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Brain tumor segmentation 
using synthetic MR images - A 
comparison of GANs and diffusion 
models
Muhammad Usman Akbar1,2, Måns Larsson3, Ida Blystad   2,4 & Anders Eklund   1,2,5 ✉

Large annotated datasets are required for training deep learning models, but in medical imaging data 
sharing is often complicated due to ethics, anonymization and data protection legislation. Generative 
AI models, such as generative adversarial networks (GANs) and diffusion models, can today produce 
very realistic synthetic images, and can potentially facilitate data sharing. However, in order to share 
synthetic medical images it must first be demonstrated that they can be used for training different 
networks with acceptable performance. Here, we therefore comprehensively evaluate four GANs 
(progressive GAN, StyleGAN 1–3) and a diffusion model for the task of brain tumor segmentation (using 
two segmentation networks, U-Net and a Swin transformer). Our results show that segmentation 
networks trained on synthetic images reach Dice scores that are 80%–90% of Dice scores when training 
with real images, but that memorization of the training images can be a problem for diffusion models 
if the original dataset is too small. Our conclusion is that sharing synthetic medical images is a viable 
option to sharing real images, but that further work is required. The trained generative models and the 
generated synthetic images are shared on AIDA data hub.

Introduction
Medical imaging plays a vital role in the diagnosis and treatment of many diseases, enabling healthcare profes-
sionals to understand and visualize the internal structures and functions of the human body. With the advance-
ment of artificial intelligence (AI) the field of medical imaging has seen significant improvements in terms 
of accuracy, efficiency, and cost-effectiveness. AI techniques such as machine learning and deep learning are 
commonly applied to medical imaging to, for instance, facilitate early detection and diagnosis of diseases and 
speedup time consuming segmentations1,2. For example, radiotherapy treatment planning requires segmentation 
of the tumor and several organs at risk. It is still common that these segmentations are done manually, and seg-
mentation networks can here be used to reduce the required time for one patient from hours to a few minutes3.

However, training deep learning models, such as convolutional neural networks (CNNs) and vision trans-
formers, for classification or segmentation normally requires large annotated datasets as the models may have 
millions of parameters. In computer vision, tremendous progress has been made during the last 10 years, 
and a crucial resource is the open ImageNet database4 which contains more than 14 million labeled images. 
Techniques developed in computer vision are rapidly transferred to the medical imaging field, but a major 
constraint is that access to medical images is much more complicated due to ethics, anonymization and data 
protection legislation (e.g. the general data protection regulation (GDPR)). There are several openly available 
medical imaging datasets, but they are much smaller compared to ImageNet (for example, the human con-
nectome project (HCP) shares 1,100 subjects5, OpenNeuro shares about 30,0006, UK biobank will scan and 
share 100,0007). Furthermore, openly available data are often anonymized through defacing, can represent 
selective populations around universities, focus on healthy controls rather than diseased populations, and are  
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often curated before distribution to eliminate bad quality data. This limits the potential applicability of any 
model trained on such data in clinical settings. Hospitals have records containing immense quantities of med-
ical images, but these records are often not accessible for research due to regulatory hurdles.

Generative models, such as generative adversarial networks (GANs) and diffusion models, can today pro-
duce very realistic synthetic images, by learning the high dimensional distribution of the training images.  
A potential solution to facilitate sharing of medical images is therefore to generate and share synthetic images, or 
more precisely synthetic patients, as GDPR should not apply to medical images which do not belong to a specific 
person (but further legal research is needed). Recent work has demonstrated that generative models (especially 
diffusion models) can memorize the training images8–10, meaning that the synthetic images are just copies of the 
training images. As this questions the validity of sharing synthetic medical images, it is thoroughly discussed at 
the end of this paper.

To share synthetic medical images, and to motivate further research regarding legal aspects and memori-
zation, it must first be demonstrated that they can be used for training deep learning models with acceptable 
performance. Due to the growing number of generative image models, one must also select the best model.

Related work.  Rankin et al.11 used 19 open health datasets to understand the difference in performance of 
supervised machine learning models trained on synthetic data compared with those trained on real data, but only 
used tabular datasets and no image data. Similarly, El Emam et al.12 used synthetic tabular data from COVID-19  
patients to predict death, and obtained similar performance using synthetic data. Using synthetic images for 
training CNNs for classification has become popular during recent years13–18, especially in medical imaging19 
where obtaining large annotated datasets is much more time consuming compared to computer vision. On the 
other hand, related work on training segmentation networks with synthetic images and corresponding annota-
tions is more limited. To generate synthetic images and the corresponding annotations can be done in at least 
two ways; jointly as a multi-channel image20–22 or as a two-step process where one model generates a synthetic 
label (annotation) image and another model generates the medical image from the label image23–26. Bowles et al.20 
demonstrated that adding synthetic images from a 2D GAN lead to improvements of Dice similarity coefficient 
between 1 and 5 percent, but did not perform training with only synthetic images. Shin et al.24 also demonstrated 
small improvements when adding synthetic images as augmentation. Thambawita et al.27 compared different 
GANs for generating synthetic colonoscopy images and annotations, but did not use more recent models like 
StyleGAN or diffusion models. Fernandez et al.28 used the two-step approach to generate label images with a dif-
fusion model, and then used SPADE29 to generate the medical image from the label image. They also applied their 
models to brain tumor images, but only performed a binary tumor segmentation and did not compare with any 
other generative models. Furthermore, the generative model was only trained with 1064 slices from 5 subjects.

This work.  Here we comprehensively evaluate four 2D GANs (progressive GAN30, StyleGAN 1–331–33) and 
a 2D diffusion model34,35 for generating brain tumor images and tumor annotations, using two openly available 
datasets (BraTS 2020 and 202136–41). We demonstrate that using synthetic images for training segmentation net-
works (a U-Net42 and a Swin transformer43) leads to performance metrics which are slightly lower compared to 
training with real images, and that sharing synthetic images therefore is a viable option to sharing real images 
(as long as one verifies that the synthetic images are not too similar to the training images). To the best of our 
knowledge, no such comprehensive evaluation, requiring more than 2000 GPU days for training all models, has 
previously been performed for medical image segmentation. The trained generative models and the generated 
synthetic images are shared on AIDA data hub44,45.

Results
Figure 1 shows a real 5-channel image, and a randomly selected synthetic slice from each generative model. To 
investigate how distinct the synthetic images are from the training images, we calculated the highest correla-
tion between 100 synthetic images and all training images (see our related work on memorization10). Briefly, 
synthetic images from a GAN show a distribution of highest correlations which is similar to when comparing 
training images and test images. For diffusion models, many of the synthetic images are very similar to a training 
image. Figures 2, 3 show the resulting U-Net segmentations for a random slice in the two test sets, when training 
the network with different settings.

Evaluation metrics.  To compare the five generative models we use a variety of metrics. The quality and 
diversity of synthetic images are often evaluated using metrics such as Frechét inception distance (FID) and 
inception score (IS)46, which use pre-trained CNNs to calculate how different the activations in the CNNs are 
when feeding real and synthetic images through them. The most important evaluation is in our opinion to train 
segmentation networks with the synthetic images, and then test how these networks perform on real images. 
Here we used a U-Net42, as it is one of the most common networks for medical image segmentation, and a Swin 
transformer43, to see how the results generalize to a more recent network, see the Methods section for details. 
Segmentation networks are normally evaluated using Dice (measures overlap between true and predicted anno-
tations) and Hausdorff distance (measures the greatest of all the distances from a point in one set to the closest 
point in the other set). Augmentation is often applied when training segmentation networks, and the segmenta-
tion networks were therefore trained with and without augmentation (see Methods section for details).

Ranking of generative models.  To summarize all the results, Table 1 shows the ranking of the five gen-
erative models, based on the different metrics FID, IS, Dice and Hausdorff distance. Here we focus on training 
segmentation networks with synthetic images only, to not make the table too complicated. The diffusion model 
performs best when comparing the models in terms of Dice and Hausdorff distance, but unfortunately this is in 
several cases explained by memorization. As expected, the older progressive GAN model often performs worse 
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compared to more recent StyleGAN models. Overall the rankings are similar for U-Net and the Swin transformer. 
Clearly, the rankings according to the common FID and IS metrics (shown in Table 2) do not correlate well with 
the ranking according to Dice and Hausdorff distance. Both FID and IS have been questioned as good metrics16,47, 
but are still commonly used due to the lack of better alternatives. FID and IS focus on image quality and diversity, 
but do not consider memorization. Since the CNNs used for calculating FID and IS are trained on ImageNet, 
which only contains non-medical images, the metrics will also be biased for medical images.

