
of identified CCSs.

Since cancers greatly depend on the tumor microenvironment, which plays critical roles in each stage of can-
cer progression, from occurrence, progression, invasion and metastatic dissemination56,57, we explored the exter-
nal factors shaping the consensus cancer cell states in TME, apart from the identified TFs. Although we observed 
close and similar interactions between diverse cell types in TME and tumor cells, distinct receptor-ligand com-
plexes were involved for cells with different states. For example, HBEGF-ERBB4 were one of the interaction com-
plexes responsible for the association of dendritic cells, endothelial cells, macrophages and monocytes with hc1, 
hc4 and hc10, while HBEGF-EGFR were employed in the interaction with hc2 and hc3 (Fig. 5d). To some extent, 
this may explain why hc1, hc4 and hc10 were enriched in ER+ patients while hc2 and hc3 tended to be predom-
inant in HER2+ /TNBC patients. Besides, we also found unique receptor-ligand complexes participating in the 
cell-cell communications of specific cell type and CCS. Hc7 is an immune-associated state and the interactions 
with plasmablasts were mediated by the specific complexes MIF-(CD74 + CXCR4) and MIF-(CD74 + CD44), 
suggesting the particular role of plasmablasts in the formation of hc7 state. Similar phenomenon was observed 
in the interaction between PVL and cells with hc10 state by PDGFA-PDGFRB complexes (Supplementary 
Fig. 14f), implying the importance of PVL in shaping this CCS with cancer progression-associated biological 
functions, such as angiogenesis, EMT and extracellular matrix organization.

In summary, we present evidence of seven consensus cancer cell states that play diverse roles in cancer ini-
tiation and progression, and clarified the internal and external mechanisms of state shaping. Further investiga-
tions using larger size of multi-omics datasets to determine whether more elaborate cancer cell states exist, how 
these states distribute spatially in a tumor and what is the dynamics of the states along cancer progression, are 
warranted. Our study revealed the relation of the consensus cancer cell states with breast cancer subtypes and 
clinical outcome, which can aid in deepening our understanding of breast cancer cell heterogeneity, precisely 
determining the subtype identities of patients and developing individualized therapeutic strategy based on the 
state composition.

Methods
Data acquisition. The publicly available datasets of human breast cancer were downloaded, including four 
scRNA-seq cohorts and two bulk cohorts. The scRNA-seq datasets contained Wu_202117, Liu_202241, Xu_202142 
and Bhupinder_202139. The bulk datasets contained TCGA22 and METABRIC58,59 cohorts.

Four scRNA-seq datasets were obtained and preprocessed as follows. The Wu_2021 was downloaded from 
the Gene Expression Omnibus (GEO) database (GSE176078), containing 26 primary tumors with three major 
clinical subtypes of breast cancer, including 11 ER+, 5 HER2+ and 10 TNBC patients. Treated patients may 
undergo alterations in the biological features of tumor cells, potentially influencing the elucidation and valida-
tion of the tumor state. Therefore, we removed 5 treated patients (CID3963, CID4066, CID4398, CID4513, and 
CID4523) from our analysis for a clearer and more accurate assessment of the intrinsic tumor characteristics. 
The Liu_2022 was downloaded from the GEO database (GSE167036), which contains 8 treatment-naïve breast 
cancer patients with lymph node metastases. Among the patients, 5 cases were luminal subtypes and 3 cases 
were the HER2+ subtype. The Xu_2021 was downloaded from the GEO database (GSE180286), comprising 1 
luminal patient, 2 HER2-enriched patients and 2 TNBC patients. The Bhupinder_2021 was downloaded from 
the GEO database (GSE161529), containing 421,761 cells from 52 patients. We retrieved expression profiles of 
26 tumors with ER+, HER2+ or TNBC subtypes. For Liu_2022 and Xu_2021, those from primary tumor sam-
ples were used for the downstream analysis.

The Wu_2021, Liu_2022, and Bhupinder_2021 were generated using 10x Genomics technologies. Cell 
Ranger pipeline was employed to process raw sequencing data, map to the reference genome GRCh38 and gen-
erate feature-barcode matrices. Another dataset (Xu_2021) was prepared using the Singleron Biotechnologies 
library preparation approach. Raw sequencing data aligned to the human genome reference sequence (GRCH38) 
with STAR. The CeleScope pipeline was used to sample demultiplexing, barcode processing, and single-cell gene 
counting to generate a digital gene-cell matrix from this data (details see Supplementary Table 4).

