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Cancer-Alterome: a literature-
mined resource for regulatory 
events caused by genetic 
alterations in cancer
Xinzhi Yao1, Zhihan He1, Yawen Liu1, Yuxing Wang1,2, Sizhuo Ouyang1 & Jingbo Xia   1 ✉

It is vital to investigate the complex mechanisms underlying tumors to better understand cancer and 
develop effective treatments. Metabolic abnormalities and clinical phenotypes can serve as essential 
biomarkers for diagnosing this challenging disease. Additionally, genetic alterations provide profound 
insights into the fundamental aspects of cancer. This study introduces Cancer-Alterome, a literature-
mined dataset that focuses on the regulatory events of an organism’s biological processes or clinical 
phenotypes caused by genetic alterations. By proposing and leveraging a text-mining pipeline, 
we identify 16,681 thousand of regulatory events records encompassing 21K genes, 157K genetic 
alterations and 154K downstream bio-concepts, extracted from 4,354K pan-cancer literature. The 
resulting dataset empowers a multifaceted investigation of cancer pathology, enabling the meticulous 
tracking of relevant literature support. Its potential applications extend to evidence-based medicine 
and precision medicine, yielding valuable insights for further advancements in cancer research.

Background & Summary
Cancer, known as the primary cause of global mortality, has garnered significant attention in the field of patho-
logical research. However, the interpretation and understanding of cancer pathology is an open challenge due to 
the complexity of the mechanism and diversity among individuals. The pathology of cancer is complex and it is 
characterized by intricate and dynamic interactions among molecular mechanisms. Furthermore, the pathology 
of cancer presents diversity among individuals, presenting multifaceted clinical features1.

The development of the Hallmarks of Cancer framework2–4 provided the possibility to alleviate the above 
challenges. Under this framework, the complex phenotypic and genotypic diversity of cancer has been distilled 
into a series of hallmark characteristics. These hallmarks, e.g., sustaining proliferative signaling, evading growth 
suppressors, and resisting cell death, were widely used to explain the mechanisms of tumor progression and 
therapy response. Initially proposed in 2000, this framework has undergone updates in 2011 and 2022. Through 
ongoing revisions, a multitude of diverse biological processes were incorporated into the cancer hallmark frame-
work, indicating a long-term challenge of characterizing the molecular mechanisms underlying cancer pathol-
ogy. Numerous studies investigated the underlying causes leading to the acquisition of these hallmarks, and the 
subsequent effect of the hallmarks. Skoulidis5 highlighted co-occurring genetic alterations that behaved as core 
determinants of the molecular and clinical heterogeneity of oncogene-driven lung cancer subgroups through 
their effects on both tumor cell-intrinsic and non-cell-autonomous cancer hallmarks. Bruggeman6 incorporated 
the expression of massive expression of germline cell-specific genes as cancer hallmarks, which actively promote 
tumor viability, proliferation, and metastasis. In addition, Kiefer7 mapped ten hallmarks of cancer to GO con-
cepts and further associated them with upstream genes. By clustering individual hallmarks, they investigated 
the specific and overlapping hallmarks across diverse cancer types. In recent years, literature-based methods 
have been widely used to extract biological regulator events, aiming to extend the cancer hallmarks on a large 
scale. BioContext8, DigSee9 and GePI10 are known resources in this regard. Under this trend, a multitude of 
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downstream biological processes and clinical features were discovered to facilitate the representation of molec-
ular mechanisms of cancer.

Furthermore, the emergence of precision oncology in recent years has introduced an alternative approach 
to understanding and interpreting cancer pathology. Precision oncology is devoted to analyzing the biomarkers 
differences among individuals, and providing valuable insights into personalized diagnosis and treatment11. 
Current efforts in precision oncology have predominantly focused on identifying specific biomarkers such as 
genes and genetic alterations1. Established databases, such as the Catalogue of Somatic Mutations in Cancer 
(COSMIC)12, the Clinical Interpretation of Variants in Cancer (CIViC) database13, and the OncoKB precision 
oncology database14, were committed to providing comprehensive germline and somatic mutation information 
within the cancer progression. These databases also facilitate the assessment and interpretation of the clinical sig-
nificance of these genetic alterations, thereby offering invaluable resources for personalized precision oncology.  
Furthermore, benefiting from advancements of text mining tools for biomedical entity recognition, a series of 
databases were developed to automate the curation of molecular mechanisms from massive literature data15,16. 
CancerMine17 associated genes and cancer pathology by identifying the roles of genes in the cancer progression, 
and collected precise sentence evidence for oncogenes, tumor suppressor genes, and driver genes. CIViCmine18, 
on the other hand, employed the text mining methods to extract corresponding literature support for gene 
mutations that were reported in the CIViC database, and enhanced the interpretability of cancer genetic alter-
ations. Not only focusing on the standard single nucleotide polymorphisms (SNPs), CIViCmine identified and 
extracted general mentions of genetic alterations in the literature, such as “differential expression” of a gene and 
gene “splice variants”, leading to greatly extended curation results of cancer genetic alterations.