Dice scores.  Tables 3, 4 show the obtained Dice scores then training the segmentation networks with dif-
ferent combinations of real and synthetic images, and testing with real images, for BraTS 2020 and BraTS 2021 

Fig. 1  Synthetic 5-channel images from the BraTS 2021 data. Each row shows a generative model, except for the 
top row which shows a real example, and each column shows a different MR sequence.
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Fig. 2  Example U-Net predictions on an image in the BraTS 2020 test set. Classes are visualized as colored 
overlay where red is GD-enhancing tumor, blue is peritumoral edema (ED) and green is necrotic and non-
enhancing tumor core (NCR/NET). Each prediction is shown for four trainings using images from each 
generative model; with and without augmentation and with and without the original data. The two bottom rows 
present predictions from when training using synthetic images.

Fig. 3  Example U-Net predictions on an image in the BraTS 2021 test set. Classes are visualized as colored 
overlay where red is GD-enhancing tumor, blue is peritumoral edema (ED) and green is necrotic and non-
enhancing tumor core (NCR/NET). Each prediction is shown for four trainings using images from each 
generative model; with and without augmentation and with and without the original data. The two bottom rows 
present predictions from when training using synthetic images.

https://doi.org/10.1038/s41597-024-03073-x


5Scientific Data |          (2024) 11:259  | https://doi.org/10.1038/s41597-024-03073-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

respectively. To make it easier to compare the performance to only using real images, Table 5 shows the relative 
Dice scores, i.e. the obtained mean Dice score when using real and synthetic images, or only synthetic images, 
divided by the obtained mean Dice score when using only real images (with augmentation).

For U-Net trained with BraTS 2020 the diffusion model results in the highest Dice scores when using only 
synthetic images and augmentation, followed by StyleGAN 2, StyleGAN 3 and progressive GAN. A similar 
ranking is obtained for the Swin transformer. Using synthetic images from StyleGAN 1 results in very low Dice 
scores, explained by the fact that we were not able to find good hyperparameters. When excluding StyleGAN 1,  
the mean Dice score when using synthetic images only is very similar for U-Net and the Swin transformer, 
demonstrating that the synthetic images can be used also for more recent segmentation networks. Excluding 
StyleGAN 1, the mean Dice score is improved by 16.8% for the U-Net when adding augmentation to synthetic 
images only, compared to 4.1% for the Swin transformer.

For U-Net trained with BraTS 2021, the diffusion model again results in the highest Dice scores when 
using only synthetic images and augmentation, followed by StyleGAN 2 and StyleGAN 3. The same ranking 
is obtained for the Swin transformer. Using synthetic images from StyleGAN 1 results in Dice scores that are 
much higher compared to for BraTS 2020, possibly explained by the fact that the hyperparameters are a better 
fit for this dataset. The mean Dice score when using synthetic images only is 6.3% higher for the Swin trans-
former compared to the U-Net, again demonstrating that the synthetic images can be used also for more recent 

FID IS Dice Aug Dice Hausdorff Aug Hausdorff

BraTS 2020

U-Net

Diffusion Diffusion Diffusion Diffusion

StyleGAN 2 StyleGAN 3 Progressive GAN StyleGAN 3

StyleGAN 3 StyleGAN 2 StyleGAN 2 Progressive GAN

Diffusion StyleGAN 3 Progressive GAN Progressive GAN StyleGAN 3 StyleGAN 2

Progressive GAN Progressive GAN StyleGAN 1 StyleGAN 1 StyleGAN 1 StyleGAN 1

StyleGAN 1 Diffusion Swin Transformer

StyleGAN 3 StyleGAN 2 Diffusion Diffusion Diffusion Diffusion

StyleGAN 2 StyleGAN 1 StyleGAN 2 StyleGAN 2 StyleGAN 2 StyleGAN 3

Progressive GAN StyleGAN 3 StyleGAN 3 Progressive GAN

StyleGAN 3 Progressive GAN Progressive GAN StyleGAN 2

StyleGAN 1 StyleGAN 1 StyleGAN 1 StyleGAN 1

BraTS 2021

U-Net

Diffusion Diffusion Diffusion Diffusion

StyleGAN 2 StyleGAN 3 Progressive GAN StyleGAN 3

StyleGAN 3 StyleGAN 2 StyleGAN 3 Progressive GAN

StyleGAN 2 StyleGAN 2 StyleGAN 1 StyleGAN 1 StyleGAN 1 StyleGAN 1

Progressive GAN StyleGAN 3 Progressive GAN Progressive GAN StyleGAN 2 StyleGAN 2

StyleGAN 1 Diffusion Swin Transformer

Diffusion Progressive GAN Diffusion Diffusion Diffusion Diffusion

StyleGAN 3 StyleGAN 1 StyleGAN 2 StyleGAN 2 StyleGAN 2 StyleGAN 3

StyleGAN 3 StyleGAN 3 StyleGAN 3 StyleGAN 2

Progressive GAN Progressive GAN Progressive GAN StyleGAN 1

StyleGAN 1 StyleGAN 1 StyleGAN 1 Progressive GAN

Table 1.  Ranking of the five generative models based on the metrics FID, IS, Dice and Hausdorff distance 
(when using synthetic images only). Top rows: ranking for BraTS 2020. Bottom rows: ranking for BraTS 2021. 
For Dice and Hausdorff distance the models are ranked both with and without augmentation when training the 
segmentation network.

Model

BRATS 2020 BRATS 2021

FID IS FID IS

Progressive GAN 18.47098 2.29209 24.58502 2.12756

StyleGAN 1 44.85624 2.02602 25.30011 2.11348

StyleGAN 2 84.77283 2.20246 20.98637 2.22750

StyleGAN 3 58.40920 2.29406 37.49911 2.19667

Diffusion model 15.85417 2.25878 32.92651 2.15857

Table 2.  Comparison of the generative models using the most commonly used metrics, Fréchet inception 
distance (FID) and inception score (IS). A total of 100,000 synthetic T1wGd images were used to calculate each 
metric. While these metrics can be calculated rather quickly, they do unfortunately not correlate well with the 
obtained performance when training networks with synthetic images.
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segmentation networks. The mean Dice score is improved by 15.9% for the U-Net when adding augmentation to 
synthetic images only, compared to only 1.8% for the Swin transformer.

Regarding relative Dice scores, Table 5 shows that that the diffusion model for U-Net trained with synthetic 
images only from BraTS 2020 results in the same Dice scores as when using real images, while StyleGAN 2 
reaches 66%–93% and StyleGAN 3 reaches 81%–87%. For the Swin transformer, synthetic images from the 
diffusion model result in Dice scores that are 89%–92% compared to training with real images, while StyleGAN 

