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Understanding changes in the built environment is vital for sustainable urban development and disaster 
preparedness. Recent years have seen the emergence of a variety of global, continent-level, and 
nation-wide datasets related to the current state and the evolution of the built environment, human 
settlements or building stocks. However, such datasets may face limitations like incomplete coverage, 
sparse building information, coarse resolution, and limited timeframes. This study addresses these 
challenges by integrating three spatial datasets to create an extensive, attribute-rich sequence of 
settlement layers spanning 200 years for the contiguous U.S. This integration process involves complex 
data processing, merging property-level real estate, parcel, and remote sensing-based building 
footprint data, and creating gridded multi-temporal settlement layers. This effort unveils the latest 
edition (Version 2) of the Historical Settlement Data Compilation for the U.S. (HISDAC-US), which 
includes the latest land use and structural information as of the year 2021. It enables detailed research 
on urban form and structure, helps assess and map the built environment’s risk to natural hazards, 
assists in population modeling, supports land use analysis, and aids health studies.

Background & Summary
Data describing the evolution of human settlements is crucial for understanding environmental change and 
human-environment interactions. In recent years, various spatial data products have been developed that 
describe the built environment at national, regional and global levels, such as Google’s building footprints1,2, 
Microsoft’s high-resolution building footprint data3, OpenStreetMap, and Open City Model (OCM), the Global 
Human Settlement Layer (GHSL)4, or the World Settlement Footprint Evolution5, to mention a few examples. 
While these datasets capture the human footprint in unique ways, developing comprehensive long-term settle-
ment data has been challenging due to the lack of data and infrequent data updates.

Numerous studies conducted map matching, or geospatial data conflation, which refers to the processing 
of multiple sets of geospatial data to identify corresponding objects that, in combination are more reliable and 
allow to generate new, more comprehensive, and more complete geospatial information6,7. Various techniques 
have been proposed for matching different geospatial datasets. Geospatial objects matching often implies using 
distance and angular measures, shape metrics, and semantics. For example, Koukoletsos et al. (2012) proposed 
automated object-based matching, a multistage approach combining geometric and attribute constraints. 
Different types of remote sensing data (including aerial imagery) were combined to create spatial layers depict-
ing built-up areas8.

Data products, developed using multiple geospatial input data to depict characteristics and dynamics of 
built-up areas and settlements, have found applications in various research fields, including population down-
scaling and estimating change9,10, the analysis of urban development7,11,12, the characterization of urbaniza-
tion13,14, evaluating disaster response and recovery15, urban planning and land use science16–18, validation of 
remote-sensing based data19 and studying the impacts of natural hazards and extreme events20,21.
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However, in addition to general aspects of uncertainty, each of the above datasets has limitations such as 
incomplete geographical coverage, limited information about semantic and temporal aspects, low spatial detail 
in historical records, or coarse spatial resolution6,22–24. In order to overcome such limitations and increase data 
quality and accuracy, recent efforts have been made to systematically integrate several disparate datasets25,26. 
Such data integration efforts are complex, and we will demonstrate the integration of several geospatial data 
sources to create high-quality multi-temporal data layers describing different components of the built environ-
ment. We utilized both real estate and parcel data, offering year-built information dating back to the 1800s, along 
with building footprint data, to create a refined, spatio-temporal representation of built-up areas. The dataset 
reflects the most current land use and built-up information as of 2021, and the underlying multi-source data 
integration will mitigate incompleteness issues in prior work27–29.

Herein, we describe (1) how different spatial layers can be used to extract relevant attributes for creating a 
multi-temporal built-up land dataset, (2) what data integration steps have to be done in a geospatial processing 
environment to overlay those disparate spatial datasets, (3) how to efficiently create gridded data using the inte-
grated vector datasets as input, and (4) the creation of uncertainty surfaces and quality metrics that are relevant 
for future data use. The spatial resolution, reference, and extent of the resulting gridded surfaces are coherent 
with and represent an improved version of the existing Historical Settlement Data Compilation for the United 
States (HISDAC-US)27,29 to maintain data consistency and facilitate data use. We evaluate the data products 
against various independent data sources. HISDAC-US is part of a larger data integration and harmonization 
effort aiming to create accessible, historical settlement data at the country-level, based on (open) cadastral and 
other data, applied to a growing number of countries19,30,31.

Methods
This study integrated several datasets, including the Open City Model based on Microsoft building footprint 
data, nationwide parcel data from Parcel Atlas, and property data from Zillow (Zillow’s Transaction and 
Assessment Database; ZTRAX)32. Below, we describe each dataset, available attributes, and geographical cov-
erage. Subsequently, we present the data integration process to create multi-temporal gridded surfaces/data 
characterizing the built environment quantitatively and by land use category (Fig. 1).

open city model (oCM). Open City Model33 (https://github.com/opencitymodel/opencitymodel) was 
developed based on open datasets such as Microsoft’s building footprint data and OpenStreetMap (OSM)  
(Fig. 1a & Table 1) using an algorithm to estimate building heights. OCM data contains 125 million planar polygon objects  
representing buildings with building height information. Building heights were estimated using linear regression 
models based on a large sample of data for which building footprint areas and heights were available (approxi-
mately four million buildings in OSM for the U.S.).