The Wu_2021 dataset generated a total of 496.7 million reads with averaged depths of 7,590 reads per cell. 
Approximately 290, 918.3 and 121.2 million reads were respectively generated in Liu_2022, Bhupinder_2021 
and Xu_2021, resulting in averaged depths of 5901, 4960 and 3975 reads per cell, respectively. The averaged cov-
erages of 1891, 1613, 1335 and 1416 genes were detected per cell in Wu_2021, Liu_2022, Bhupinder_2021 and 
Xu_2021, respectively (more details see Supplementary Table 4). Given the higher unique molecular identifiers 
(UMIs) counts and number of detected genes, we used the Wu_2021 dataset for the main analysis and the others 
were utilized as validation datasets.

Two bulk datasets were both acquired from cBioPortal (https://www.cbioportal.org). The TCGA cohort 
contains 1082 tumor samples with survival status and follow-up information, among which 499 samples were 
LumA, 197 samples were LumB, 171 samples were Basal, 78 samples were Her2, 36 samples were Normal and 
101 samples were unknown. We used only four subtypes for subsequent analyses, including LumA, LumB, Basal 
and Her2. The METABRIC cohort contains 1974 samples with clinical subtype information, including 700 
LumA, 475 LumB, 209 Basal, 218 claudin-low, 224 Her2 and 148 Normal. The subsequent survival analysis was 
conducted on a total of 1826 samples, comprising five subtypes: LumA, LumB, Basal, Her2, and claudin-low.

scRNA-seq data processing. For individual samples, the EmptyDrops method from the DropletUtils60 
package (version 1.22.0) was applied to filter the raw UMIs count matrix for real barcodes from ambient back-
ground RNA cells, which indicated the absence of empty drops. The gene expression matrix was processed and 
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analyzed by Seurat61 (version 4.3.0.1) package. For each dataset, we first excluded cells containing fewer than 
200 genes or 500 UMIs. This step aimed to further remove cell debris, empty drops, and low-quality cells. Likely 
dying or apoptotic cells where more than 20% of transcripts derived from the mitochondria were also excluded. 
Following the initial clustering, we removed likely cell doublets and multiplets (see Doublet detection and 
removal). As described by previous research62–64, we excluded genes detected in fewer than five cells. All expres-
sion data were normalized with log transformation.

Batch effect correction. For each dataset, we ran Harmony21 (version 0.1.1), the top batch mixing method 
with good performance65, to eliminate batch effects in the PCA space when clustering of major cell lineages before 
any clustering analysis or cell type annotation was performed. We meticulously assessed Harmony’s performance 
in terms of its capability to integrate data from multiple patients while maintaining cell type separation. Similarly, 
the expression profiles of all malignant cells were integrated using Harmony, which can eliminate batch effects 
from the heterogeneity between cancer cells of individual patient in each dataset.

Cell clustering and cell type annotation. Seurat was applied to first normalize gene expression count 
data by the NormalizeData and ScaleData functions. Then FindVariableFeatures function was applied to 
select the top 2000 variable genes and principal component analysis (PCA) was performed. Cell clusters were 
identified using the FindNeighbors and FindClusters functions. To annotate cell clusters, the following proce-
dure was used: (1) In the Wu_2021 dataset, we leveraged the available annotations and utilized the SingleR18 
package (version 2.0.0) to assign cell types to each cell, including epithelial cells, B cells, plasmablasts, T cells, 
cancer-related fibroblasts (CAF), perivascular-like cells (PVL), endothelial cells, dendritic cells, macrophages, 
monocytes and neutrophils; (2) For three additional validation datasets, we scored each cluster by the normalized 
expressions of the following canonical markers: epithelial cells (EPCAM, KRT18, KRT7, KRT8), T cells (CD3D, 
CD3E, CD3G), B cells (CD79A, CD79B, CD19, MS4A1), plasmablasts (JCHAIN, MZB1), myeloid (LYZ, CD68, 
FCGR3A, MARCO), CAFs (COL1A1, DCN, COL1A2, C1R), smooth muscle cells (ACTA2) and endothelial 
cells (PECAM1, VWF, CLDN5, CDH5, FLT1, RAMP2). The highest scored cell type was assigned to each cluster.

