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Wind turbine database for 
intelligent operation and 
maintenance strategies
Pere Marti-Puig1,3 ✉, Alejandro Blanco-M.1, Jordi Cusidó1,2 & Jordi Solé-Casals  1,3 ✉

With the aim of helping researchers to develop intelligent operation and maintenance strategies, in this 
manuscript, an extensive 3-years Supervisory Control and Data Acquisition database of five Fuhrländer 
FL2500 2.5 MW wind turbines is presented. The database contains 312 analogous variables recorded 
at 5-minute intervals, from 78 different sensors. The reported values for each sensor are minimum, 
maximum, mean, and standard deviation. The database also contains the alarm events, indicating the 
system and subsystem and a small description. Finally, a set of functions to download specific subsets of 
the whole database is freely available in Matlab, R, and Python. To demonstrate the usefulness of this 
database, an illustrative example is given. In this example, different gearbox variables are selected to 
estimate a target variable to detect whether or not the estimate differs from the actual value provided 
for the sensor. By using this normality modelling approach, it is possible to detect rotor malfunction 
when the estimate differs from the actual measured value.

Background & Summary
Wind energy is essential for meeting the EU Commission’s ambitious climate and energy targets for 2020, which 
include generating at least 20% of electricity from sustainable sources1. However, the operation and maintenance 
(O&M) costs of wind farms, which range from 10% to 35% of overall generation costs, pose a challenge2. By 
reducing these costs, wind farms can become more competitive with fossil fuels and expedite the transition to 
sustainable energy3.

To ensure effective management of wind farms (WF), wind turbines (WT) are scheduled for preventive main-
tenance every 2500 to 5000 hours. However, relying solely on preventive maintenance is insufficient to detect 
and predict device conditions and anticipate potential failures. The unexpected shutdown of turbines incurs sub-
stantial costs, especially considering the logistical challenges of remote locations and the time required for com-
ponent replacement and on-site repairs. Preventive maintenance schedules for wind turbines are insufficient to 
detect and predict device conditions and anticipate failures. The life expectancy of WT is commonly estimated at 
around 20 years, and on average one week of downtime per year is required due to maintenance4. This is particu-
larly relevant for those turbines that have been installed in the 1990s and early 2000s that are approaching the end 
of their lifetime. WF operators have adopted a wide range of measures to extend the operative time of their assets, 
as mentioned in5. Identifying the root causes of failures leading to turbine downtime is essential in reducing 
inactivity and promptly addressing critical failures. Adopting effective methodologies and tools that assist in this 
process can significantly benefit wind farm owners by increasing energy production, availability, and cost savings.

Phisycal and data-based modelling. The early deterioration of WT’s systems and subsystems can be 
detected using their physical models or building models from their generated data. The physical model approach 
is useful for determining and capturing how the various components of turbines work. Monitored components 
are modelled into systems of physical equations that describe their behaviour from a thermodynamic, electrical, 
or mechanical perspective. Building physical models of wind turbines requires deep knowledge and expertise in 
operation principles and a deep knowledge of the WT components. Sometimes, even WT owners do not have 
all the required information, as manufacturers do not always share the details of the turbine’s inner systems. 
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Nonetheless, such models have been presented in various studies in the literature. For instance, in6, a physical 
simulation of the loads of a turbine gearbox is proposed, showing that it can determine the effect that varying 
loads have on the component’s lifespan. Such work requires a dynamic study of the gear conditions and Finite 
Element Method simulations. The works presented in7,8 attempt a different approach by first determining the 
thermal network that describes gearbox conditions. Overall, physical models are a valid option for better under-
standing the inner workings of turbine components and generating new knowledge about them. Physical models 
are far more reliable than data-based ones when cause-effect relationships must be determined. However, the 
demanding data requirements, the availability of the necessary design parameters, and the scarce reusability of 
the wind turbine physical models are why the industry requires different and more flexible tools.

The main alternative to physical models are data-based models, which have risen in popularity thanks to the 
advancements in machine learning and statistical modelling. Only minor assumptions of the systems under anal-
ysis are needed, as the physical relations governing the operation of the various components are inferred from 
the data. Data sources available to study WT’s behaviour include dedicated sensors that record vibrations and 
acoustic emissions in mechanical components, such as the gearbox and bearings of the turbine transmission9,10.  
For electrical components, current signatures can be analyzed11. However, these three options are particularly 
expensive as these sensors are not part of the standard equipment of wind turbines. Moreover, installing addi-
tional sensors poses a logistic challenge as operations need to be halted.