Fig. 1 Input data illustration. (a) OCM building footprint data (b) Parcel data (c) ZTRAX property locations 
and year-built information (d) parcel data with year-built information.
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Cadastral parcel data. ParcelAtlas Features©34 (https://boundarysolutions.com) (Fig. 1b) contains parcel 
boundaries of 2,494 U.S. counties (about 77% of counties in the CONUS), encompassing 146 million current 
parcels provided as polygon objects (Table 1). This parcel dataset contains attributes such as unique parcel IDs, 
addresses, land use codes, indoor floor area, parcel area, and year-built (Fig. 1d). It also provides 16 land use 
categories and 340 subcategories, including agriculture, communication, commercial office, commercial retail, 
exempt & institutional, governmental, historical & cultural, industrial-heavy, industrial, miscellaneous, personal 
property, recreational, residential income - multi-family, residential, transportation, and vacant land.

Zillow’s transaction and assessment database (ZTRAX). ZTRAX is a large real estate database 
(https://www.zillow.com/research/ztrax/) (Fig. 1c & Table 1), containing 400 million detailed public records 
across 3,137 (about 96%) counties in the US. ZTRAX includes property characteristics (year-built, indoor area, 
land use), geographic information (geolocation, property address), as well as current and prior valuations, and 
has recently gained attention by researchers from a broad range of disciplines35. ZTRAX provides 12 general land 
use categories (agriculture, commercial, exempt, government, historical, industrial, miscellaneous, private, resi-
dential, recreational, transportation, and vacant) and 307 subcategories.

For several land use classes, low representation and lower levels of completeness were found. Therefore, five 
of the above classes (exempt, historical, miscellaneous, private, and transportation) were omitted from the data. 
Additionally, we subdivided the residential class into residential-owned and residential-income. Although some 
classes were omitted from the main product, they were included in creating the complementary uncertainty 
layers as described below.

Data integration. Integrating the described spatial input data is challenging because the data is heteroge-
neous in its basic properties and quality parameters. The conducted processing steps aim to create a combined, 
higher-quality data product using the different (complementary) characteristics of the input data sources. In 
this case, data integration is based on various spatial operations, such as spatial join (intersection, nearest join) 
and address matching, to create a dataset of maximum completeness featuring attributes such as the number of 
buildings, building indoor area, or year-built. Due to the different data properties, the order of execution matters 
as described below (Fig. 2).

First, we converted OCM building footprint polygons to points (centroids) and overlaid them with parcel 
polygons. OCM points that were located within a parcel polygon were joined to the respective parcel record 
with the spatial join function in ‘geopandas’ package in Python 3.736. We allowed multiple points (OCM) to 
join a parcel polygon (parcel), since a parcel may contain multiple buildings. Points that were not joined with a 
parcel based on the containment rule (because the point was located outside parcel boundaries) were joined with 
nearby parcel polygons (within a radius of 100 meters) if the building footprint area in the OCM record was less 
than the respective parcel area. If more than one point was close enough to the same polygon or more than one 
polygon was located within 100 m to the same OCM point, only those points with the most similar test metric 
were matched to enforce a 1:1 join. The test metric was calculated as shown in Eq. 1. We formulated this rule 
under the assumption that when a building polygon matches a parcel polygon, the building area is expected to 
be smaller than the parcel’s area, and building location errors should remain within the bounds of the diagonal 
length of the parcel polygon.

Name Description
Spatial 
resolution

Temporal resolution and 
time period Data format

Building footprint data from 
Open City Model (OCM) Nationwide building footprint data — unitemporal polygons

Parcel Atlas Nationwide parcel data — annual polygons

ZTRAX Nationwide property data — annual points

Built-up intensity (BUI) Cumulative gridded indoor building area 
in a grid cell 250 m Semi-decadal, 1810–2020 GeoTIFF

Built-up property records 
(BUPR)

Cumulative gridded count of built-up 
property records in a grid cell 250 m Semi-decadal, 1810–2020 GeoTIFF

Built-up property locations 
(BUPL)

Cumulative gridded building location 
counts in a grid cell 250 m Semi-decadal, 1810–2020 GeoTIFF

Built-up area (BUA) Cumulative gridded built-up (value 1) 
and not built-up (value 0) areas 250 m Semi-decadal, 1810–2020 GeoTIFF

First Built-up Year (FBUY) Earliest built-up year in a grid cell 250 m Annual GeoTIFF

Land use majority Cumulative gridded surfaces depicting 
the majority land use class per grid cell 250 m Semi-decadal, 1940–2020 GeoTIFF

Land use count Cumulative number of buildings per land 
use class in a grid cell 250 m Semi-decadal 1940–2020 GeoTIFF

Uncertainty layer No year-built 250 m 1940–2020 GeoTIFF

Table 1. Descriptions and characteristics of input, and output.
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Those OCM points and parcel polygons that were not matched with any record in the other dataset at that 
point remained unmatched. These steps resulted in the joined OCM-parcel (OP) records, composed of the suc-
cessfully matched point-polygon objects (point attributes were joined to the polygon attributes), OCM points that 
did not match with parcel polygons (O), and parcel polygons that were not matched with points in OCM (P). We 
converted the O subset back to polygons to ensure we create a combined dataset with polygon geometry (Fig. 1).