Doublet detection and removal. Likely doublets were identified and meticulously removed using a 
multi-step approach. Specifically, the following methods were employed to identify doublets: (1) Doublet detec-
tion algorithms: we applied the findDoubletClusters function supported in the scDblFinder66 (version 1.16.0) 
package to predict potential doublet clusters. (2) Cluster marker gene expression: cells of a cluster co-expressing 
discrepant lineage markers were identified and removed. We carefully checked the expression levels and pro-
portions of canonical lineage-related marker genes in each scDblFinder identified doublet clusters to ensure the 
exclusion of most barcodes associated with cell doublets.

identifying malignant cells from breast epithelial cells. In the Wu_2021 dataset, we utilized 
InferCNV19 (version 1.14.2) to infer large-scale chromosomal copy number variations (CNVs) from the 
scRNA-seq data of epithelial cells. As controls for the CNV analysis, immune and stromal cells from the same 
dataset were selected. The degree of chromosomal copy number variation and the clustering distribution of cells 
allowed us to infer the malignancy of cancer cells.

In the validation datasets, since we aimed to confirm the widespread presence of CCSs as well as their char-
acteristics in tumor cells without clone identification, we used the CopyKAT40 package (version 1.1.0) to dis-
tinguish tumor cells from normal epithelial cells as it did not require controls and showed a strong accuracy. 
By analyzing single-cell transcriptome data, CopyKAT infers cell ploidy, classifying cells as either diploid for 
normal cells or aneuploid for tumor cells. Based on the results from these two tools, we removed 5 patients 
without malignant cells (CID4040, CID3586, CID3838, CID33946 and CID44041) in Wu_2021 dataset, one 
patient (CA3) with only 2 malignant cells in Liu_2022 dataset and one patient (TN0106) with only 6 malignant 
cells in Bhupinder_2021 dataset for downstream analysis. The information of samples in this study was shown 
in Supplementary Table 1.

Clone identification and association analysis of transcriptomic and genomic heterogeneity. In 
each patient, we performed cluster analysis using the inferCNV package with parameters HMM = T and hclust_
method = ward. D2 to identify subclonal architecture. Consequently, cells in the same subclone exhibited iden-
tical copy number variations. Based on the transcriptomic cluster label and subclone label for each cell, we used 
the adjusted Rand index20 to compare the consistency between the two clustering results, thereby quantifying the 
correlation of heterogeneity at the transcriptomic and genomic levels. Subsequently, we defined subclone-specific 
CNV genes as those that exhibited unique CNV patterns or varying degrees of variation among subclones from 
inferCNV results. Moreover, we also employed the FindAllMarkers function to compute differential expression 
genes for each subclone. We measured the similarity between CNV genes and differential expression genes using 
the Jaccard similarity coefficient.

identifying consensus cell states (CCs) in breast cancer. Cell clusters were then identified using the 
FindNeighbors and FindClusters functions with a resolution set to 0.4. For visualization, clustering was performed 
by using the t-Distributed Stochastic Neighbor Embedding (t-SNE) or Uniform Manifold Approximation and 
Projection (UMAP) methods with Seurat functions RunTSNE and RunUMAP, respectively. We further identi-
fied differentially expressed genes (DEGs) as the signature for each cluster using the Wilcoxon test, which was 
implemented through the FindAllMarkers function. Genes were considered significant if they exhibited an aver-
age natural logarithm (fold change) of at least 1 and a Bonferroni-adjusted P-value less than 0.05. DEGs were 
further subjected to gene ontology (GO) enrichment analysis using the clusterProfiler67 (version 4.6.2 package 
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with qvalueCutoff = 0.05. Fifty hallmark gene sets were downloaded from the Molecular Signature Database68 
(MSigDB), and hallmark pathway scores were calculated for each cell using the AddModuleScore function.

Evaluating cell stemness and differentiation potential. CytoTRACE26 (version 0.3.3) and SCENT27 
(version 1.0.3) were applied to estimate the differentiation potential of each malignant cell based on their gene 
expression profiles. The CytoTRACE scores were ranked and scaled between 0 and 1, representing the predicted 
order of relative differentiation states of cells (0 for higher differentiation; 1 for lower differentiation). SCENT 
returned a vector where higher values indicated higher cellular differentiation potential, reflecting lower differen-
tiation states and correspondingly higher cell stemness.