Fig. 1  Data mining pipeline of Cancer-Alterome. (a) Overview of the pipeline. (b) Data processing details of 
the pipeline with an example. (c) NLP tools and methods used in the GARE extraction.
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Despite significant progress, there is still big room for the comprehensive interpretation of cancer pathology. 
For example, the Hallmarks of Cancer continue to evolve19. In the 2022 update4, the framework expanded to 
encompass 14 hallmark features. Nevertheless, there remains value in investigating additional comprehensive 
biological processes and clinical phenotypes within the context of cancer pathology. Furthermore, it is a trend to 
shift the focus on genetic alterations from standard point mutations to a broader range of general genetic alter-
ations. However, the study in the investigation of general alterations with the molecular mechanism is sparse. 
Therefore, there is a growing demand to integrate datasets and link cancer biomarkers with underlying molecular 
mechanisms. The availability of such databases is capable of advancing the understanding of cancer pathology.

In response to the aforementioned concerns, we propose Cancer-Alterome, a literature-mined dataset.  
This dataset focuses on the identification and extraction of the following.

•	 Diverse genetic alterations: It captures various types of genetic alterations, going beyond standard point muta-
tions, to encompass a broader range of general genetic alterations.

•	 Expanded hallmarks of cancer: The dataset seeks to capture and analyze not only well-established hallmarks 
but also novel biological processes or clinical phenotypes associated with cancer, as reported in the literature.

•	 Genetic alteration regulatory event (GARE): A GARE is a regulatory event caused by genetic alterations, and 
it includes the resulting biological process or clinical phenotype for the interpretation of cancer pathology.

This dataset is established through the application of a series of text-mining tools and methodologies. The 
pipeline first identifies and extracts SNPs, DNA changes, and protein changes and normalizes them to unique 
identifiers in dbSNPs. In addition, it incorporates the dictionary adopted in CIViC18, extracts mentions of 
epigenetic changes, expression changes, and structural variations and classifies them into distinct categories. 
Subsequently, the pipeline extracts a broader range of biological processes and clinical phenotypes in litera-
ture. These terms are further normalized into concepts in Gene Ontology (GO), Human Phenotype Ontology 
(HPO), and Medical Subject Headings (MeSH), allowing extensive investigations of cancer pathology. Three 
distinct ontologies interpret mechanisms across different facets, although there is no absolute separation in their 
functions. GO is primarily employed to elucidate molecular mechanisms, HPO serves to provide phenotype 
descriptions following alterations, and MeSH is primarily utilized to offer a unified definition at the disease 
level. A template-matching strategy is then applied to filter GARE events. We evaluate the performance of each 
text mining tool and compare its soundness with a large language model (LLM). Finally, the pipeline extracts 
13,259K GARE records from a mass literature database with 4,354K PubMed abstracts and PMC full texts that 
are related to pan-cancer topics. The GARE records cover 21K genes, 157K genetic alterations, and 154K down-
stream biological processes and clinical phenotypes.

Additionally, case studies are conducted to assess the data reusability of Cancer-Alterome. All cases indi-
cate that the dataset facilitates the multifaceted investigations of cancer pathology from specific genes or can-
cers. The resulting dataset largely facilitates the interpretations and traceability of cancer pathology, enabling 
valuable insights into evidence-based precision oncology. A web service is established, allowing gene-specific, 
cancer-specific, and gene-set queries upon the dataset. In response to the queries, the web service provides intu-
itive statistical diagrams and easy-to-read evidence tables.

Fig. 2  Structure of genetic alteration dictionary.

Genetic alterations 
Dictionary * in CIViCmine18 * in Cancer-Alterome

# of categories 40 27

# of synonyms 455 549

# of average synonyms 11 20

Table 1.  Comparison of dictionary statistics in Cancer-Alterome and CIViCmine.
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Methods
We construct a text-mining pipeline for Cancer-Alterome. The pipeline comprises three parts (Fig. 1a): literature 
preparation, genetic alteration regulatory event extraction, and dataset and web service. The annotated literature 
is then transformed into database records, which serve to present regulatory events caused by genetic alteration. 
The detailed information on the pipeline is as follows.

Fig. 3  Usage notes of the Cancer-Alterome resource. (a) Sankey diagram of regulatory events caused by ERBB2-
related alterations. (b) Heatmap of top-20 AML-related genes with regulatory events in Cancer-Alterome. (c) 
Heatmap of ERBB2 and associated events in 32 pan-cancers.
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Literature preparation.  The literature preparation part involves the retrieval and filtering of all 
cancer-relevant abstracts and full texts. As illustrated in Fig. 1b, there needs four steps in data preparation.