Model Orig Aug ET ED NCR/NET Mean

U-Net

None ✓ ✓ 0.791 ± 0.009 0.785 ± 0.003 0.610 ± 0.008 0.729 ± 0.004

Progressive GAN ✓ ✓ 0.790 ± 0.010 0.790 ± 0.007 0.609 ± 0.012 0.730 ± 0.008

StyleGAN 1 ✓ ✓ 0.769 ± 0.033 0.759 ± 0.047 0.593 ± 0.032 0.707 ± 0.037

StyleGAN 2 ✓ ✓ 0.802 ± 0.009 0.794 ± 0.005 0.614 ± 0.009 0.737 ± 0.009

StyleGAN 3 ✓ ✓ 0.769 ± 0.042 0.743 ± 0.060 0.582 ± 0.062 0.698 ± 0.054

Diffusion ✓ ✓ 0.797 ± 0.020 0.785 ± 0.025 0.616 ± 0.014 0.733 ± 0.019

None ✓ 0.787 ± 0.010 0.783 ± 0.004 0.606 ± 0.009 0.726 ± 0.005

Progressive GAN ✓ 0.786 ± 0.010 0.784 ± 0.011 0.608 ± 0.010 0.726 ± 0.008

StyleGAN 1 ✓ 0.783 ± 0.028 0.769 ± 0.035 0.602 ± 0.025 0.718 ± 0.029

StyleGAN 2 ✓ 0.799 ± 0.013 0.788 ± 0.008 0.611 ± 0.011 0.732 ± 0.009

StyleGAN 3 ✓ 0.777 ± 0.031 0.764 ± 0.047 0.599 ± 0.048 0.713 ± 0.041

Diffusion ✓ 0.794 ± 0.017 0.785 ± 0.017 0.613 ± 0.011 0.731 ± 0.014

Progressive GAN ✓ 0.668 ± 0.016 0.607 ± 0.048 0.468 ± 0.025 0.581 ± 0.026

StyleGAN 1 ✓ 0.029 ± 0.017 0.167 ± 0.107 0.071 ± 0.036 0.089 ± 0.048

StyleGAN 2 ✓ 0.750 ± 0.007 0.732 ± 0.013 0.553 ± 0.018 0.678 ± 0.009

StyleGAN 3 ✓ 0.714 ± 0.021 0.709 ± 0.047 0.497 ± 0.057 0.640 ± 0.041

Diffusion ✓ 0.791 ± 0.006 0.790 ± 0.005 0.610 ± 0.006 0.730 ± 0.004

Progressive GAN 0.546 ± 0.129 0.457 ± 0.159 0.360 ± 0.113 0.454 ± 0.130

StyleGAN 1 0.022 ± 0.014 0.129 ± 0.099 0.057 ± 0.032 0.069 ± 0.044

StyleGAN 2 0.562 ± 0.208 0.499 ± 0.238 0.376 ± 0.190 0.479 ± 0.206

StyleGAN 3 0.682 ± 0.039 0.658 ± 0.067 0.444 ± 0.073 0.595 ± 0.059

Diffusion 0.784 ± 0.009 0.783 ± 0.008 0.604 ± 0.008 0.723 ± 0.008

Swin Transformer

None ✓ ✓ 0.793 ± 0.015 0.803 ± 0.004 0.631 ± 0.005 0.743 ± 0.008

Progressive GAN ✓ ✓ 0.772 ± 0.005 0.776 ± 0.002 0.580 ± 0.005 0.709 ± 0.003

StyleGAN 1 ✓ ✓ 0.754 ± 0.005 0.749 ± 0.003 0.566 ± 0.007 0.690 ± 0.005

StyleGAN 2 ✓ ✓ 0.770 ± 0.002 0.759 ± 0.002 0.577 ± 0.006 0.702 ± 0.006

StyleGAN 3 ✓ ✓ 0.755 ± 0.008 0.751 ± 0.002 0.574 ± 0.007 0.693 ± 0.006

Diffusion ✓ ✓ 0.754 ± 0.009 0.755 ± 0.002 0.574 ± 0.003 0.694 ± 0.005

None ✓ 0.740 ± 0.009 0.731 ± 0.003 0.540 ± 0.005 0.670 ± 0.006

Progressive GAN ✓ 0.714 ± 0.011 0.733 ± 0.003 0.548 ± 0.005 0.665 ± 0.006

StyleGAN 1 ✓ 0.732 ± 0.009 0.736 ± 0.001 0.539 ± 0.004 0.669 ± 0.005

StyleGAN 2 ✓ 0.742 ± 0.012 0.742 ± 0.002 0.547 ± 0.004 0.677 ± 0.005

StyleGAN 3 ✓ 0.745 ± 0.008 0.738 ± 0.002 0.562 ± 0.006 0.681 ± 0.005

Diffusion ✓ 0.749 ± 0.010 0.740 ± 0.003 0.543 ± 0.004 0.677 ± 0.006

Progressive GAN ✓ 0.667 ± 0.009 0.676 ± 0.004 0.476 ± 0.003 0.607 ± 0.003

StyleGAN 1 ✓ 0.010 ± 0.002 0.149 ± 0.003 0.037 ± 0.006 0.065 ± 0.004

StyleGAN 2 ✓ 0.745 ± 0.005 0.715 ± 0.003 0.426 ± 0.003 0.629 ± 0.004

StyleGAN 3 ✓ 0.713 ± 0.009 0.694 ± 0.002 0.400 ± 0.003 0.603 ± 0.005

Diffusion ✓ 0.754 ± 0.007 0.743 ± 0.003 0.556 ± 0.007 0.684 ± 0.006

Progressive GAN 0.659 ± 0.003 0.639 ± 0.005 0.458 ± 0.004 0.585 ± 0.004

StyleGAN 1 0.024 ± 0.004 0.112 ± 0.013 0.049 ± 0.009 0.061 ± 0.008

StyleGAN 2 0.701 ± 0.009 0.659 ± 0.002 0.404 ± 0.006 0.588 ± 0.006

StyleGAN 3 0.701 ± 0.006 0.675 ± 0.003 0.380 ± 0.003 0.585 ± 0.004

Diffusion 0.734 ± 0.010 0.727 ± 0.002 0.533 ± 0.004 0.664 ± 0.005

Table 3.  Results on the test dataset (56 subjects) when training the generative models with BraTS 2020 (313 
training subjects). Mean and standard deviation of Dice score across the dataset are calculated for the labels; 
GD-enhancing tumor (ET), peritumoral edema (ED), and necrotic and non-enhancing tumor core (NCR/
NET). All results are presented as mean ± standard deviation of 10 trainings. The column Orig marks if the 
original dataset has been added to the training set and the column Aug marks if augmentation was used during 
training of the segmentation network. Training with and without augmentation was performed with the same 
number of total images. The top row shows baseline results using only real images.
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2 reaches 79%–84% and StyleGAN 3 reaches 78%–81%. For U-Net trained with BraTS 2021 the Dice scores 
obtained when training with only synthetic images are in general lower compared to BraTS 2020, except for 
StyleGAN 1. The diffusion model reaches 89%–91% relative Dice, while StyleGAN 2 reaches 63%–87% and 
StyleGAN 3 reaches 79%–82%. For the Swin transformer the relative Dice scores are in general higher compared 
to BraTS 2020, partly explained by the fact that the Swin transformer results in a lower Dice score than the U-Net 
when training with only real images (this may be explained by the fact that vision transformers normally need 