Next, we integrated the OCM-parcel combined dataset (OP, O, P) with ZTRAX data. We first used address 
information from ZTRAX to match with records in the OP and P subsets containing addresses. The remain-
ing ZTRAX points that were not matched yet with polygons were then examined for containment within the 
extended polygons (buffered by 100 meters) with the spatial join function in ‘geopandas’ package in Python36. 

Fig. 2 Data integration workflow (note: O: OCM, P: Parcel, Z: ZTRAX, OP: OCM building polygons merged 
with Parcel polygons, PZ: parcel polygons matched with ZTRAX points, OZ: OCM building polygons merged 
with ZTRAX, OPZ: matched OCM, Parcel, and ZTRAX).

https://doi.org/10.1038/s41597-024-03081-x
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If they were inside these buffered boundaries, the attributes were joined. We allowed multiple ZTRAX points 
to join OP, O, and P polygons. To avoid duplicate matching between a point and multiple polygons, we uti-
lize attributes. If there are multiple polygons with attributes (year-built and indoor areas) similar to those of a 
ZTRAX point, we prioritize the most similar match among all the matches (Eq. 2). Those ZTRAX points that 
were not matched remained unmatched for the time being.

Year built Year built

Indoor areas indoor areas

Similarity Minimum(Absolute( )

(Absolute( )) (2)

ztrax parcel

ztrax parcel

= −

+ −

Once these geoprocessing steps were executed, we integrated all the matched and unmatched records. The 
unmatched polygons and the Parcel-OCM polygon matches were converted to points by using polygon cen-
troids. Matched Parcel-OCM polygons and ZTRAX points used the geometry information from Zillow. This 
created eleven combinations of subsets (Fig. 1) as listed below. The resulting integrated dataset consisted of 
287,993,130 points. The attribute coverage varied slightly depending on the matched source datasets to generate 
a record. For example, we increased the completeness of data on year-built and indoor area by filling in records 
in ZTRAX by using those found in the parcel data. The counts for each subset created during the data integration 
process is detailed in Table 2. The resulting eleven subsets are:

 1. Individual OCM building locations matched with individual parcel records (OP 1:1),
 2. Multiple OCM building locations matched with one parcel (OP n:1),
 3. Individual OCM building locations matched with individual ZTRAX records (OZ 1:1),
 4. Individual OCM building locations matched with multiple ZTRAX records (OZ 1:n),
 5. Individual parcels matched with individual ZTRAX records (PZ 1:1),
 6. Individual parcels matched with multiple ZTRAX records (PZ 1:n)
 7. Individual OCM building locations, matched with individual parcels, and individual ZTRAX records 

(OPZ 1:1:1),
 8. Multiple OCM or ZTRAX records matched with individual parcels (OPZ n:1:n),
 9. OCM building records that did not match with any other data (O),
 10. Parcel records that did not match with any other data (P),
 11. ZTRAX records that did not match with other data (Z).

Creating multi-temporal gridded data. The points described above were input to the rasterization. We 
created a set of multi-temporal gridded surfaces/data layers using the year-built attribute for temporal definition 
and building locations and properties within grid cell extents to calculate and assign the cell values. To generate 
gridded surfaces in GeoTiff format, we used Numpy37 and Rasterio38 packages in Python. This grid is consistent 
with the grid used in the previous version of HISDAC-US27. All the gridded data layers listed in Table 1 have a 
spatial resolution of 250 m.

Built-up area, intensity, location, and year-built data (1810–2020). The gridded surfaces have a 
temporal resolution of 5 years and cover the time period from 1810 to 2020. To create the different thematic raster 
layers, we used the building-related attributes included in the various source datasets as described in this section. 
Importantly, to create the gridded layers for a given point in time, we included all the objects with a year-built 
equal to or prior to the point in time of interest and their attributes to compute the summary statistics and assign 
the grid cell values. These data products build upon previous efforts, the HISDAC-US27,29. Therefore, we keep the 
layer names and definitions consistent.

Built-up area (BUA)29 represents a binary representation of built-up areas. A cell that has at least one build-
ing is assigned the value ‘1’; all other areas are assigned the value ‘0’. Built-up intensity (BUI)27 is created based 
on the registered indoor area of all structures found within a grid cell for each half-decade (and prior to that 
year). Thus, BUI represents the gross (indoor) building area or the sum of the indoor areas of all units in a 

Integration code Description Count and percentage

O OCM building footprint only 18,173,981 (6%)

OP11 Single OCM and parcel data match 63,963,244 (22%)

OPZ111 Single OCM, parcel and ZTRAX match 8,184,192 (3%)

OPZn1n Multiple OCM and ZTRAX and a single parcel match 50,523,970 (18%)

OPn1 Multiple OCM building footprint and parcel match 39,296,004 (14%)

OZ11 Single OCM and ZTRAX match 15,095,266 (5%)