Cancer keywords collection.  Cancer-Alterome focuses on 32 pan-cancers defined in the database of The Cancer 
Genome Atlas (TGCA, https://www.cancer.gov/ccg/research/genome-sequencing/tcga/studied-cancers). To 
retrieve the literature from PubMed and PMC, disease terms (e.g. Acute Myeloid Leukemia) and corresponding 
MeSH terms (e.g. “Leukemia, Myeloid, Acute”[Mesh]) of 32 cancers are manually curated and set as keywords 
for the literature searching. To avoid mismatching, the abbreviations of cancer names (e.g. AML) are excluded 
from the keywords list.

Literature ID collection.  After the keywords preparation, the Esearch and Efetch, standard tools in NCBI Entrez 
Direct toolkit for resource download, are employed to perform literature searching. Specifically, the command 
“esearch -db pubmed -query ‘Acute Myeloid Leukemia’ | efetch -format uid” are utilized for PubMed retrieval, while 
the commend “esearch -db pmc -query ‘Acute Myeloid Leukemia’ | efetch -format uid” are used for PMC retrieval. 
The retrieved PubMed identifiers (PMID) and PMC identifiers (PMCID) are stored.

Abstracts and full texts collection.  The pipeline utilizes a NCBI-released data retrieval API, PubTator API20, to 
retrieve documents by providing the PMIDs and PMCIDs. The API returns regularized links, which were pro-
cessed using the Python packages “Request” and “BeautifulSoup” to request and parse the content. Subsequently, 
the document, along with the literature information (e.g., journal and publication year), is saved in a BioC-JSON 
format file.

Documents pre-processing.  Documents pre-processing is performed after literature downloading. First, the 
pipeline filters the documents by keyword matching. Literature remains only when full names or abbreviations 
of cancer are mentioned at least three times in the abstract or five times in the full text. Second, the pipeline 
splits the document into individual sentences using the Python package “NLTK” and “spaCy”. Subsequently, it 
removes the sentence with incorrect format parsing.

Fig. 4  Evaluation steps for text mining tools and methodology.

Named entity recognition and normalization Evaluation metric Count of prediction

Tools Entity type Precision Recall F1 Score Mention Entity Normalization

PubTator20 Gene 0.79 0.81 0.80 203,939 22,021 Entrez ID

PubTator20 Point mutations and SNPs 0.81 0.81 0.83 197,595 164,144 rsID

AGAC-NER24 General genetic alteration 0.74 0.57 0.64 3,002,082 549 Dictionary

AGAC-NER24 Trigger word 0.78 0.70 0.74 200,670 — —

OGER++22 GO 0.72 0.17 0.27 52,140 22,874 GO ID

PhenoTagger23 HPO 0.79 0.70 0.74 24,261 8,345 HPO ID

PubTator20 MeSH 0.83 0.82 0.81 1,131,933 45,119 MeSH ID

Relation extraction Evaluation metric Count of prediction

Tools Relation type Precision Recall F1 Score Relations

AGAC-RE24 Theme 0.87 0.84 0.91 37,411,752

AGAC-RE24 Cause 0.88 0.85 0.82 12,420,489

Regulatory events identification Evaluation metric Count of prediction

Method Event type Precision Recall F1 Score Events

Template match GARE 0.84 0.96 0.90 16,681,473

Table 2.  Accuracy evaluation of literature mined results in Cancer-Alterome. (a) Evaluation of NLP tools for 
named entity recognition and normalization. (b) Evaluation of NLP tools for relation extraction. (c) Evaluation 
of regulatory events (GAREs).
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Genetic alteration regulatory event extraction.  After the literature preparation, the pipeline further 
identifies and normalizes the biological entities mentioned in the literature and extracts the relations between 
these entities. This three-step process leverages multiple text mining tools and methodologies with high quality, 
yielding precise GARE extractions in literature. For example, we mainly use it to tag genes, point mutations, and 
MeSH terms in texts, as shown in Fig. 1c. Actually, PubTator20 has long been a top-rated tool21 enabling large-scale 
annotation of genes, mutations, and ontologies like MeSH. Furthermore, OGER++22, PhenoTagger23 and 
AGAC-NER24 are found to be top-rated NER tool in tagging GO terms, HPO terms and genetic alterations24–26.