Wind farms can be of different sizes, ranging from small farms with a few turbines to huge farms with hun-
dreds or thousands of turbines. On the other hand, all wind farms have different behaviours, depending on their 
geographical location, wind conditions, etc. Large wind farms can also have sectors with different behaviours due 
to their large geographical extension and the effect that the same turbines exert on each other. Many of the wind 
data sets currently in use are not publicly available, which challenges the reproducibility of research, particu-
larly in commercially important areas such as wind energy forecasting. Some databases are from offshore WFs, 
such as12,13. An interesting overview of open-source wind energy data is available in14. Other databases include 
aggregated data, which lack turbine-level measurements and turbine-specific energy production. Instead, they 
comprise aggregated wind energy data covering various spatial scales, from wind farms to entire countries. These 
datasets differ from turbine-level data in their lower temporal resolution, consisting predominantly of hourly data. 
Our database is unique because it provides all the raw data of the system for all the WTs and a long period of time.

Condition monitoring via supervisory control and data acquisition system. Condition 
Monitoring Systems (CMS) employ various strategies, including machine learning techniques such as Artificial 
Neural Networks (ANN) and Self Organizing Maps (SOM), to analyse wind turbine data and identify devia-
tions from normal behaviour15. These methodologies utilize SCADA data for condition monitoring, enabling 
the prediction of turbine failures. However, classification models in this context pose challenges due to imbal-
anced data distributions, where most examples belong to the healthy state, and only a few represent the alarm 
state. Furthermore, the accuracy of these models is hindered by labelling errors in the data. A more efficient 
maintenance approach known as condition-based maintenance (CBM) has emerged to address these issues. 
CBM involves ongoing surveillance and the detection of emerging faults through CMS, which acquires and 
pre-processes sensor data, evaluates it, and interprets the results16. CBM enables early detection of incipient faults 
and proactive planning of maintenance tasks, thus optimizing wind turbines’ operation and maintenance process. 
The literature related to WT maintenance is rich in complex attempts to anticipate failures, ranging from signal 
processing analyses to physical simulations and machine learning algorithms17,18. Researchers often neglect the 
scalability of solutions, likely due to a lack of large-scale datasets, including multiple wind farms and manufactur-
ers. Most research is developed for individual wind farms or using laboratory simulations. Rarely are algorithms 
tested on multiple sites characterized by various turbine technologies and environmental conditions. This is a 
crucial shortcoming of the literature this dataset aims to address.

A valuable data source is the utilization of the Supervisory Control and Data Acquisition System (SCADA), 
a network of sensors monitoring the status of the turbine. SCADA data was initially designed to provide infor-
mation to verify the correct operation of turbines and not as a means to assess the health status of individual 
subsystems. The number of sensors monitored by SCADA can vary between turbine manufacturers, though in 
general, the major components of the turbine are all instrumented. The resolution of SCADA data can vary, but 
most commonly is 5–10 minutes, and it is of higher frequency only on very rare occasions. Physical quantities 
such as temperatures, speeds, pressures, and states of the turbine are included in a SCADA dataset. One valuable 
characteristic of SCADA data is that it is available and standardized for most turbines, meaning that algorithms 
for its analysis are more easily transferable from one manufacturer to another. Moreover, being part of the 
standard instrumentation, it does not require additional investments by the wind farm owner. The importance 
of SCADA data for predictive maintenance and monitoring has greatly increased in the last decade. The works 
in19,20 are two of the first attempts to use SCADA data for WT condition monitoring. The methods to analyze 
and extract information have greatly improved from the early days. In the literature, algorithms are available to 
assess the health of all major components using diverse approaches based on statistical analyses, machine learn-
ing, and deep learning17,18. The benefits of SCADA are its wide availability, highly standardized format, and low 
cost. Nonetheless, its low data acquisition rate has been mentioned as an important limitation that can hinder 
the capability of correctly modelling the status of a turbine and detecting failures21.

The use of machine learning, normality models or other types of modelling strategies based on data analysis 
can be used for O&M. The illustrative example presented in this manuscript highlights how extreme learning 
machines (ELMs) can be used to predict a variable from other variables in the system, which can help to detect 
a malfunction of the wind turbine (specifically the gearbox in the provided example), and hence the deploy-
ment of a maintenance check of the wind turbine. To advance the development of condition-based maintenance 
(CBM) strategies, we release a comprehensive 3-year dataset. This dataset covers all the information obtained 
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from the SCADA system of a wind farm, which includes five 2.5 MW Fuhrländer FL2500 wind turbines. The 
interesting fact about the database is that it is complete, containing all the information from the wind farm’s 
SCADA system. No variable or information has been modified, and therefore it can be a good starting point for 
experimenting with this type of data and its use to improve O&M strategies.