P Parcel only 72,738,753 (25%)

PZ11 Parcel and ZTRAX 1:1 match 3,645,056 (1%)

PZ1n Parcel and multiple ZTRAX match 10,155,415 (4%)

Z ZTRAX only 3,211,091 (1%)

OZ1n OCM and multiple ZTRAX match 3,006,158 (1%)

Table 2. Count for each integration step.

https://doi.org/10.1038/s41597-024-03081-x
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multi-storey building existing at that point in time. Built-up property records (BUPR)29 represents the count 
of property records within a raster cell at a given point in time. BUPR will allow the differentiation between areas 
where high-rise and multi-unit buildings dominate the built environment and other developed land. Built-up 
property locations (BUPL)29 represent the count of buildings per grid cell at a given point in time. BUPL is sim-
ilar to BUPR in most cases. However, BUPL counts multi-family housing or apartment buildings as one built-up 
entity that may contain multiple units each of which is counted individually in BUPR. The First Built-up year 
(FBUY)27 raster layer was calculated by assigning each grid cell the earliest year-built recorded among all records 
within a grid cell. We used Numpy, Rasterio37,38, and other Python packages to generate semi-decadal gridded 
surfaces from 1810 to 2020 in GeoTiff format (Fig. 3).

Land use data (1940–2020). Due to the lower attribute completeness in records with earlier year-built but 
also due to inherent survival bias (see the spatial and temporal uncertainty section for more details), we created 
semi-decadal gridded land use data from 1940 to 2020. The HISDAC-US dataset series includes layers that rep-
resent the majority land use class within a grid cell as well as count layers for each land use category (Industrial, 
commercial, residential income, residential owned, agricultural, recreational, government, and vacant lands) con-
sistent with the original HISDAC-US version28, all at a spatial resolution of 250 m. This data product introduced 
two additional land use categories, government, and vacant lands, which are considered crucial factors for ana-
lyzing urban and population dynamics as well as land development39,40.

To complement the original HISDAC-US land use layers, we added public and vacant land use categories. 
The land use categories in ZTRAX and the parcel data were matched using the Python library ‘fuzzy-match.’ 
Parcel and ZTRAX data exhibited closely aligned land use categorizations, with the exception of ‘Spacecraft’ in 

Fig. 3 Fine-resolution time sequences of gridded building data for the US (a) Contemporary (2020) built-up 
property records (BUPR) in the US; (b) BUPR time sequence for the New York-Newark-Jersey area.

https://doi.org/10.1038/s41597-024-03081-x
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the parcel data, which did not have a corresponding match in ZTRAX. Since this land use category was unrelated 
to our data products, we chose to leave it unmatched.

The agricultural class has 25 subcategories. We included nine of these subcategories including agricul-
tural general, farm (irrigated or dry), dairy farm, poultry farm, ranch, reservoir, water supply, rural improved, 
nonresidential-owned, natural resources, and miscellaneous structures. We excluded 16 subcategories that are 
not tied to buildings, such as range land, grazing land, cropland, field crops, row crops, orchard (fruit, nut).

The commercial (C) land use class includes 65 subcategories, such as office and medical buildings, dry clean-
ers, casinos, and gas stations. Industrial (I) land use contains 47 subcategories, including heavy industrial build-
ings such as labor camps, quarries, and slaughterhouses, and lighter industrial facilities such as loft buildings, 
assembly plants, and recycling centers.

The Residential class is divided into two land use categories, residential-income and residential-own. The res-
idential owned (RO) category refers to residential structures that are owned by a residential account holder who 
owns the property at the service address of record (https://www.lawinsider.com/dictionary/residential-owner). 
Residential-income (RI) indicates residential structures that are registered as rented or leased dwellings and, 
thus, not occupied by the owner. RI and RO classes combined contain 37 subcategories, all of which were 
included in the analysis. The recreational land use (RC) includes 35 subcategories, such as bowling alleys, 
playgrounds, zoos, and dance halls. The government (G) class contains 20 subcategories: city, municipal, town, 
village-owned buildings, administrative office, public hospitals, military, public colleges and universities, cul-
tural, historical (monuments, homes, museums, other), and community centers. Vacant (V) land has 15 sub-
categories, including vacant land (General), abandoned site, contaminated site, under construction, structures 
on leased land, temporary structures, and vacant land for multi-family, agricultural, institutional and industrial 
use (Fig. 4).

We subset the integrated data by land use categories and year and count the occurrence of each land use class 
within each grid cell to create semi-decadal land use count layers. In addition, we created land use majority 

Fig. 4 Fine-resolution time sequences of gridded landuse class counts for Austin, Texas overlaid with county 
boundaries (1945,1985, and 2020).

https://doi.org/10.1038/s41597-024-03081-x
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layers by determining the most frequently occurring land use type in each grid cell for each point in time.  
If the count is the same in multiple categories, we prioritized according to the order of agricultural, commercial, 
industrial, recreational, residential income, and residential-owned. We followed the rule which was applied for 
HISDAC-US (V1) to maintain consistency across data products.