Named entity recognition and normalization.  In this step, multiple established tools are employed to identify 
biological entities mentioned in the sentences, and then normalize them into unique identifiers in the database. 
First, PubTator API is used to annotate the mentions of genes and proteins in the literature and normalize 
them to NCBI gene ID. It is also used to extract point mutations and normalize them to corresponding dbSNP 
IDs by using tmVar3. Additionally, OGER++22 and PhenoTagger23 are utilized to identify the mentions of 
biological processes and clinical phenotypes, and then normalize these entities into GO and HPO concepts, 
respectively. By fine-tuning a deep neural network combining BioBERT embedding and CRF decision layer, we 
apply AGAC-NER24 to extract the genetic alterations and trigger words from the text. Utilizing the same training 
dataset and fine-tuning strategy as employed in AGAC-NER24, we replicate the entity extraction strategy per-
taining to the genetic alterations and trigger words, achieving the planned entity recognition objectives. Taking a 
sentence example in Fig. 1b as an example, AGAC-NER captures the description of genetic alterations, and links 
“the differential expression of ERBB” and “ERBB2 splice variants”. Furthermore, it identifies the trigger words in 
the regulatory event, such as “induce”, “promote” and “inhibit”. These trigger words are further categorized into 

Biomarker entities, biological 
processes and clinical phenotypes

Unique 
Count

Average count 
per cancer

Gene 21,997 11,181

Normalized point mutations and SNPs 136,163 14,432

General Genetic Alterations 20,886 1,848

GO concept 4,733 1,258

HPO concept 2,989 458

MeSH concept 146,932 19,556

Table 3.  Unique entity statistics in Cancer-Alterome.

Fig. 5  Counts of genetic alterations defined in Cancer-Alterome for pan-cancers.
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three regulation types, i.e., neutral regulation, positive regulation, and negative regulation. To avoid labeling 
conflicts, in the case when multiple entities overlap, only the entity with the longest span is retained.

Cancer-Alterome takes extensive steps in mutation and alteration curation. First, tmVar327 is used to identify 
and extract SNPs, DNA changes, and protein changes and normalize them to unique identifiers in dbSNPs. For 
genetic alterations, we adopt the dictionary of CIViCmine18, which includes common mutations, aberrations, 
and other omic events that may occur to a gene, especially in the cancer setting. To expand the dictionary, the 
Top500 most frequently mentioned genetic alterations are added as synonyms in specific categories of genetic 
alterations. As shown in Fig. 2, the curated genetic alteration dictionary contains 7 secondary categories and  
27 tertiary categories. The updated dictionary merges similar categories in the original dictionary and 

Fig. 6  Yearly distribution of genetic alteration regulatory events across 32 pan-cancers on a yearly basis.  
(a) Distributions based on cancer types. (b) Distributions based on year periods.

Resource

Biomarkers and phenotype Literature 
support

Count of database records w.r.t exampled gene queries

Gene Alteration Event KMT2A FLT3 MLLT3 ZFP36L2 ZIC2 ZNF582

Cancer-Alterome ✓ ✓ ✓ ✓ 7,322 25,946 497 9 29 7

CancerMine ✓ NA NA ✓ 206 154 151 1 1 1

CIViCmine ✓ ✓ NA NA 80 571 15 0 0 0

GePI ✓ NA ✓ ✓ 8,322 7,965 1,156 309 609 48

Table 4.  Comparison of data abundance across benchmark resources.
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significantly increases the number of synonyms for each category (Table 1). Compared to CIViCmine, the syn-
onym count increases from 455 to 549 in the updated dictionary.

Relation extraction.  Following the NER step, a relation extraction step is performed by AGAC-RE24 to identify 
two types of relations, i.e., Theme and Cause. The Theme relation indicates a genetic alteration occurs in a specific 
gene, while the Cause relation indicates a genetic alteration causes a downstream biological process or clinical 
phenotypes. We again take the sentence in Fig. 1b as an example, the RE computation processes the sentence 
“differential expression of ERBB genes...affecting cell cycle” and outputs that differential expression plays a semantic 
Theme role on ERBB, and a semantic Cause role on cell cycle. It forms an event that a differential expression occurs 
in ERBB and causes cell cycle. In the RE step, all alteration entities included in the relation are calibrated by the 
dbSNP database and the updated alteration dictionary. Specifically, the extraction of relations in AGAC-RE is 
predicated upon the foundation of joint learning with AGAC-NER. The two models share a weighted-sum loss 
function. Through the optimization of this loss function via joint learning, the most optimal results are achieved 
on the training dataset.

Regulatory events identification.  Regulatory events are identified by applying a rigorous template-matching 
strategy. The template defines how a genetic alteration occurs in a specific gene and how it subsequently causes 
the downstream biological processes and clinical phenotypes.

	 1.	 Only sentences containing gene, genetic alterations, downstream effect, Theme relation, and one Cause 
relation are filtered.

	 2.	 The regulation types are classified into neutral regulation, positive regulation and negative regulation, based 
on the trigger words type.

	 3.	 Collect RE result of “Gene 
Theme
←   Mutation”, and “Mutation →

Cause
 biological process or clinical phenotype.”

	 4.	 Sentences containing the demanded entities and identified regulation type are mapped into the corre-
sponding regulatory event, i.e., “Gene – Mutation – Regulation – Biological process or clinical phenotype.”