Model Orig Aug ET ED NCR/NET Mean

U-Net

None ✓ ✓ 0.847 ± 0.010 0.829 ± 0.003 0.709 ± 0.011 0.795 ± 0.006

Progressive GAN ✓ ✓ 0.821 ± 0.056 0.813 ± 0.038 0.688 ± 0.035 0.774 ± 0.042

StyleGAN 1 ✓ ✓ 0.853 ± 0.007 0.828 ± 0.004 0.704 ± 0.016 0.975 ± 0.006

StyleGAN 2 ✓ ✓ 0.780 ± 0.201 0.757 ± 0.228 0.647 ± 0.200 0.728 ± 0.209

StyleGAN 3 ✓ ✓ 0.843 ± 0.014 0.825 ± 0.016 0.717 ± 0.020 0.795 ± 0.014

Diffusion ✓ ✓ 0.835 ± 0.011 0.821 ± 0.006 0.704 ± 0.013 0.787 ± 0.007

None ✓ 0.845 ± 0.009 0.828 ± 0.003 0.708 ± 0.012 0.794 ± 0.006

Progressive GAN ✓ 0.830 ± 0.041 0.821 ± 0.028 0.692 ± 0.028 0.781 ± 0.031

StyleGAN 1 ✓ 0.818 ± 0.121 0.792 ± 0.161 0.669 ± 0.151 0.760 ± 0.144

StyleGAN 2 ✓ 0.810 ± 0.145 0.794 ± 0.165 0.675 ± 0.145 0.759 ± 0.151

StyleGAN 3 ✓ 0.839 ± 0.015 0.826 ± 0.016 0.708 ± 0.021 0.791 ± 0.015

Diffusion ✓ 0.840 ± 0.011 0.824 ± 0.005 0.699 ± 0.014 0.788 ± 0.007

Progressive GAN ✓ 0.638 ± 0.032 0.582 ± 0.035 0.525 ± 0.026 0.582 ± 0.029

StyleGAN 1 ✓ 0.710 ± 0.011 0.682 ± 0.007 0.377 ± 0.015 0.590 ± 0.007

StyleGAN 2 ✓ 0.734 ± 0.022 0.738 ± 0.016 0.606 ± 0.024 0.692 ± 0.015

StyleGAN 3 ✓ 0.746 ± 0.013 0.738 ± 0.004 0.473 ± 0.016 0.652 ± 0.005

Diffusion ✓ 0.757 ± 0.009 0.743 ± 0.010 0.632 ± 0.017 0.711 ± 0.009

Progressive GAN 0.516 ± 0.142 0.400 ± 0.185 0.344 ± 0.184 0.420 ± 0.165

StyleGAN 1 0.635 ± 0.085 0.585 ± 0.103 0.282 ± 0.098 0.501 ± 0.091

StyleGAN 2 0.584 ± 0.156 0.571 ± 0.170 0.367 ± 0.240 0.507 ± 0.186

StyleGAN 3 0.725 ± 0.024 0.719 ± 0.020 0.445 ± 0.031 0.629 ± 0.024

Diffusion 0.772 ± 0.018 0.764 ± 0.023 0.646 ± 0.020 0.727 ± 0.019

Swin Transformer

None ✓ ✓ 0.779 ± 0.009 0.816 ± 0.005 0.674 ± 0.011 0.756 ± 0.008

Progressive GAN ✓ ✓ 0.785 ± 0.012 0.812 ± 0.002 0.664 ± 0.010 0.754 ± 0.009

StyleGAN 1 ✓ ✓ 0.777 ± 0.008 0.817 ± 0.003 0.664 ± 0.008 0.752 ± 0.006

StyleGAN 2 ✓ ✓ 0.790 ± 0.006 0.813 ± 0.002 0.666 ± 0.012 0.756 ± 0.006

StyleGAN 3 ✓ ✓ 0.795 ± 0.005 0.813 ± 0.003 0.671 ± 0.010 0.760 ± 0.006

Diffusion ✓ ✓ 0.791 ± 0.007 0.816 ± 0.003 0.672 ± 0.009 0.760 ± 0.006

None ✓ 0.772 ± 0.002 0.811 ± 0.002 0.661 ± 0.010 0.748 ± 0.005

Progressive GAN ✓ 0.781 ± 0.008 0.810 ± 0.002 0.659 ± 0.014 0.750 ± 0.008

StyleGAN 1 ✓ 0.778 ± 0.008 0.810 ± 0.004 0.650 ± 0.013 0.746 ± 0.008

StyleGAN 2 ✓ 0.786 ± 0.010 0.809 ± 0.003 0.656 ± 0.011 0.750 ± 0.008

StyleGAN 3 ✓ 0.789 ± 0.009 0.810 ± 0.003 0.668 ± 0.015 0.756 ± 0.009

Diffusion ✓ 0.788 ± 0.010 0.814 ± 0.002 0.663 ± 0.013 0.755 ± 0.008

Progressive GAN ✓ 0.691 ± 0.009 0.672 ± 0.002 0.470 ± 0.003 0.611 ± 0.004

StyleGAN 1 ✓ 0.720 ± 0.002 0.696 ± 0.002 0.375 ± 0.004 0.597 ± 0.003

StyleGAN 2 ✓ 0.716 ± 0.007 0.739 ± 0.001 0.501 ± 0.003 0.652 ± 0.004

StyleGAN 3 ✓ 0.731 ± 0.002 0.744 ± 0.002 0.429 ± 0.002 0.635 ± 0.002

Diffusion ✓ 0.767 ± 0.003 0.794 ± 0.002 0.628 ± 0.010 0.729 ± 0.005

Progressive GAN 0.659 ± 0.004 0.636 ± 0.005 0.461 ± 0.004 0.585 ± 0.004

StyleGAN 1 0.703 ± 0.007 0.683 ± 0.003 0.356 ± 0.003 0.581 ± 0.004

StyleGAN 2 0.710 ± 0.002 0.736 ± 0.002 0.500 ± 0.002 0.649 ± 0.002

StyleGAN 3 0.715 ± 0.009 0.732 ± 0.002 0.421 ± 0.001 0.623 ± 0.004

Diffusion 0.768 ± 0.003 0.789 ± 0.003 0.627 ± 0.010 0.728 ± 0.005

Table 4.  Results on the test dataset (56 subjects) when training the generative models with BraTS 2021 (1195 
training subjects). Mean and standard deviation of Dice score across the dataset are calculated for the labels; 
GD-enhancing tumor (ET), peritumoral edema (ED), and necrotic and non-enhancing tumor core (NCR/
NET). All results are presented as mean ± standard deviation of 10 trainings. The column Orig marks if the 
original dataset has been added to the training set and the column Aug marks if augmentation was used during 
training of the segmentation network. Training with and without augmentation was performed with the same 
number of total images. The top row shows baseline results using only real images.
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larger datasets to perform well). The diffusion model reaches about 96% relative Dice, compared to 85%–86% for 
StyleGAN 2 and 82%–84% for StyleGAN 3.

To assess the impact of the ratio of real and synthetic images, we systematically increased the proportion of 
real images in a training set with a constant size of 100,000 images. This approach allowed us to evaluate the 
benefits of real data and the utility of synthetic images in enhancing model performance. The outcomes of this 
incremental integration are illustrated in Fig. 4, which showcases how varying the ratio of real to synthetic data 
affects the results. Using only 5000 real images, along with 95,000 synthetic images, still results in good perfor-
mance (substantially higher compared to using 100,000 synthetic images).

Hausdorff distance.  Tables 6, 7 show obtained Hausdorff distances when training the segmentation net-
works with synthetic images from BraTS 2020 and 2021, respectively. Overall the rankings of the generative 

Model Orig Aug
Relative Dice 
BraTS 2020

Relative Dice 
BraTS 2021

U-Net

Progressive GAN ✓ ✓ 100.14% 97.36%

StyleGAN 1 ✓ ✓ 96.98% 100.00%

StyleGAN 2 ✓ ✓ 101.10% 91.57%

StyleGAN 3 ✓ ✓ 95.74% 100.00%

Diffusion ✓ ✓ 100.55% 98.99%

Progressive GAN ✓ 99.59% 98.24%

StyleGAN 1 ✓ 98.49% 95.60%

StyleGAN 2 ✓ 100.41% 95.47%

StyleGAN 3 ✓ 97.80% 99.5%

Diffusion ✓ 100.27% 99.12%

Progressive GAN ✓ 79.70% 73.21%

StyleGAN 1 ✓ 12.21% 74.21%

StyleGAN 2 ✓ 93.00% 87.04%

StyleGAN 3 ✓ 87.80% 82.01%

Diffusion ✓ 100.14% 89.43%

Progressive GAN 62.27% 52.83%

StyleGAN 1 9.47% 63.02%

StyleGAN 2 65.71% 63.77%

StyleGAN 3 81.62% 79.12%

Diffusion 99.18% 91.45%

Swin Transformer

Progressive GAN ✓ ✓ 95.42% 99.73%

StyleGAN 1 ✓ ✓ 92.87% 99.47%

StyleGAN 2 ✓ ✓ 94.48% 100.00%

StyleGAN 3 ✓ ✓ 93.27% 100.52%

Diffusion ✓ ✓ 93.41% 100.52%

Progressive GAN ✓ 89.5% 99.20%

StyleGAN 1 ✓ 90.04% 98.68%

StyleGAN 2 ✓ 91.11% 99.20%

StyleGAN 3 ✓ 91.65% 100.0%

Diffusion ✓ 91.11% 99.87%

Progressive GAN ✓ 81.69% 80.82%

StyleGAN 1 ✓ 8.74% 78.97%

StyleGAN 2 ✓ 84.66% 86.24%

StyleGAN 3 ✓ 81.16% 83.99%

Diffusion ✓ 92.06% 96.42%

Progressive GAN 78.73% 77.38%

StyleGAN 1 8.21% 76.85%

StyleGAN 2 79.13% 85.84%

StyleGAN 3 78.73% 82.41%

Diffusion 89.37% 96.30%

Table 5.  Results on the test datasets (56 subjects) when training the generative models with BraTS 2020 and 
2021. Relative Dice is defined as the mean Dice score when using only synthetic images, or real and synthetic, 
divided by the mean Dice score when using only real images with augmentation. Aug marks if augmentation 
was used during training of the segmentation network. Except for StyleGAN 1, the relative Dice scores are lower 
for BraTS 2021 when only using synthetic images. Training with and without augmentation was performed with 
the same number of total images.
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models are very similar to the ranking from the Dice scores, the main difference being that the progressive GAN 
is ranked higher for U-Net. The mean Hausdorff distance is in general much lower (i.e. better) for the Swin trans-
former compared to the U-Net.

Qualitative evaluation by neuroradiologist.  In addition to the quantitative metrics a qualitative evalu-
ation by an experienced neuroradiologist was performed, see the Methods section for details. Table 8 shows the 
results of the evaluation, i.e. how the images were classified (real or synthetic).