Spatial and temporal uncertainty. We created multiple uncertainty layers similar to those we created 
as part of the previous HISDAC-US data product. We created gridded layers representing the building structure 
records without year- built. A previous study investigated the potential sources of uncertainty, including incom-
pleteness in land use attributes from earlier years in ZTRAX and the presence of survival bias, which occurs when 
built structures are demolished without being recorded in the data. In other words, this data relies on the assump-
tion that the ZTRAX and Parcel data reflect the most current land use information for 2021. This information may 
not encompass all units that were demolished or may not fully account for historical land use changes or built-up 
characteristics. For instance, ZTRAX, OCM, and Parcel data do not include structures that have been demolished 
and do not indicate where demolitions might have taken place. Thus, omitting buildings that no longer exist 
at historical time points. Previous research indicates that the influence of survival bias on analytical results is 
limited. A recent case study showed that only about 1% of buildings were demolished in Colorado in 201528,32.  
Nevertheless, McShane et al. (2022) noted that certain demolished buildings are classified as vacant. Importantly, 
our data product includes vacant land use, which provides valuable insights into the nature and extent of demol-
ished buildings28. Furthermore, through the integration of parcel and building footprint data with ZTRAX data, 
the completeness of data attributes in HISDAC-US (V2) likely matches or surpasses that of HISDAC-US (V1).

Data Records
Historical settlement layers. The datasets described in the forthcoming sections are now accessible 
through the Harvard Dataverse HISDAC-US repository, which can be accessed via the following URL: https://
dataverse.harvard.edu/dataverse/hisdacus41–44. These multi-temporal built-up characteristics are structured as 
georeferenced gridded layers with file names indicating the respective year and the type of attribute, including 
BUI, BUPL, BUPR, and BUA (e.g., 1980_BUI indicating the built-up intensity of buildings in that grid cell that 
existed in 1980 or before). These layers cover most of the CONUS, excluding Hawaii, Alaska, and missing coun-
ties. These datasets have a spatial resolution of 250 meters and a temporal resolution of 5 years for each data 
product. These datasets cover the period from 1810 to 2020.

Additionally, we have created a georeferenced gridded layer that represents the earliest construction year of 
buildings within a given grid cell (First Built-up Year, FBUY). To construct this layer, we gathered the earliest 
available year of construction data from both ZTRAX and parcel records for each property within a given grid 
cell. We also generated a layer that quantifies the number of buildings in a given grid cell that lacks information 
regarding their year of construction. This layer is denoted by the file name “NobuiltYear.”

We have provided these raster layers in the GeoTIFF format, with a consistent spatial resolution of 250 
meters. To maintain uniformity across the settlement data products in the HISDAC-US compilation, we have 
adjusted the alignment of these layers to match the existing ones. All of this data has been made accessible 
through the HISDAC-US repository, utilizing the Albers Equal Area Conic projection specifically designed for 
the contiguous United States (EPSG:5070).

Figure 3 offers a valuable glimpse into the settlement data package, presenting distinct insights into urban 
development. This dataset enables users to understand the progression of urban growth by providing built-up 
area, intensity, and count surfaces that portray the evolution of built-up areas over time. In Fig. 3a, we present 
cumulative records of built-up properties across the United States. Figure 3b, on the other hand, displays a more 
detailed sequence of built-up property records over time in the New York-Newark-Jersey area.

Historical land use layers. The datasets covered in the forthcoming sections have also been made acces-
sible through the Harvard Dataverse HISDAC-US repository via the following URL: https://dataverse.harvard.
edu/dataverse/hisdacus45,46. The multi-temporal land use majority class surfaces are structured as a series of geo-
referenced gridded layers, with file names incorporating the corresponding year (e.g., Majority_1940) covering 
most of the CONUS. These gridded layers have a spatial resolution of 250 meters and a temporal resolution of 
five years.

In the primary data product, each grid cell value represents the most frequently observed land use class 
among all ZTRAX and Parcel records within that specific grid cell for a given year. This calculation is based 
on all georeferenced records that include both a year-built and a land use designation. Furthermore, for each 
distinct land use class, we have generated a time series of gridded count layers that show the number of records 
associated with that land use class (e.g., residential) within a particular grid cell for every half-decade starting 
from 1940. These layers are labeled with the land use class and the year in their filenames (e.g., Count_1940_
Theme1, indicating agricultural structures existing in 1940). These data products encompass the time span from 
1940 to 2020. We have created these raster layers in GeoTIFF format, maintaining a spatial resolution of 250 
meters. To ensure consistency among settlement data products within HISDAC-US, we have aligned these lay-
ers with the existing ones. All of this data has been made available in the HISDAC-US repository, utilizing the 
Albers Equal Area Conic projection for the contiguous United States (EPSG:5070).