This dataset, already used in other papers (see22–24 as examples) is presented in raw, unprocessed form, as sup-
plied by the system. It includes all variables and alarms from the different systems and subsystems of the WTs.

Methods
The dataset contains 312 analogous variables recorded at 5-minute intervals by the wind farm’s SCADA, from 
78 different sensors. Wind turbines consist of nine main systems, namely Converter, Generator, Nacelle, Rotor, 
Tower, Transformer, Transmission, Turbine, and Yaw. Some of these systems are further divided into specific 
subsystems. Specifically, there are 16 identified subsystems including Hub, Hydraulic System, Main Bearing, 
Pitch, Power Cabinet, Roof, Rotor, Tower, Transformer, and Yaw. For a detailed overview of the relationship 
between the systems and their corresponding subsystems, please refer to Supplementary Table 1.

The WTs have 78 different sensors (see Fig. 1). Each sensor in the system provides data regarding a specific 
subsystem and presents summary information in the form of four statistical parameters calculated at 5-minute 
intervals. Variables from the same sensor can therefore be identified by their common name, with the only 
distinction being the specific term added: avg (mean), std (standard deviation), min (minimum), or max (max-
imum). In total, there are 78 subsystems, giving a total of 78 multiplied by 4, which equals a collection of unique 
variables. For a complete list of names and corresponding variables, see Supplementary Table 2.

The database also provides a comprehensive collection of alarm information. A total of 369 alarms have 
been identified, each of which is assigned a unique (integer) code and associated with a specific system and its 
corresponding subsystem, accompanied by a short descriptor. This allows the database user to easily retrieve 
the set of alarm codes specifically linked to a particular system of interest. This information is available in 
Supplementary Table 3.

Gearbox. In the WT subsystems as a whole, the gearbox is a system to be monitored because a broken or 
damaged gearbox is a serious and costly breakdown with prolonged downtime. The gearbox is a device that 
increases the speed of the slow but powerful rotation of the rotor to an optimal level for the generator. This allows 
the generator to convert the maximum mechanical energy of the wind into electricity. During this energy trans-
formation, the gears of the gearbox are stressed due to the difference between the input torque and the opposite 
torque of the generator at the output. As a result, some parts of the gearbox experience fatigue and an increase 
in temperature, which hinders the effectiveness of lubrication. Detecting gearbox failures, especially in the early 
stages, can be difficult. In many cases, a failure in the gearbox involves the replacement of the component with 
a new one. This failure can be of slow onset (degradation) and, in that case, can be predicted before total failure 
(breakage).

In a WT gearbox, the transmission is organised in three main parts: the planetary stage, the intermediate 
stage, and the high-speed stage. Each stage consists of specific components, basically gear parts with a different 
number of teeth, which allow the speed of the rotor to be adjusted to the generator Fig. 1.

Figure 2a shows a two-speed, stall-controlled, three-bladed upwind turbine drivetrain, in which the gearbox 
subsystem is shown within a red box. The main components of the drivetrain are the hub, main bearing, main 
shaft, gearbox, brake, generator shaft and generator. In Fig. 2b, the gearbox is depicted in more detail, showing var-
ious types of bearings used depending on the load conditions and gearbox life requirements. In this example, the 
planetary gearbox is supported by two cylindrical roller bearings (fcCRB), and each planetary gear is supported by 
two identical cylindrical roller bearings (CRB). Each gearbox parallel shaft is supported by a CRB on the upwind 
side of the assembly and by two tapered roller bearings (TRB) mounted back-to-back on the leeward side.

Regulations and standards. The International Electrotechnical Commission (IEC) standards 61400-25 
series provide comprehensive guidelines for monitoring and control systems in wind power plants. These stand-
ards are particularly relevant in the context of failure detection in wind turbines, especially when considering 
the implementation of IEC61400 as a SCADA naming standard in wind farms. A detailed examination of each 
standard’s significance is essential for framing research in this area. The most important ones are:

 a) IEC 61400-25-2:2015 - Information Models: This standard specifies information models related to wind 
power plants. The information models typically include the four attributes detailed in Table 1.

 b) IEC 61400-25-3:2015 - Information Exchange Models: Focusing on methods and models for information 
exchange within wind power plants, this standard outlines essential protocols and communication patterns 
for efficient data transfer. The most important aspects are listed in Table 2.

 c) IEC 61400-25-4:2008 - Mapping to Communication Profile: This standard addresses the mapping of infor-
mation and exchange models to specific communication profiles.

 d) IEC 61400-25-5:2006 - Conformance Testing: Providing guidelines for testing the conformance of wind 
power plants to the IEC 61400-25 series, this standard is essential for validating that the monitoring and 
control systems adhere to international standards.

 e) IEC 61400-25-6:2010 - Logical Node Classes and Data Classes for Condition Monitoring: This part of the 
series specifies logical node classes and data classes for condition monitoring of wind power plants.