Discussion
Our evaluation shows that training segmentation networks with synthetic images works well, with Dice scores 
that reach 91%–100% compared to when training with real images (for BraTS 2021 and 2020, respectively).  
Shin et al.24 obtained a relative Dice score of 77.6% for brain tumor segmentation, using the deep convolutional 
GAN architecture which is older than progressive GAN. Fernandez et al.28 obtained a similar relative Dice of 
93.8%, but only performed a binary tumor segmentation which is an easier task. No comparison with other 
generative models was conducted. Thambawita et al.27 obtained a relative Dice score of 97.2%, but for segmenta-
tion of endoscopy images making it difficult to compare the results. Furthermore, the authors did not use more 
recent generative models like StyleGAN or diffusion models.

The Dice scores for the diffusion model are for BraTS 2020 basically the same as when training with real 
images, which made us suspicious. An investigation revealed that the diffusion model had memorized many of 
the training images10. Memorization has previously been shown when using diffusion models for non-medical 
images8,9, but to the best of our knowledge not for medical images. Diffusion models are more likely to memo-
rize the training images compared to GANs8,10, due to a completely different architecture.

Even better results can be obtained using an ensemble of 5–10 generative models16,22,48, as each model by ran-
dom chance will learn a different subset of the high dimensional distribution, at the cost of a training time which 
is 5–10 times longer. Larsson et al.22 demonstrated that using an ensemble of 10 progressive GANs improved 
the mean Dice score for brain tumor segmentation by 9.5%, compared to a single GAN. The benefit of using an 

Fig. 4  Graph depicting the U-Net segmentation performance (Dice score) when using different proportions of 
real (BraTS 2021) and synthetic images generated from StyleGAN 3 (trained on BraTS 2021), in a constant total 
set of 100,000 images. As the number of real images increases along the x-axis, fewer synthetic images are used. 
To avoid random fluctuations, each segmentation model was trained 10 times and the average performance is 
presented.
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ensemble is expected to be larger for BraTS 2021, compared to BraTS 2020 used in22, to capture all modes of the 
distribution (due to a larger number of imaging sites in BraTS 2021).

Training the generative models with 1195 subjects (BraTS 2021), instead of 313 (BraTS 2020), leads to worse 
performance for the U-Net (lower relative Dice scores when using only synthetic images, mean 83.68% versus 
77.36%, excluding StyleGAN 1) which may seem surprising. However, BraTS 2021 contains data from a larger 