Figure 4 provides an overview of the land use data package, offering unique perspectives on the evolution 
of land use change over time. This dataset enables users to comprehend urban growth not only in terms of 
the predominant themes but also through count surfaces that depict the evolution of land use classes over 
time. In Fig. 4, the top three rows illustrate the cumulative counts for commercial, residential-income, and 
residential-owned land use classes at three different time points in Austin, Texas. Meanwhile, the bottom 

https://doi.org/10.1038/s41597-024-03081-x
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row in Fig. 4 showcases the cumulative counts for all other land use classes, including Agriculture, Industrial, 
Recreational, Vacant, and Governmental.

technical Validation
Attribute completeness. Integrating and filling in missing information among different input data helps 
improve the completeness of the combined dataset. However, even the integrated data has geographically uneven 
levels of completeness, and this should be carefully considered as a possible ingredient for gridded layers as com-
plimentary data products. For example, Fig. 5a illustrates the completeness of the year-built attribute and shows 
that some regions, such as Wyoming, New Mexico, Montana, and Louisiana, have lower levels of completeness of 
year-built. Figure 5b illustrates the completeness of land use data.

Comparing the completeness in year-built information between HISDAC-US (V1) and 
HISDAC-US (V2). We compared the completeness of land use and year-built information between this new 
version of HISDAC-US (HISDAC-US V2) and the original version of HISDAC-US (HISDAC-US V1) to better 
understand the improvement in coverage and completeness of HISDACUS (V2). To evaluate changes in coverage, 
we created binary layers from FBUY (resulting in multi-temporal BUA layers) of both HISDAC-US versions and 
subtracted the value of BUA of HISDAC-US (V1) from BUA of HISDAC-US (V2). In order to build BUA binary 
layers, cells with year-built of interest or earlier are assigned the value 1; all other cells are assigned the value 0. 
We then counted the number of cells with value 1 within each county and calculated the difference between the 
county-level summary statistics derived from both HISDAC-US versions. Figure 5d illustrates that in most parts 
of the conterminous U.S., year-built coverage in the integrated data product has improved. HISDAC-US (V2) 
exhibits an average improvement of 128 cells with year-built information across all counties, with a maximum 
county-level increase of 14,391 (Kent County, Michigan) cells compared to the earlier version (Fig. 5d).

Associations between HISDAC-US versions. We calculated the Pearson correlations between different 
attributes derived from HISDAC-US (V1) and HISDAC-US (V2), including BUI, BUPL, and BUPR (Fig. 6). 
Correlations between BUI values vary throughout the study period and are considerably lower at the county level 
compared to states. BUI, BUPL, and BUPR show lower correlations in earlier years, which gradually increased 
over time with state-level correlations always higher than county-level correlations. The correlation trend in BUI 
is of particular interest as it is directly related to completeness of records in general (BUPL and BUPR) but also to 
attribute coverage. The weak correlations in the earlier years are due to the incompleteness of records and attrib-
ute coverage and increased significantly until the 1950s at both the county and state levels. The correlations then 
decrease until 2010, especially at the county level possibly due to differences in attribute coverage between both 
HISDAC-US versions, observations also made by Uhl et al. (2020) for HISDAC-US (V1).

Fig. 5 Uncertainty layers for different attributes: (a) Completeness of the year-built attribute at the county level 
(records with year-built information/ total records in each census tract), (b) completeness of land use attributes 
(records with land use information /total records in each county),(c) completeness of indoor area (d) difference 
between county-level FBUY derived from HISDAC-US (V2) and HISDAC-US (V1) (number of grid cells 
with year-built information at the county level in HISDAC-US (V2)- the same summary statistic derived from 
HISDAC-US (V1)).
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We also compared binary FBUY layers (time slices to create BUA layers) derived from both HISDAC-US 
versions and conducted a confusion matrix analysis. The relative omission and commission errors showed the 
discrepancy between the two HISDAC-US versions. The comparison also showed that the two HISDAC-US ver-
sions have an agreement in BUA of 94% (combined true negative and true positive), a recall of 0.60, an F-score 
of 0.60, and a precision of 0.60.

evaluating historical coverage. Additionally, we compared HISDAC-US (V2) with census data and the 
multi-temporal building footprint dataset (MTBF-33)47. MTBF-33 data covers 33 counties in the U.S. and a time 
period of more than 200 years up to 2015. Figure 7a,c compare data distributions of US-wide housing trends 
from 1900 to 2020 between the U.S. Census data and BUPR and BUPL, respectively. Figure 7b,d show the Pearson 
correlations over time between U.S. Census data, BUPR and BUPL, respectively, at the county and state levels. 
Earlier years, from 1900 to the 1940s, show similar distributions between BUPR and Census data (Fig. 7a), but the 
discrepancy grew in the 1970s. These results are reasonable considering BUPR data include all land use categories 
and census data only contains residential housing units. Moreover, Pearson’s correlation coefficient (Fig. 7b) con-
firms a high correlation between BUPR and the census data over time.

We also compared the BUI and BUPL of HISDAC-US (V2) with the building footprint area and the num-
ber of buildings over time from the MTBF-33 dataset. We conducted correlation analysis and calculated 

Fig. 6 Comparison of different attributes derived from both HISDAC-US versions for the CONUS 1810–2020. 
Correlations for (a) BUPL, (b) BUPR and (c) BUI at the state and county level.