Trajectory analysis. Using Monocle 328 (version 1.3.4) with default parameters, we inferred the differentia-
tion trajectory reflecting the cellular state transition of the malignant cells from all patients. Initially, Seurat object 
was directly imported using the new_cell_data_set function. The function cluster_cells and plot_cells were used 
for unsupervised clustering and visualization of CCSs. The function learn_graph was run with default parameters 
to construct the trajectory graph.

Cell-cycle state assignment. The cell-cycle state of each cell was determined based on the expression 
profile of cell-cycle-related signature genes by the CellCycleScoring function that is implemented in Seurat pack-
age. Then, we categorized cells belonging to the G2M or S phase as cycling cells, while cells in the G1 phase were 
classified as non-cycling cells.

PAM50 analysis. Genefu30 (version 2.32.0) was used to perform molecular subtyping of breast cancer cells 
based on known classification genes, including lumA, LumB, Her2, Basal, and Normal subtypes. Initially, cells 
without expression of all classification genes were labeled as “not.defined”. We then employed ggplot269 (version 
3.4.2) to visualize the distribution of molecular subtypes across the CCSs. To assess the association between CCSs 
and molecular subtypes, we calculated the spearman correlation coefficient between the proportions of each 
molecular subtype and each CCS across patients in a pairwise manner. The results were further visualized using 
the pheatmap (version 1.0.12) package.

identification of differentially activated TFs in each CCs. We conducted single-cell regulatory net-
work inference and clustering (SCENIC) analysis on all cells of CCSs, using R package SCENIC31 (version 1.3.1). 
Transcription factor (TF) searching regions were limited to a 10k distance centered around the transcriptional 
start site (TSS) or 500 bp upstream of the TSSs. First, SCENIC utilized GENIE3 (version 1.20.0) (a random 
forest-based method) to infer co-expression modules between transcription factors and candidate target genes. 
Each module contained a transcription factor and its corresponding target genes. RcisTarget (version 1.18.2) 
was employed to analyze genes within each co-expression module, identifying enriched motifs. Each TF, along 
with its potential direct target genes, was referred to a regulon. Finally, AUCell (version 1.20.2) was used to assess 
the activity of each regulon in individual cell, generating a regulon activity matrix. By following these steps, we 
obtained the regulatory relationships between transcription factors and their target genes in a cellular context. 
ComplexHeatmap70 (version 2.14.0) was used to display regulon activity scores for each individual cell. The dif-
ferentially activated TFs of each CCS were identified by the Wilcoxon rank sum test, and significantly upregulated 
TFs were identified with a logarithm fold change more than 1 and an FDR less than 0.05. The top 5 regulons spe-
cific for CCSs were shown in Supplementary Fig. 5d (only 3 regulons identified in hc4).

sT data acquisition. Three spatial transcriptomics datasets were obtained from publicly available data-
bases, including ST_Wu_202134, ST_Angele_202335, and ST_Amanda_202336. The ST_Wu_2021 was down-
loaded from the Zenodo data repository, containing one ER+ samples (CID4535) and four TNBC samples 
(CID44971, 1142243 F, 1160920 F and CID4465). The ST_Angele_2023 was downloaded from the GEO data-
base (GSE213688), containing 6 TNBC samples (M2, M5, M6, M11, M14 and M15). The ST_Amanda_2023 
was downloaded from the GEO database (GSE243275), which contained one sample of breast cancer with 
HER2+ subtype. The pathology annotation for each spot was also downloaded. The spots of all samples from 
ST_Wu_2021 and ST_Angele_2023 were annotated by professional pathologists, while those of the sample from 
ST_Amanda_2023 were annotated by a supervised labeling method.

sT data processing and identification of region-specific marker genes. For each spatial transcrip-
tomics data, spots with less than 200 genes or mitochondrial transcripts greater than 20% were discarded, and 
genes expressed in less than 2 spots were removed. Count matrix was standardized with SCTransform function 
in Seurat package to account for variance in sequencing depth across data points and detect high-variance fea-
tures. Based on the pathology annotation for tissue regions, we identified region-specific marker genes through 
FindAllMarkers function (logfc.threshold > 1 and p_val_adj < 0.05).