Model Orig Aug ET ED NCR/NET Mean

U-Net

None ✓ ✓ 16.4 ± 1.8 33.8 ± 3.4 19.2 ± 1.2 23.1 ± 1.9

Progressive GAN ✓ ✓ 15.9 ± 1.6 33.8 ± 2.9 21.5 ± 1.9 23.7 ± 1.8

StyleGAN 1 ✓ ✓ 26.6 ± 16.0 42.6 ± 11.1 24.4 ± 4.0 31.2 ± 9.9

StyleGAN 2 ✓ ✓ 15.4 ± 1.9 32.7 ± 2.6 19.6 ± 1.4 22.6 ± 1.5

StyleGAN 3 ✓ ✓ 31.3 ± 22.7 44.4 ± 15.4 33.7 ± 19.2 36.5 ± 18.7

Diffusion ✓ ✓ 21.7 ± 20.1 32.3 ± 8.4 22.3 ± 14.0 25.4 ± 14.1

None ✓ 17.7 ± 2.4 35.9 ± 4.5 21.3 ± 2.7 24.9 ± 2.8

Progressive GAN ✓ 17.7 ± 3.1 35.2 ± 4.2 22.6 ± 2.0 25.1 ± 2.5

StyleGAN 1 ✓ 22.3 ± 12.4 39.1 ± 9.1 23.5 ± 3.2 28.3 ± 7.8

StyleGAN 2 ✓ 16.3 ± 3.2 34.2 ± 2.8 20.2 ± 1.8 23.6 ± 2.0

StyleGAN 3 ✓ 24.5 ± 17.6 39.2 ± 12.3 26.9 ± 15.3 30.2 ± 14.7

Diffusion ✓ 19.1 ± 14.5 32.9 ± 6.5 21.4 ± 10.0 24.5 ± 10.1

Progressive GAN ✓ 35.2 ± 6.7 44.9 ± 4.3 34.0 ± 4.3 38.0 ± 3.7

StyleGAN 1 ✓ 82.1 ± 6.0 90.1 ± 40.5 108.6 ± 49.4 93.6 ± 29.6

StyleGAN 2 ✓ 33.4 ± 7.9 62.4 ± 24.5 36.4 ± 11.4 44.1 ± 11.9

StyleGAN 3 ✓ 37.8 ± 12.2 49.6 ± 7.5 50.4 ± 7.8 45.9 ± 8.9

Diffusion ✓ 15.2 ± 7.1 32.1 ± 3.9 26.3 ± 10.6 24.6 ± 5.8

Progressive GAN 58.6 ± 40.9 94.6 ± 58.3 70.1 ± 46.7 74.4 ± 44.9

StyleGAN 1 103.7 ± 28.7 112.2 ± 39.1 131.2 ± 44.5 115.7 ± 33.5

StyleGAN 2 106.6 ± 78.2 116.8 ± 61.7 97.7 ± 73.6 107.0 ± 68.0

StyleGAN 3 48.8 ± 14.6 58.9 ± 10.9 64.0 ± 17.7 57.2 ± 13.6

Diffusion 16.7 ± 5.7 34.9 ± 5.4 28.4 ± 9.5 26.6 ± 5.2

Swin Transformer

None ✓ ✓ 16.1 ± 1.2 27.5 ± 1.7 19.3 ± 1.4 20.3 ± 0.8

Progressive GAN ✓ ✓ 25.9 ± 2.1 47.9 ± 1.6 47.6 ± 2.3 38.3 ± 1.7

StyleGAN 1 ✓ ✓ 13.8 ± 1.1 26.1 ± 0.9 18.2 ± 1.1 18.7 ± 1.0

StyleGAN 2 ✓ ✓ 14.5 ± 1.1 27.1 ± 0.8 19.0 ± 1.3 19.8 ± 0.9

StyleGAN 3 ✓ ✓ 14.5 ± 0.7 25.2 ± 0.7 19.4 ± 2.4 19.3 ± 1.0

Diffusion ✓ ✓ 14.5 ± 0.9 25.7 ± 1.0 19.4 ± 1.1 19.2 ± 0.7

None ✓ 16.8 ± 0.6 29.6 ± 1.0 20.0 ± 1.0 21.4 ± 0.5

Progressive GAN ✓ 16.8 ± 0.7 30.4 ± 1.3 20.3 ± 0.9 21.6 ± 0.8

StyleGAN 1 ✓ 16.6 ± 1.3 28.3 ± 1.1 19.6 ± 0.8 20.6 ± 0.6

StyleGAN 2 ✓ 15.7 ± 0.9 28.8 ± 1.7 19.4 ± 0.9 20.4 ± 0.9

StyleGAN 3 ✓ 15.3 ± 1.3 26.8 ± 1.4 17.9 ± 1.7 19.4 ± 1.2

Diffusion ✓ 16.0 ± 0.6 28.0 ± 1.3 19.7 ± 0.7 20.9 ± 0.5

Progressive GAN ✓ 26.6 ± 1.7 48.5 ± 1.0 47.4 ± 1.6 38.4 ± 0.9

StyleGAN 1 ✓ 75.6 ± 4.2 72.3 ± 2.1 87.9 ± 2.1 74.8 ± 3.1

StyleGAN 2 ✓ 19.2 ± 1.5 37.8 ± 2.0 47.7 ± 2.8 33.5 ± 1.7

StyleGAN 3 ✓ 20.5 ± 1.0 38.8 ± 1.5 48.0 ± 1.6 34.0 ± 1.4

Diffusion ✓ 14.7 ± 0.8 25.2 ± 1.0 20.0 ± 1.2 19.5 ± 0.7

Progressive GAN 38.7 ± 1.9 63.3 ± 1.1 69.9 ± 1.9 54.6 ± 0.4

StyleGAN 1 74.6 ± 2.8 66.5 ± 2.7 82.7 ± 2.7 70.0 ± 2.3

StyleGAN 2 47.4 ± 3.1 64.0 ± 0.5 79.1 ± 0.9 60.1 ± 1.2

StyleGAN 3 23.4 ± 2.7 39.6 ± 2.2 51.6 ± 1.7 36.7 ± 1.9

Diffusion 16.2 ± 0.9 27.5 ± 1.3 20.3 ± 1.3 20.8 ± 0.9

Table 6.  Results on the test dataset (56 subjects) when training the generative models with BraTS 2020 (313 
training subjects). Mean and standard deviation of Hausdorff distance across the dataset are calculated for 
the labels; GD-enhancing tumor (ET), peritumoral edema (ED), and necrotic and non-enhancing tumor core 
(NCR/NET). All results are presented as mean ± standard deviation of 10 trainings. The column Orig marks 
if the original dataset has been added to the training set and the column Aug marks if augmentation was used 
during training of the segmentation network. Training with and without augmentation was performed with the 
same number of total images. The top row shows baseline results using only real images. The bottom 10 rows 
show results when training with only synthetic images, with and without augmentation.
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number of sites (23 versus 19), which will result in more modes in the high dimensional distribution, which is 
harder to learn. Furthermore, using a larger dataset like BraTS 2021 makes it harder for the generative models to 
memorize the training images9,10. It would be very interesting to compare our results to SinGAN-Seg27, where a 
single image is used to train the generative model, but we suspect that such a model is prone to memorization.

Model Orig Aug ET ED NCR/NET Mean

U-Net

None ✓ ✓ 12.3 ± 2.0 22.2 ± 2.1 12.1 ± 1.7 15.5 ± 1.6

Progressive GAN ✓ ✓ 30.5 ± 49.1 30.6 ± 14.9 12.9 ± 2.7 24.7 ± 21.2

StyleGAN 1 ✓ ✓ 13.3 ± 0.4 23.5 ± 3.4 12.0 ± 1.2 16.2 ± 1.4

StyleGAN 2 ✓ ✓ 25.7 ± 36.2 37.4 ± 47.0 25.4 ± 42.7 29.5 ± 41.9

StyleGAN 3 ✓ ✓ 13.8 ± 4.4 24.8 ± 7.9 12.8 ± 1.0 17.1 ± 4.2

Diffusion ✓ ✓ 16.2 ± 3.3 26.6 ± 4.5 12.4 ± 1.2 18.4 ± 1.6

None ✓ 12.8 ± 1.7 22.5 ± 2.2 11.9 ± 1.3 15.7 ± 1.3

Progressive GAN ✓ 21.6 ± 35.9 28.4 ± 10.9 12.3 ± 2.1 20.8 ± 15.5

StyleGAN 1 ✓ 18.9 ± 21.6 29.1 ± 24.2 18.8 ± 30.0 22.3 ± 25.2

StyleGAN 2 ✓ 19.2 ± 26.5 30.4 ± 34.0 18.5 ± 30.9 22.7 ± 30.4

StyleGAN 3 ✓ 14.7 ± 5.4 26.4 ± 7.8 12.6 ± 1.6 17.9 ± 4.6

Diffusion ✓ 14.9 ± 3.1 25.0 ± 3.9 12.3 ± 0.9 17.4 ± 1.8

Progressive GAN ✓ 31.2 ± 5.3 48.0 ± 4.4 23.9 ± 1.6 34.3 ± 3.0

StyleGAN 1 ✓ 52.8 ± 14.2 76.7 ± 31.1 99.8 ± 21.3 76.4 ± 15.9

StyleGAN 2 ✓ 78.5 ± 53.3 124.6 ± 46.2 115.8 ± 57.6 106.3 ± 41.5

StyleGAN 3 ✓ 30.8 ± 7.3 50.5 ± 3.1 63.6 ± 3.5 48.3 ± 3.2

Diffusion ✓ 28.8 ± 8.8 41.9 ± 4.6 15.1 ± 4.1 28.6 ± 3.9

Progressive GAN 86.9 ± 64.8 112.8 ± 65.1 108.6 ± 84.9 102.7 ± 69.6

StyleGAN 1 108.6 ± 57.3 124.6 ± 53.1 142.8 ± 46.9 125.3 ± 50.7

StyleGAN 2 106.0 ± 48.1 142.4 ± 40.6 151.3 ± 55.7 133.2 ± 41.2

StyleGAN 3 31.0 ± 5.7 52.2 ± 3.6 67.0 ± 4.8 50.0 ± 3.6

Diffusion 31.7 ± 14.7 38.0 ± 5.9 15.5 ± 3.7 28.4 ± 5.4

Swin Transformer

None ✓ ✓ 11.3 ± 0.4 17.2 ± 0.7 11.4 ± 0.8 11.5 ± 0.3

Progressive GAN ✓ ✓ 11.5 ± 0.9 18.6 ± 0.9 11.2 ± 0.9 11.7 ± 0.6

StyleGAN 1 ✓ ✓ 10.4 ± 0.8 18.1 ± 0.9 10.9 ± 0.5 11.1 ± 0.3

StyleGAN 2 ✓ ✓ 11.1 ± 0.7 17.2 ± 1.1 11.1 ± 0.5 11.2 ± 0.5

StyleGAN 3 ✓ ✓ 11.2 ± 0.9 17.5 ± 1.1 11.1 ± 0.5 11.3 ± 0.6

Diffusion ✓ ✓ 11.0 ± 0.5 16.9 ± 0.6 11.5 ± 0.6 11.2 ± 0.5

None ✓ 11.4 ± 0.9 18.1 ± 1.0 11.4 ± 0.9 11.6 ± 0.8

Progressive GAN ✓ 11.3 ± 0.6 18.9 ± 0.8 11.1 ± 0.6 11.7 ± 0.7

StyleGAN 1 ✓ 11.1 ± 0.7 18.1 ± 1.2 11.1 ± 0.3 11.2 ± 0.6

StyleGAN 2 ✓ 11.6 ± 0.9 17.3 ± 1.3 11.2 ± 0.5 11.2 ± 0.9

StyleGAN 3 ✓ 11.2 ± 0.3 18.1 ± 0.9 11.2 ± 0.3 11.8 ± 0.4

Diffusion ✓ 11.5 ± 0.7 17.3 ± 1.1 11.5 ± 0.7 11.6 ± 0.3

Progressive GAN ✓ 26.3 ± 1.8 49.9 ± 1.3 55.0 ± 1.4 40.2 ± 1.0

StyleGAN 1 ✓ 18.1 ± 1.5 41.1 ± 1.9 62.5 ± 1.4 37.1 ± 1.10

StyleGAN 2 ✓ 14.0 ± 0.8 31.6 ± 1.7 42.5 ± 2.1 25.7 ± 1.0

StyleGAN 3 ✓ 16.0 ± 1.3 38.4 ± 2.6 44.5 ± 1.2 29.2 ± 1.3

Diffusion ✓ 12.7 ± 0.7 17.7 ± 0.6 14.1 ± 0.5 12.7 ± 0.6

Progressive GAN 49.2 ± 1.9 63.4 ± 0.7 72.8 ± 0.8 58.2 ± 0.8

StyleGAN 1 24.3 ± 1.8 58.9 ± 3.1 73.9 ± 0.7 49.1 ± 1.2

StyleGAN 2 19.3 ± 1.2 47.0 ± 1.6 58.9 ± 1.5 38.4 ± 1.1

StyleGAN 3 16.8 ± 1.6 43.3 ± 1.9 49.6 ± 2.2 32.5 ± 1.4

Diffusion 13.7 ± 0.9 19.2 ± 0.8 13.3 ± 0.7 13.0 ± 0.8

Table 7.  Results on the test dataset (56 subjects) when training the generative models with BraTS 2021 (1195 
training subjects). Mean and standard deviation of Hausdorff distance across the dataset are calculated for 
the labels; GD-enhancing tumor (ET), peritumoral edema (ED), and necrotic and non-enhancing tumor core 
(NCR/NET). All results are presented as mean ± standard deviation of 10 trainings. The column Orig marks 
if the original dataset has been added to the training set and the column Aug marks if augmentation was used 
during training of the segmentation network. Training with and without augmentation was performed with the 
same number of total images. The top row shows baseline results using only real images. The bottom 10 rows 
show results when training with only synthetic images, with and without augmentation.
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Our results show that augmentation makes a rather big difference for the U-Net when training with only 
synthetic images, while the improvement is smaller for the Swin transformer. A possible explanation for this is 
that the augmentation helps the segmentation networks to overcome systematic differences between real and 
synthetic images. To apply augmentation when training the generative models needs to be explored in future 
work, as it on the one hand can increase the number of training images, but on the other hand it may introduce 
more modes in the high dimensional distribution (which will be harder to learn).