Fig. 7 Comparison of US-wide housing trends from 1900 to 2020 based on U.S. Census data and HISDAC-US: 
(a) Comparison of state-level data distributions of BUPR and census housing counts. (b) Correlations between 
BUPR and census housing counts; (c) Comparison of state-level data distributions of BUPL and census housing 
counts. (d) Correlations between BUPL and census housing counts.
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agreement measures using binarized BUPL and MTBF-33 data. Figure 8 shows the trends of Precision, Recall, 
and F-measure over time (Fig. 8a), indicating high levels of agreement (values between 0.7 and 0.9 for all three 
measures) and a significant improvement over HISDAC-US (V1)29. The comparison between binarized MTBF-
33 and BUPL shows an overall agreement of 96% for the year 2015 and very low false positive and false negative 
errors that are likely induced by spatial offsets or incompleteness in the data. The MTBF-33 building footprint 
area and HISDAC-US (V2) BUI exhibited similar trends from 1810 to 2015 (Fig. 8b).

We conducted a comparative analysis of (non-binarized) MTBF-33 and BUPL as well as BUPR at different 
points in time (1900, 1950, and 2000), and found very high correlations. While in previous versions, BUPL 
tended to underestimate MTBF-33 when compared29 (Fig. 8), Fig. 8b demonstrates a robust relationship only 
with a minor trend of overestimations. Additionally, as expected, BUPR tends to exhibit higher counts than 
MTBF-33 as MTBF-33 counts represent the locations of parcels, while BUPR represents the counts of units 
subject to different owners, many of which can be located in one parcel. Thus, it is reasonable to observe a lower 
slope for BUPR.

Fig. 8 Agreement assessment between MTBF-33 and HISDAC BUPL. (a) Precision, recall, and F-measure 
between binarized MTBF-33 and BUPL over time; (b) the relationship between MTBF-33 building footprint 
area and BUI from 1810 to 2020. (c,d), and (f) illustrate the comparison of counts in MTBF-33 with counts in 
BUPL and BUPR for different points in time (1900, 1950 and 2000). Result of the evaluation experiments for 
BUI using MTBF-33 building footprint area: (f) Slope, (g) intercept, and (h) R2 of the linear regression for all 
points in time between 1810 and 2015 at county and state levels.
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This study also compared MTBF-33 based building footprint areas and BUI layers by running a linear regres-
sion analysis. Higher R2, slopes closer to one and y-intercepts closer to zero were considered better estimates. 
Slope, intercept, and R2 exhibited similar patterns to those observed for HISDAC-US (V1) as reported by Leyk 
and Uhl (2018). BUI in HISDAC-US (V2) demonstrated a stronger alignment with MTBF-33’s building foot-
print area (R2: 0.9 to 0.8) during the earlier years from 1810 to 1940. However, a decline in alignment was 
observed from 1940 onwards, which was also consistent with earlier findings. We posit that this decrease in 
alignment can be attributed to the increasing development of high-rise buildings since the 1940s but also the 
general increase of indoor area in residential housing units with similar footprint area, resulting in a growing 
discrepancy between the building footprints and the BUI (Fig. 8f,g,h).

The land use proportions of HISDAC-US (v1) land use vs HISDAC-US (V2) land use. HISDAC-US 
(V1) land use products provide six land use classes: agriculture, commercial, industrial, residential-owned, 
residential-income, and recreational facilities. We converted HISDAC-US (V1) to binary data for each category 
in each year and compared it to the binary versions of HISDAC-US (V2).

The reader is directed to previously published works for information on further validation efforts con-
tained in Uhl et al. (2020) and Mc Shane et al. (2022). We expand on those efforts through two additional 
analytical veins 1) comparing HISDAC-US (V1) to the data presented herein, and 2) assessing the accuracy of 
HISDAC-US (V2) using several temporal versions of the National Land Cover Dataset (NLCD)48–50. Given the 
temporal nature of the land use data and the ubiquity of NLCD usage in the academic literature, we choose to 
evaluate the plausibility of the HISDAC land use data at 5-years time steps against five versions of the NLCD. 
This assessment allows the user to better understand the nature of development within the NLCD classes and 
offers insight as to how to better manage elements of uncertainty contained within the land use data.

We find broad agreement between the two versions of HISDAC-US land use data (V1 and V2) through time. 
Figure 9 displays the results of the version-to-version comparison. Figure 9a quantifies the total percentage of 
the underlying grid that reflects different land use values in a cell-to-cell comparison. For each temporal slice  
(5 years) we subtracted V1 grid cell counts from V2 and calculated the percentage of grid cells (with respect 
to the entire grid) with a nonzero value. Figure 9b breaks down the composition of grid cell-level differences 
described in Fig. 9a by land use. To calculate these values, for each temporal slice and land use category, we 
subtracted grid values of HISDAC-US (V1) from those of HISDAC-US (V2) and calculated the percent of grid 
cells that held nonzero values for that land use category. Total counts and differences were then cross-checked 
against statistics shown in Fig. 9a to ensure accuracy. We observe relatively consistent differences in the 
residential-owned, residential-income, and commercial classes. Figure 9c displays the mean difference in grid 
cell counts by land use category. With the exception of the industrial class, all land use categories had a mean 
positive increase in grid cell representation. A notable trend in Fig. 9c is the significant difference between V1 
and V2 between 1940 and 1950. This decade had a much larger mean increase in grid cell counts compared 
to other decades, although only ~1.76% of the grid changed between V1 and V2. Similarly, the total number 
of new grid cells in v2 for that decade represents ~1% of the overall change (Fig. 9d) between versions. To 