We again use the sentence example in Fig. 1b,and eight regulatory events are extracted from the sentence 
instance. The record, “EGFR –Expression Change – Neutral Regulation – GO:00040790 cell cycle”, is one of the 
obtained standardized events from the GARE identification process.

Dataset and web service.  We establish the Cancer-Alterome dataset with all the extracted GARE records. 
Each record in the dataset is then linked with corresponding literature support for evidence-tracing. Sentences 
carrying regulatory events are visualized in a user-friendly web service, http://lit-evi.hzau.edu.cn/PanCancer.  
It offers quick evidence query by single gene query, gene set query, single cancer query, or cancer set query. 
The web service also provides illuminative investigation of regulatory events with heatmap and statistical tables. 
Benefiting from comprehensive annotations of cancer pathology elements, Cancer-Alterome exhibits extensive 
potential usage for data exploration.

Visualize the regulatory events caused by genetic alteration.  We select the well-known cancer driver gene ERBB2 
and check the genetic alterations related to this gene within the context of AML in the dataset. As shown in 
Fig. 3, diverse genetic alterations are linked with ERBB2, including expression changes, point mutations, copy 
number variation, etc, as represented in Fig. 3. These genetic alterations are further linked to the regulation of 
downstream biological processes or clinical phenotypes, clustered with relevant GO and HPO ancestors such 
as HP:002664-Neoplasm, GO:0065007-biological regulation, and GO:0040007-growth. A portion of these 
terms pertain to the defined cancer hallmarks. For instance, GO:0008152 metabolic process corresponds to 
“reprogramming cellular metabolism”, GO:0002376 immune system process corresponds to “avoiding immune 
destruction”. Meanwhile, other specific cancer hallmark terms can be found in the records of the child nodes of 
these GO, HPO ancestors. For example, GO:0006915-apoptotic process is categorized as GO:0009987-cellular 
process, and GO:0006954-inflammatory response is categorized as GO:0050896-response to stimulus. In addi-
tion to these widely used cancer hallmarks, the Sankey diagram also suggests some other known GO terms, such 
as GO:0001871 Abnormality of blood and blood-forming tissues, and GO:0000707 Abnormality of the nervous 
system. These terms illustrate specific pathological mechanisms for ERBB2 in specific cancers.

Pathology investigation.  Cancer-Alterome can be utilized to investigate cancer pathology from a broader 
perspective. Figure 3b represented the heatmap of top-20 AML-related genes from Cancer-alterome to the 
downstream effects, facilitating investigation of the pathological mechanisms involving multiple genes for a 
specific cancer. Heatmap in Fig. 3c illustrates the associations cluster of ERBB2 with downstream effects across 
32 pan-cancers. Multiple significant clusters can be observed. BP clusters, e.g., GO:0032501 multicellular organ-
ismal process and GO:0000187 immune system process, suggest common mechanisms of ERBB2. In the mean-
time, phenotype clusters, including HP:0025031 Abnormality of digestive system and HP:0000119 Abnormality 
of the genitourinary system, indicate the clinical performance related to ERBB2. The heatmap facilitates the 
association of genes with known cancer hallmarks. For instance, a hallmark of “avoiding immune destruction” 
is significantly clustered in ERBB2 records. In conclusion, by leveraging Cancer-Alterome, we can explore the 
pathological mechanisms of cancer from multiple perspectives. Specifically, we can investigate the downstream 
effects of genetic alterations in specific genes, as well as the functional enrichment of multiple genes in different 
cancers. Moreover, in the context of expanding cancer hallmarks, the dataset allows for a broader perspective 
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in interpreting cancer pathology. Notably, all these associations can be further traced back to literature support, 
greatly contributing to the interpretability of cancer pathology. Overall, Cancer-Alterome has the potential to be 
a significant valuable resource for precision oncology and cancer pathology research.

Web service construction.  To improve data accessibility, we have developed a user-friendly web service acces-
sible via http://lit-evi.hzau.edu.cn/PanCancer. This platform encompasses a range of interactive pages designed 
to facilitate seamless exploration and utilization of the dataset:

•	 By Gene: On this page, users have the option to query a single gene and receive comprehensive reports for the 
queried gene across 32 pan-cancers. The reports include information about genetic alterations specific to each 
cancer type, as well as the regulatory events associated with these alterations. Moreover, the platform features 
an interactive rich-text presentation table located below the statistical graphs. This table serves to enhance 
the user’s experience by providing an easy-to-navigate interface for accessing literature support related to the 
queried gene and its associated genetic alterations and regulatory events.

•	 By Cancer: This page, similar to the “By Gene” page, allows users to query a single cancer and investigate the 
statistical diagram and literature support of the cancer.

•	 By Gene Set: This page enables users to enter a gene set, and investigate the clustering of cancers related to 
those genes in the expanded cancer hallmarks. The results will be represented as a visualized heatmap and an 
interactive table.