Several other researchers have demonstrated that combining real and synthetic images (i.e. using generative 
models for advanced augmentation) can improve segmentation accuracy20,21,24, or classification accuracy13,18, 
compared to training with only real images, but our results show that adding synthetic images only provides 
minor improvements or even results in worse performance. There are at least two possible explanations for this. 
First, we use a rather strong baseline segmentation model with several types of traditional augmentation during 
training. Second, we repeat the training of each segmentation network 10 times to avoid differences due to ran-
dom chance. It is possible that using a subset of the real data (e.g. 20%), instead of all the real data, would result 
in larger improvements when adding synthetic images. However, the generative models should then be trained 
with the same subset, which will reduce the quality and diversity of the synthetic images.

The results are likely to strongly depend on the hyperparameters and the architecture of each generative 
model, but to explore many parameter combinations and architectures is difficult due to the long training times 
of both generative models and segmentation networks. For this reason, the results presented in this work may 
not correspond to the optimal results for each generative model, which one could obtain after performing an 
exhaustive optimization of hyperparameters and architectures. The total training time for this work was over 
2000 days on an Nvidia A100 graphics card, and an exhaustive search of hyperparameters could have increased 
this a factor 10. This work demonstrates that new efficient metrics for evaluating synthetic medical images are 
required, as FID and IS are based on ImageNet (which does not contain medical images), do not consider mem-
orization8–10, and do in general not correlate with how a network trained on the synthetic images will perform 
(see Table 1)16,47. In future work we will calculate FID and IS using CNNs pre-trained on RadImageNet49, which 
is a large collection of medical images, to see if Rad-FID and Rad-IS better correlate with our other metrics.

Regarding the qualitative evaluation by a neuroradiologist, the results show that the generative models pro-
duce synthetic images that are on the same level as real images (a similar number of images were classified as 
synthetic). It should however be noted that the setup of this experiment was not similar to a regular clinical 
assessment of brain tumor MRI, which is reflected in the fact that a large portion of the real images were falsely 
classified as synthetic images. Normally, in a clinical workflow a neuroradiologist would assess the whole brain, 
instead of a single slice, with even more MRI sequences than used in this study. Furthermore, a neuroradiologist 
does not normally look at skullstripped brain images. A challenge with this evaluation was that the BraTS images 
originate from many different scanners, with varying image quality, which probably also affected the visual 
assessment. Two additional limitations are that only one neuroradiologist performed the visual assessment, and 
that the sample of 600 images is not balanced in terms of real and synthetic images (which may introduce a bias).

The implication of our results are that sharing synthetic medical images is a viable option to sharing real 
images. A researcher can use synthetic images for pre-training, and then fine-tune the model on a small number 
of locally available images. Sharing synthetic medical images can be substantially easier11,12,27,50, as GDPR should 
not apply for data which do not belong to a specific person (but further legal research is needed). Regarding con-
sent, Larson et al.51 argue that clinical data should be treated as a form of public good, to be used for the benefit 
of future patients, and further argue that consent is not required before collected data are used for secondary 
purposes when obtaining such consent is prohibitively costly or burdensome (e.g. contacting 1,000–10,000 per-
sons). On the other hand, the argument of clinical data being treated as a form of public good, and not requiring 
further consent for use in research or development, may be a slippery slope and many examples exist where a 
retrospective look identifies the continued use of such data as an unauthorized abuse (e.g. Henrietta Lacks).

Before sharing synthetic images it is important to investigate how similar each synthetic image is to all train-
ing images, as especially diffusion models have been shown to memorize the training images8–10,52. This is extra 
important for small datasets, as memorization is then more likely9,10. Common evaluation metrics like FID and 
IS do not capture memorization, and it is therefore necessary to for example calculate the correlation, or some 
other metric like mutual information, between each synthetic image and all training images10,48,52. Pre-trained 
generative models can play an important role for sharing synthetic images from small datasets, as it should be 
less likely for a pre-trained model to memorize a small number of new images during fine tuning (compared to 

Image type Classified as real Classified as synthetic

Real image 16 84

Progressive GAN 23 77

StyleGAN 1 14 86

StyleGAN 2 13 87

StyleGAN 3 18 82

Diffusion Model 16 84

Table 8.  Results from the qualitative evaluation by an experienced neuroradiologist, who classified 600 four-
panel images as real or synthetic (100 real images and 100 images per generative model). The two right columns 
show how many images that were classified as real or synthetic, for real images and for synthetic images from 
the five generative models. The number of correct classifications for each row has been marked with bold.
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training the model from scratch). To determine an acceptable range of overlap with real clinical data is a very 
difficult task, especially since different legal experts interpret GDPR differently (in Sweden it is in general inter-
preted stricter compared to other countries) and since this acceptable range is likely to be different for different 
types of medical images. It therefore remains an open question how high the highest similarity can be before a 
synthetic image is seen as a copy of a training image.

Methods
Data.  The MR images used for this project were downloaded from the Multimodal Brain tumour Segmentation 
Challenge (BraTS) 2020 and 202136–41. The training set contains MR volumes of shape 240 × 240 × 155 from 369 
subjects for BraTS 2020 and from 1251 subjects for BraTS 2021. For each subject four types of MR images are avail-
able: T1-weighted (T1w), post gadolinium contrast T1-weighted (T1wGd), T2-weighted (T2w), and T2-weighted 
fluid attenuated inversion recovery (FLAIR). The annotations cover three parts of the brain tumor: peritu-
moural edema (ED), necrotic and non-enhancing tumour core (NCR/NET), and GD-enhancing tumour (ET).  
We used 313/1195 subjects for training and 56 subjects for testing, after first performing a random shuffling of the 
subjects. The data in the test sets were not used for training the generative models.

All 3D volumes were split into 2D slices, as a 2D GAN and a 2D diffusion model were used (3D GANs and 
3D diffusion models are not yet very common). Only slices with at least 15% pixels with an intensity of more 
than 50 were included in the training. This resulted in a total of 23,478 5-channel images for BraTS 2020, and 
91,271 5-channel images for BraTS 2021. Each slice was zero padded from 240 × 240 to 256 × 256 pixels, as the 
used GANs only work for resolutions that are a power of 2, and the intensity was rescaled to 0–255. The inten-
sities for the tumor annotations were changed from1,2,4 to [51,102,204], such that the intensity range is more 
similar for the 5 channels.

Image generation.  In this work we compare four different GANs (progressive growing GAN30, StyleGAN 
131, StyleGAN 232, StyleGAN 333) and a diffusion model34,35, for the task of generating brain tumor images. GANs 
are trained through adversarial learning (using an adversarial loss function), where a generator and a discrimi-
nator compete against each other, to produce more realistic images and to be better at discriminating images as 
real or synthetic. At inference time, only the generator is used. A diffusion model, on the other hand, starts with 
real data samples, progressively adds noise over many steps according to a predetermined schedule until the data 
becomes pure noise. In this work a linear noise scheduler was used. The diffusion model is then trained to reverse 
this process, using more traditional loss functions, reconstructing less noisy data from more noisy data at each 
step. During inference, a diffusion model starts with an image of pure noise and sequentially applies the learned 
denoiser to reduce the noise, following the reverse of the training noise schedule. This process is iterated until the 
noise is completely removed, resulting in the generation of a new image which resembles the training data distri-
bution. In general diffusion models are easier to train compared to GANs, due to more traditional loss functions, 
but are much slower at generating images.

The openly available code of each generative model was modified to generate 5-channel images instead of 
3 channels, no other modifications to the default architectures were done. Each generative model will thereby 
learn to jointly generate the four MR images (T1w, T1wGD, T2w, FLAIR) and the corresponding tumor annota-
tion at the same time. There is no guarantee that the synthetic annotations will be restricted to the same values as 
the real annotations ([51,102,204]). The synthetic annotations were therefore thresholded to the closest original 
annotation value.

The used hyperparameters of each model, and the approximate training times, are provided in Table 9. We 
used a set of common hyperparameters across all models, along with some model-specific ones. For instance, 
in the case of StyleGANs, we experimented with different gamma values, the best of which are detailed in the 
accompanying table. For the diffusion models, they were trained with varying diffusion steps, but the optimal 
results were obtained with 4000 steps for both training and inference (decided by visual inspection).