Fig. 9 The comparison results of HISDAC-US V1 and V2 at grid cell level from 1940 to 2015 (a) Overall 
percentage of the underlying grid that was different between HISDAC-US (V1) and V2, (b) the land use 
composition of all grid cells that were different between HISDAC-US V1 and V2, (c) the composition of grid 
cells with different values and the associated value for the mean difference in grid cell counts between versions, 
(d) the percentage of grid cells that were found in HISDAC-US (V2) and not reflected in HISDAC-US (V1).
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calculate Fig. 9d grid indexes were used to determine the existence of grid cells represented in V2 but not in 
V1. Duplicated grid indexes were subtracted from the set of IDs collected for a given temporal slice and land 
use category. The resulting grid IDs were then used to calculate the percentage of new grid cells (with respect to 
the underlying grid) represented in V2. Given the additional data and updated ZTRAX database used in V2 we 
assume that new grid cells augment the data observed in V1. Figure 10 displays the results for the second vein of 
the comparison analysis. To generate Fig. 10 five NLCD raster datasets (2001, 2004, 2006, 2013, and 2019) were 
reprojected and down sampled to match the 250 m grid of the HISDAC-US data sets using a majority rule aggre-
gation function. We used a 1-hot encoding technique to then calculate the proportion of a land use category’s 
grid cells that aligned with a category from the NLCD grids. Six values were used from the NLCD representing 
developed land (21–24) and cultivated crops/pasture (81,82). An NLCD binary grid was created for each of these 
values. For each land use category and temporal slice in HISDAC-US (V2), a corresponding binary grid was 
generated indicating the presence of a land use category within a grid cell. Grid indexes for all nonzero values 
from the land use data were then used to extract the corresponding grid cells from the NLCD raster. We then 
calculated the proportion of V2 grid cells that had a nonzero value in the corresponding NLCD grid. Overall 
proportional representation is somewhat low, however the results are consistent with findings described in Mc 
Shane et al. (2022) and align with expected outcomes.

Limitations. We outlined an approach for integrating various built-environment related, geospatial data 
sources to create a comprehensive dataset that captures built-up characteristics and land use, and their evolution 
over the long-term, in the conterminous United States. This involved a comparative analysis aimed at identifying 
biases in the built-up and land use data. However, users should be aware of several limitations when utilizing 
these gridded built-up data and land use datasets.

Firstly, the ZTRAX and Parcel data used herein, primarily depend on county records for land use attributes. 
The reporting practices among counties vary, potentially leading to omissions of existing buildings. Additionally, 
the land use classification methods can differ from one county to another, introducing uncertainty regarding 
building types. To address this, we consolidated over 300 land use types into broader thematic categories, such as 
commercial or residential, to reduce this uncertainty. Our dataset focuses on the land use of physical structures 
within identified thematic classes relevant to urban development, as per the existing literature. Consequently, the 
dataset does not include land uses unassociated with a structure, like cropland or grazing land, and omits other 
vital classifications like tax-exempt or governmental structures.

Another critical limitation is the potential exclusion of demolished buildings. The ZTRAX, OCM, and Parcel 
data do not account for structures that have been demolished, hence failing to represent buildings that no longer 
exist. For instance, cases where buildings were demolished and replaced without updating the year of construc-
tion, or where the building’s function changed post-demolition are not accurately captured. Some demolished 
structures might be erroneously labeled as ‘vacant.’ To mitigate this, we advise users to incorporate the vacant 
land gridded data in their analyses for a more comprehensive understanding.

Fig. 10 The proportion of HISDAC-US (V2) LU and NLCD LU categories from the six NLCD land cover 
datasets (2001, 2004, 2006, 2013, and 2019). Each panel reflects a land use category from the ZTRAX data. The 
Y-axis reflects each year and land use class of the NLCD data and the X-axis reflects the temporal range of the 
ZTRAX data. The values represent the proportion of matching records between a given NLCD land use class 
and ZTRAX land use class.
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Usage Notes
The HISDAC-US (V2) offers a detailed gridded dataset specific to the contiguous United States, featuring a 
fine spatial resolution of 250 meters. This version encompasses multiple layers that detail built-up areas and 
land use (see table below). This dataset is versatile, suitable for various applications including urban planning, 

public health, climatology, and other research fields requiring high-resolution gridded data on built-up areas. 
The HISDAC-US (V2) dataset is available in the GeoTIFF format, ensuring compatibility with various GIS soft-
ware platforms, including QGIS (http://www.qgis.org), ArcGIS (https://www.arcgis.com/), SAGA GIS (http://
www.saga-gis.org/), and others. Finally, users should be aware of lower data completeness and reliability in early 
epochs.

Code availability
Code for analysis and validation is available at https://github.com/YoonjungAhn/HISTPLUS.
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