Deconvolution analyses of spatial transcriptomics data. To investigate the spatial location of CCSs 
in breast cancer, we employed CARD37 (version 1.1) method to deconvolute the spatial transcriptomics data 
based on the single-cell data of CCSs. The CARD performed deconvolution through a non-negative factoriza-
tion framework and output the estimated composition of CCSs across spatial locations with two inputs, which 
included the single-cell transcriptional profiles of all CCSs and the ST data with localization information. The 
CARD_deconvolution function with default parameters was utilized to calculate the proportion of CCSs at each 
spatial location.
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Multimodal intersection analysis (MiA). We used MIA38, which performed hypergeometric cumulative 
distribution on the overlap between region-specific marker genes and the DEGs of CCSs, to further determine 
CCSs enrichment in tissue regions. All genes were used as the background to calculate the P-value.

Cell-cell interaction using CellChat. In order to explore cell-cell interactions across different cell types 
including non-malignant cells and malignant cells with distinct CCS, we utilized CellChat43 (version 1.6.1) to 
identify significant ligand-receptor pairs with default parameters. The Seurat object containing both the count 
matrix and cell type labels for each individual cell was seamlessly integrated into the CellChat framework. 
Subsequently, we harnessed the power of the CellChatDB database to identify relevant ligand-receptor pairs. By 
projecting ligands and receptors onto a Protein-Protein Interaction (PPI) network, we calculated communication 
probabilities and inferred the intricate CellChat network. Furthermore, to ensure the accuracy of our findings, we 
filtered out the results of cell types with less than 10 cells.

Principal components analysis. In the validation datasets, we computed the average expression of all 
cells for each sample, creating a pseudo-bulk dataset. Based on this data, PCA analysis was performed to explore 
the clustering patterns of different subtype samples. For visualization purposes and effective presentation of the 
results, ggplot2 was employed.

Estimating the CCs composition in bulk samples and survival analysis. The CIBERSORT47 algo-
rithm was strategically applied to deconvolute bulk expression data from TCGA and METABRIC cohorts and 
estimate relative CCS proportions within individual patient. Based on these inferred proportions, a comprehen-
sive hierarchical clustering analysis was conducted to uncover inherent patterns and relationships among the 
samples. Furthermore, survival analysis was performed using the Survival package (version 3.4-0). Specifically, 
relevant clinical subtypes were selected to generate survival curves for patient overall survival (OS) and statistical 
testing. When focusing on one CCS, patient groups were divided based on the ‘median’ criterion, separating 
patients into lower and higher groups. This analysis delved into the intricate interplay between inferred CCSs 
proportions and sample survival outcomes, yielding insights into potential correlations between state composi-
tion and survival trends.

statistical analyses. In addition to the bioinformatics approaches described above for scRNA-seq data anal-
ysis, all other fundamental statistical analyses were performed in the R statistical environment. The assessment 
of differences in continuous variables, such as gene expression, regulon activities, and gene set scoring, between 
two groups (defined by a categorical independent variable, such as ER+ versus HER2+ subtype), was carried 
out using the Wilcoxon rank sum test. To control for multiple hypothesis testing, we applied the Bonferroni 
correction method to correct P values and the false discovery rates (FDR q-values) were calculated. Results were 
considered statistically significant at P-value or FDR q-value < 0.05.

Data availability
All the scRNA-seq data, spatial transcriptomics data and bulk RNA-seq data were downloaded from previous 
publications or public domains. The four scRNA-seq datasets were obtained from Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo) at GSE17607817, GSE16703641, GSE18028642, and GSE16152939. And 
two spatial transcriptomics datasets (ST_Angele_2023 and ST_Amanda_2023) were also obtained from GEO at 
GSE21368835 and GSE24327536. ST_Wu_2021 was acquired from Zenodo repository (https://doi.org/10.5281/
zenodo.4739739)34. Two bulk datasets were both acquired from cBioPortal at https://www.cbioportal.org. The 
processed data and intermediate results in our manuscript were uploaded on Figshare repository at https://doi.
org/10.6084/m9.figshare.2501990371.

Code availability
All codes used for analysis can be found on GitHub at https://github.com/pangbo2019/BRCA_CCS.
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