•	 By Cancer Set: This page, similar to the “By Gene Set” page, enables users to input a collection of cancers, 
analyze the clustering of genes linked with those cancers with the expanded cancer hallmarks, and depict the 
results through a visual heatmap and an interactive table.

Through the web service, data downloading is allowed for each query, and an option is also given to down-
load the complete dataset. Additionally, to ensure continuous data availability, the information within the web 
service will be updated on a quarterly basis.

Data Records
The dataset is available at Figshare28. To facilitate scalable maintenance and convenient data access, we present 
two distinct data formats, SQLite 3 and tab-separated values (TSV).

SQLite3 format is lightweight. This format enables swift data importation into downstream applications, 
including the Django framework, and can be effortlessly converted into a MySQL database. As a result, direct 
database querying becomes feasible and efficient.

TSV files provide easy-to-view access to data. This file encompasses 13,256K rows of Cancer-Alterome 
records, structured into 21 columns denoted from A to V. Below are the specific descriptions for each column:

	 A.	 Cancer: The full name of the cancer for one of the 32 pan-cancers, e.g. “Acute Myeloid Leukemia”.
	 B.	 Gene: The NCBI gene symbol of the gene reported in the records, e.g. “EGFR”.
	 C.	 EntrezID: The NCBI Gene ID for the gene in column B, e.g. “1956”.
	 D.	 Normalized Variants Mention: Standard dbSNP or normalization for other genetic alterations are listed, 

including the mentions in the text, e.g. “L858R”. In cases where the normalized term is absent or unavaila-
ble, this column is indicated by a dash symbol (“-“).

	 E.	 Normalized Variants ID: The dbSNP identifier of genetic variant in column D, e.g. “rs121434569” or 
“g.4717C>G”.

	 F.	 Normalized Variants Type: Four types of normalized variants, including rsID, DNA change, cDNA change, 
and protein change.

	 G.	 Alteration Mentions: The mention of genetic alteration in the record. In Fig. 1b, examples of such mentions 
include “differential expression” and “splice variants”.

	H.	 Alteration Type: The 7 types and 27 sub-types of the genetic alterations, as defined in Fig. 2. For example, 
the above two examples in column G fall into alteration types “Expression Change:Expression” and “Struc-
tural Variation:Splice variant”, respectively.

	 I.	 GO Mention: The mentions of the GO concepts in this records, e.g. “cell cycle” or “adhesion” in Fig. 1.
	 J.	 GO Term: The normalized GO ID and concept of the GO mention in column I, e.g. “GO:0007049 cell cycle” 

or “GO:0007155 cell adhesion”.
	 K.	 GO Ancestor: The ancestor node at the second level in the ontology of the GO term in the column J. For 

example, “GO:0065007 biological regulation” is the ancestor node of “GO:0042129 regulation of T cell 
proliferation”.

	 L.	 HPO Mention: The mentions of the HPO concepts in the records, e.g. “decreased immune response”.
	M.	 HPO Term: Normalized HPO ID and name of the HPO mention in column M, e.g. “HP:0002721 

Immunodeficiency”.
	 N.	 HPO Ancestor: The ancestor node of the HPO term in column M, e.g. “HP:0002715 Abnormality of the 

immune system”.
	 O.	 MeSH Mention: The mentions of the MeSH concepts in the record, e.g. “autoimmune diseases”.
	 P.	 Mesh Term: Normalized MeSH ID and name of the MeSH mention in the column O, e.g. “MeSH:D001327 

Autoiummune Diseases”.
	 Q.	 Include Event: The “true” or “false” indicates whether the record contains a complete description of the 

regulatory events.
	 R.	 Regulatory Events: The complete description of the regulatory events in the record, e.g. “EGFR --Expression 

Change -- Neutral Regulation -- GO:00040790 cell cycle” (example in Fig. 1b).
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	 S.	 PMID: PMID of the source literature.
	 T.	 Sentence: The sentence instance linked with the record.
	 U.	 Journal: Name of the journal in which the source literature was published.
	 V.	 Year: Publication year of the source literature.

Technical Validation
Checking for accuracy of the data mining pipeline.  Accuracy evaluation of text mining tools and meth-
odology.  To guarantee the precision of the extraction results, a series of well-established text mining tools are 
utilized within the pipeline. As shown in Fig. 4, we take extensive evaluations upon text mining tools and meth-
odology used in NER, RE, and GARE extraction. Benchmark data are used for NER and RE evaluation, while 
manual curation is applied for GARE evaluation. Precision (P), recall (R), and F1-score (F) are taken as evaluation 
metrics in all the settings. In addition, inter-agreement annotation (IAA) is adopted in all the manual checks.

The performance evaluation of NER, RE, and GARE extraction are presented in Table 2, respectively. In brief, 
model performances of PubTator, OGER++, and PhenoTagger are reported in the original paper. AGAC-NER 
and AGAC-RE are evaluated in CHIP 2022 open shared tasks29. The quality of GARE events is manually evalu-
ated, as detailed below.