For each generative model a total of 100,000 synthetic 5-channel images were generated. For the GANs this 
took about 10 minutes, while it took 1.5 days (using 8 GPUs) for the diffusion model The synthetic images and 
the trained generative models are shared on AIDA data hub44,45.

Quantitative evaluation and tumor segmentation.  The quality and diversity of synthetic images are 
often evaluated using metrics such as Frechét inception distance (FID) and inception score (IS)46. Since these 
metrics are based on CNNs trained on ImageNet, which does not contain medical images, they will be biased 
for medical images. Furthermore, these metrics will not tell us how well a network trained with synthetic images 

Model Batch size Iterations gamma Hardware Training time

Progressive GAN 128 - 8 12000 — 1 × Nvidia V100 5 days

StyleGAN 1 16 25000 10 2 × Nvidia V100 6 days

StyleGAN 2 32 25000 8.2 4 × Nvidia A100 3 days

StyleGAN 3 32 25000 8.2 4 × Nvidia A100 3 days

Diffusion model 12 7800 — 1 × Nvidia V100 22 days

Table 9.  The used hyperparameters for the different generative models, as well as the used hardware and the 
approximate training time. One iteration corresponds to 1000 images processed. Processing 1000 images for the 
diffusion model is much slower, since it performs 4000 diffusion steps for each batch.

https://doi.org/10.1038/s41597-024-03073-x


1 4Scientific Data |          (2024) 11:259  | https://doi.org/10.1038/s41597-024-03073-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

will perform on real images. The synthetic images were therefore used to train segmentation networks (based on 
U-Net and Swin transformers), and the evaluation was performed using real images in the test set. To investigate 
how FID and IS correlate with the performance of training with only synthetic images, FID and IS were also 
calculated.

Training deep networks is a stochastic process, meaning that training the same model several times will give 
different results. Each segmentation network was therefore trained 10 times, to make sure that performance 
differences between the different generative models are not due to random chance. The segmentation was per-
formed for each slice independently, and the Dice scores and Hausdorff distances were then calculated in 3D 
after putting the slices for each subject back into a volume.

U-Net.  The model structure and training setup used was inspired by the 2D segmentation code from nnUNet53. 
The model was a U-Net54 with an extra depth layer and instance normalization instead of batch normalization. 
In addition, the ReLU activations was swapped for leaky ReLUs with a negative slope of 10−2. All models were 
trained with a loss consisting of a cross-entropy term and a soft Dice term weighted equally. In addition, deep 
supervision was used, meaning that the loss was applied on the five highest depth level with weighting 0.5d where 
d is the depth.

The loss was minimized using stochastic gradient descent with Nesterov momentum of 0.99 and weight 
decay of 3·10−5. The initial learning rate was 5·10−2 and was decreased using polynomial learning rate decay with 
an exponent of 0.9. The learning rate and optimizer was different for the generative models, see their respective 
paper. All models were trained for 3·107 samples or 3 days, whichever occured first. 20% of the available images 
were used for validation and the model with the best mean Dice over the validation set was used for evaluation. 
If both real and synthetic data was used during training, the real dataset and the synthetic dataset were sampled 
equally often.

During training a geometric, and intensity-augmentation was applied, as our previous work on augmenta-
tion for brain tumor segmentation55 demonstrated that augmentation can provide significant improvements 
even if the dataset is large. The image and target is first randomly rotated and scaled. Both rotation and scaling is 
applied with a probability of 0.75, the image and target is rotated with an angle uniformly sampled from [−30°, 
30°] and the width and height is scaled (independently) with a scale factor uniformly sampled from [0.9, 1.1]. 
Then the four input channels are augmented by; adding Gaussian noise (applied with probability 0.5, zero mean 
and standard deviation uniformly sampled from [0.0, 0.05]), blurring the image (applied with probability 0.2, 
Gaussian blurring with standard deviation sampled from [0.5, 1.0]), faking lower resolution (zooming with 
a factor between 0.75 and 1.0 and then upsampling) and changing the gamma factor (scaling it with a factor 
between 0.8 and 1.2). Lastly the input image channels are normalized using Z-score normalization.

Swin transformers.  The Swin transformer segmentation network was implemented and trained using 
the MMSegmentation library56. The architecture employed is the Swin-Base variant, as implemented in 
MMSegmentation, with a window size of 7 and a patch size of 4 × 4. The original Swin transformer was designed 
for 3-channel RGB images, hence, to accommodate MRI scans with four modalities per slice, the number of 
input channels in the model was modified to 4. Consequently, the input dimension of the Swin transformer is set 
to 256 × 256 × 4, where the ‘4’ denotes the number of channels, and ‘256’ represents both the height and width 
of each modality slice. The sole alteration to the original Swin-Base architecture is the adaptation of both the 
number of channels and the number of classes to 4.

The network was trained using DiceCELoss function. Furthermore, the Dice Loss component does not take 
into account the background class, label 0. The loss per batch was derived by calculating the loss for each training 
image, and taking the mean loss value.

The AdamW optimizer with β_1 = 0.9, β_2 = 0.999 and weight decay λ = 0.01 was used. Additionally, a 
learning rate scheduler with warmup and linear decay was employed. The warmup ratio was set to 1e−6. For the 
first 1500 iterations, the learning rate is increased and after 1500 warmup iterations, the learning rate reached 
0.00006. For the rest of the training, the learning rate was decreased linearly until it reached 0.0 at the end of 
the training. The models were trained for 25 epochs, and after every epoch, a validation loss was calculated.  
The batch size was set to 8, and the last batch is dropped if it is not the same size as all of the other batches to 
ensure that all models are provided with batches of consistent size.

Data augmentation was performed using five techniques inspired by Cirillo et al.55. Images and their cor-
responding segmentations undergo rotation, with angles from 0° to 30° chosen randomly, and scaling, with 
axis factors varying within ±20%. Images were also subjected to a 50% chance of either horizontal or verti-
cal flipping. Brightness was adjusted through a power-law γ intensity transformation, with parameters ran-
domly picked between 0.8 and 1.2. Lastly, elastic deformation, following the methodology from the original 
U-Net paper42, was applied using a deformation grid with normal distribution displacements (σ = 2 voxels) and 
smoothed with a third-order spline filter.

Qualitative evaluation by neuroradiologist.  To evaluate how the synthetic images are perceived by a 
clinician, a total of 600 4-sequence-panel images (T1w, T1wGd, T2w, T2w FLAIR) were presented to an expe-
rienced (13 years) neuroradiologist (co-author IB). The task was to determine if each presented 4-panel image 
was real or synthetic. The 600 images consisted of 100 real images, and 500 synthetic images, 100 each from the 
five generative models (progressive GAN, StyleGAN 1–3, diffusion model). The total number of real images, and 
the number of synthetic images per generative model, was known to the neuroradiologist before starting the 
evaluation. The real and synthetic images were presented in a random order. The evaluation took approximately 
12 hours. Figure 5 shows an example of a real and a synthetic image presented during the evaluation.
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Ethics.  This research study was conducted retrospectively using anonymized human subject data made avail-
able by BraTS. The ethical review board of Linköping decided that no further ethical approval was required.

Data availability
The BraTS 2020 and 2021 datasets are openly available through the following websites.

https://www.med.upenn.edu/cbica/brats2020/data.html
http://braintumorsegmentation.org

The generated synthetic images (100,000 five channel images per generative model), and the trained generative 
models, are shared at the AIDA data hub44,45; https://datahub.aida.scilifelab.se/10.23698/aida/synthetic/brgandi.

Code availability
The code for the different GANs and the diffusion model is openly shared by the creators of the generative 
models, see below. We therefore share our modifications to make the code work for 5-channel images, instead of 
3-channel images, the used segmentation code, and some additional help scripts.

https://github.com/muhamadusman/Assist/
Generative models
Progressive growing GAN, https://github.com/tkarras/progressive_growing_of_gans
StyleGAN 1, https://github.com/NVlabs/stylegan
StyleGAN 2, https://github.com/NVlabs/stylegan2
StyleGAN 3, https://github.com/NVlabs/stylegan3
Diffusion model, https://github.com/openai/guided-diffusion
Segmentation models
U-Net, https://github.com/MIC-DKFZ/nnUNet
Swin Transformer, https://github.com/open-mmlab/mmsegmentation.
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