Performance results shown in Table 2 suggest that the adopted tools exhibit high precision in NER. For 
instance, OGER++ achieves the lowest precision of 0.72 in recognizing GO terms, and PubTator gets the high-
est precision of 0.81 for recognizing both genetic variations and Mesh terms. Though OGER++ obtains a lower 
recall rate for GO extraction at 0.17, it is attributed to the inherent complexity of the task involving GO identi-
fication and normalization. Meanwhile, low recall is acceptable for the dataset construction, since the accuracy 
holds greater significance for the integrity and utility of the dataset. After the NER step, abundant entities are 
recognized and normalized upon a mass literature database with 4,354K PubMed abstracts and PMC full texts. 
For example, the pipeline captures 203,939 gene mentions. After normalization by Entrez ID, these mentions 
correspond to 22,021 unique gene entities. The full statistics are given in the table.

Moreover, performance results in Table 2 suggest that AGAC-RE demonstrates commendable precision and 
recall in the RE task, indicating the high accuracy of the extracted result. Upon sentences annotated by the NER 
task, we perform AGAC-RE to derive relations. In total, the pipeline captures 37,411,752 Theme relations and 
12,420,489 Cause relations from the filtered literature.

Subsequently, we then apply the template-matching strategy to the obtained sentences containing the above 
entities and relations and filter GAREs accordingly. To evaluate the accuracy of the generated GAREs, 2000 
randomly selected GAREs are manually checked by four human experts from the fields of biology, bioinformat-
ics, and biomedical natural language processing. Rigorous rules are applied, requiring the records should carry 
fully correct biological event identification, including the gene, genetic alteration, and the downstream effects. 
The detailed manual check procedure, IAA result, and performance evaluation are presented in Section 1, 
Supplementary. Eventually, a high F-score of 0.90 is obtained after the evaluation, indicating the quality of the 
obtained regulatory events. Application of the template-matching strategy yields abundant GAREs. In total, 
16,681,473 GAREs are curated finally.

Analysis of the possible impacts caused by cascade error in the GARE extraction pipeline.  Generally, the eval-
uation of the GARE extraction is mainly based on the outcome of the regulatory events in the final step, as 
suggested with an F1-score of 0.90 (Table 2). In addition to the fundamental evaluation, it should be noted that 
GARE extraction is performed in a workflow manner, and the performance of data processing and prediction 
in each step may have a potential impact to affect the outcome of GARE extraction. To fully address these con-
siderations, we, therefore, analyze the possible errors cascaded in the data-processing process, NER step, and RE 
step, and conclude multiple impacts or effects. In brief, sentence splitting as an example of text pre-processing 
has won good quality, and Fisher’s exact test shows that the wrongly split sentence will not significantly affect the 
GARE extraction. Furthermore, missing NER tagging will bring silence in RE and GARE extraction. Incorrect 
NER results will bring the noise in RE and may bring the noise to GARE. In addition, correct NER and incor-
rect RE results may bring the noise to GARE extraction. Wrong trigger word recognition, mainly comes from 
the wrong tagging of negation, which also brings the noise in GARE. The full analysis is given in Section 2, 
Supplementary.

The potential improvements by leveraging large language model (LLM).  Moreover, concerning the potential 
advancements achieved by the LLM-based method in our task, we take prompt engineering with ChatGPT and 
test its performance in NER, RE, and GARE extraction tasks. An overall F1-score comparison on GARE extrac-
tion, i.e., 0.90 vs. 0.57 for the proposed pipeline and LLM-based method, indicates that the proposed pipeline 
presents competitive performances if compared with the LLM result.

For additional details, we utilize the gpt-3.5-turbo model as LLM and perform prompt engineering to 
replicate NER, RE, and GARE extraction tasks listed in Table 2, employing the same datasets as outlined in 
the original tool papers. Specifically, PubTator performs gene, disease, and mutation tasks by utilizing the 
BioCreative II GN30, NCBI Disease31, and BRONCO32 data, while AGAC-NER and -RE perform employ the 
AGAC corpus33. In addition, the evaluation of OGER and PhenoTagger utilize the CRAFT Corpus34 and GSC+ 
corpus35, respectively. Eventually, GARE evaluation is conducted using manually annotated gold standard data-
sets. Very recently, Chen et al.36, publicize the comparison result in NER on disease and gene with PubTator 
and ChatGPT. In the meantime, Labbé et al.37, compare PhenoTagger with ChatGPT in NER on HPO terms. 
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With these advancements, we therefore design task-specific prompts for the remaining 7 tasks. All prompts 
and evaluation scripts are available in the https://github.com/bionlp-hzau/Cancer-AlteromeGitHub repository, 
https://github.com/bionlp-hzau/Cancer-Alterome. The detailed experimental setting and comparison results 
are given in Section 3, Supplementary. In almost all tests, the ChatGPT-based approach does not outperform 
the selected model, consistent with recent evaluations in biomedical text recognition38. It seems that due to the 
domain-specific terminology in biomedical texts, current LLMs are still falling short in tasks such as NER and 
RE, despite often excelling in context-relied tasks like question answering (QA). However, considering that the 
prompt engineering test represents only our attempt in this research, along with the ongoing evolution of LLMs, 
the obtained results primarily serve as supporting evidence for the reliability of the Cancer-Alterome outcomes.

Checking for data abundance of the database.  Counts of biomarkers, biological processes, and clinical 
phenotypes.  As stated in the last section, Cancer-Alterome encompasses 16,681,473 regulatory events, with each 
cancer containing an average of 521K regulatory events. These records contain a comprehensive set of annotations 
for biomarker entities, including the associations between 21K genes and 136K normalized genetic variations, 
plus 20K genetic alterations (Table 3). The dataset also collects a large number of associations between these bio-
markers and the expanded cancer hallmarks, including over 4K GO terms, 2K HPO terms, and 146K MeSH terms.

Focusing on the extensive statistical result of the genetic alterations, we investigate the coverage of 27 types 
of genetic alterations in the dataset. As shown in Fig. 5, “Mutations” are mentioned most significantly in the 
dataset, followed by rsID normalized variations. Multiple genetic alterations, such as “Acetylation” and “Splice 
variant” are comparatively less prevalent in the dataset, possibly owing to lower reporting frequency in cancer 
research. Notably, all the GARE records include the sentence support and literature information, providing 
metadata for the web service in this research.

Yearly statistics for the count of regulatory events recorded per cancer type.  We plot the distribution of regula-
tory events with publication year across four distinct time periods for 32 cancers (Fig. 6a). The high coverage of 
specific cancers such as “Prostate Adenocarcinoma” and “Hepatocellular Carcinoma” highlights the significant 
areas of focus and prevailing trends within the field of cancer research. It can be observed that there has been 
a substantial surge in research literature about the extracted regulatory events, particularly after the year 2010. 
Remarkably, in just three years from 2020 to the present, the amount of extracted regulatory events has sur-
passed that of the previous decades, demonstrating an impressive growth trend (Fig. 6b).

Comparing data abundance across benchmark databases.  For the external evaluation of the dataset abundance, 
we compare Cancer-Alterome with other multiple literature-mining-based data resources for cancer. These 
resources include CancerMine17 for cancer genes and CIViCmine18 for genetic alteration in cancers. We select 
six representative genes from CancerMine, which include three most frequently reported genes in the context of 
acute myeloid leukemia (AML), KMT2A, FLT3, and MLLT3, as well as three genes that are least reported in this 
specific cancer, namely ZFP36L2, ZIC2, and ZNF582. Table 4 indicates that Cancer-Alterome presents a greater 
number of records for all six genes compared to CancerMine and CIViCmine. Furthermore, CancerMine and 
CIViCmine focus on only single biomarkers, genes, or genetic variants in precision oncology. Cancer-Alterome 
goes beyond these limitations. It not only widens the spectrum of encompassed genetic alterations but also 
establishes intricate correlations with downstream effects, thereby elevating the systematic interpretation of 
cancer pathology.

Furthermore, we conduct a comparison of Cancer-Alterome with existing databases that report biological 
events. Since the known resources, like DigSee9 and BioContext8, are currently not available, we focus the sta-
tistical comparisons solely on GePI. In GePI, the record number of these six genes under full diseases context 
is 8,322, 7,965, 1,156, 309, 609, and 48, respectively, having a comparable size with our dataset. While, these 
three databases only focus on seven categories of downstream biological events, including gene expression, 
transcription, phosphorylation, localization, regulation, binding, and protein metabolism. The expanded cancer 
hallmarks in our dataset cover all concepts in GO, HPO, and MeSH, thus enhancing the interpretation of cancer 
pathology.

Code availability
The scripts utilized to parse literature and extract events are home-written codes which are publicly available at 
GitHub repository https://github.com/bionlp-hzau/Cancer-Alterome. The underlying python3 libraries used in 
this project are all open-source: E-direct (https://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect), OGER++ (https://
github.com/OntoGene/OGER), PhenoTagger (https://github.com/ncbi-nlp/PhenoTagger), PubTator (https://
www.ncbi.nlm.nih.gov/research/pubtator/), AGAC-based model (AGAC-NER: https://github.com/YaoXinZhi/
BERT-CRF-for-BioNLP-OST2019-AGAC-Task1 and AGAC-RE: https://github.com/YaoXinZhi/BERT-for-
BioNLP-OST2019-AGAC-Task2), Pytorch (http://www.pytorch.org) and sci-kit-learn (http://scikit-learn.ory). 
More details on the guidelines of code usage are given in Supplementary 4.
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