In the context of the IEC 61400-25-2:2015 standard, labels or naming conventions for various parameters 
are standardized to ensure consistency and interoperability. For parameters such as Gearbox Temperature, Main 
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Bearing Temperature or Active Power, the labels would typically adhere to a structured format that includes 
several components to accurately describe the data point. Here are some examples of how these labels might be 
structured:

•	 Gearbox Temperature:
Label: WTurbine1.GBX.Temp
WTurbine1 is the wind turbine identifier.
GBX is an abbreviation for Gearbox.
Temp indicates temperature measurement.

•	 Main Bearing Temperature:
Label: WTurbine1.MBear.Temp
WTurbine1 is the wind turbine identifier.
MBear is an abbreviation for Main Bearing.
Temp indicates temperature measurement.

Fig. 1 Wind Turbine system and sensors. Adapted from TE connectivity (http://www.te.com/).

Fig. 2 (a) Drivetrain configuration. (b) Gearbox configuration.

https://doi.org/10.1038/s41597-024-03067-9
http://www.te.com/usa-en/industries/sensor-solutions/applications/wind-turbine-sensors.html?tab=pgp-story
http://www.te.com/


5Scientific Data |          (2024) 11:255  | https://doi.org/10.1038/s41597-024-03067-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

•	 Active Power:
Label: WTurbine1.Gen.PwrAct
WTurbine1 is the wind turbine identifier.
Gen is an abbreviation for Generator.
PwrAct indicates Active Power measurement.

These labels are illustrative and follow a logical format, but the exact naming convention may vary depend-
ing on the specific implementation and configuration of the SCADA system in use. The key is to maintain a 
consistent and descriptive naming scheme that aligns with the guidelines of the IEC 61400-25-2:2015 standard, 
facilitating clear identification and management of data points across the wind power plant’s monitoring and 
control systems.

Data Records
The data is available in the repository located at the Figshare repository25, but also made available on GitHub at 
https://github.com/alecuba16/fuhrlander. It offers a valuable opportunity to access the raw, unprocessed data 
generated by the wind farm’s SCADA system. Unlike many publicly available datasets, which often offer limited 
or filtered information, our dataset contains the complete, unaltered data directly downloaded from the server. 
We have deliberately chosen not to pre-process the dataset so that users can explore and analyse the data with 
methods of their choice. The dataset, stored within the ‘dataset’ folder, is in JSON format. It encompasses a 
comprehensive collection of data obtained from five wind turbines, specifically turbines 80, 81, 82, 83, and 84, 
spanning a duration of three years from 2012 to 2014. However, there is a data gap due to a temporary failure of 
the SCADA system. This is something that may occur in real applications, making it more difficult to work in 
these environments. The recorded data has a frequency of 5 minutes, encompassing four indicators for each of 
the 78 sensors, ultimately resulting in a total of 312 variables. For every 5-minute interval, the dataset includes 
minimum, maximum, mean, and standard deviation values for each sensor, providing a comprehensive over-
view of their respective measurements.

Table 3 presents a partial extract of the variables, showing the identifier (ID), the time (TIME) and the 
weather systems (MET). The complete list of variables is given in Supplementary Table 2.

Additionally, the dataset incorporates valuable information regarding warning and alarm events. These 
events are accompanied by details specifying the affected system and subsystem, along with concise descriptions 
elucidating the nature of the event. This supplementary information enhances the dataset’s value by offering 
insights into potential system anomalies and critical occurrences.

Table 4 contains the 15 initial alarms recorded in the dataset. Each row represents an individual alarm, with 
an identifier (ID) represented by an integer value. In addition, the table indicates the system (SYS) and subsys-
tem (SUBS) associated with the occurrence of each alarm. Lastly, a concise description (DESC), provided by the 
system, is included to give more context and information about the alarm event.

technical Validation
The dataset originates from a historical dump of the Smartive company’s RDS, a relational database system used 
to store information from various monitored wind plants. The RDS tables were updated through a push mecha-
nism using an OPC standard driver connected to the Wind Farm. Specifically, the wind farms were equipped with 
the Mita-teknik SCADA platform26, which notified the driver whenever a variable aggregation of 5 minutes was 

Data Attributes Represent specific pieces of information, like wind speed, turbine rotational speed, power output, and temperature. 
Each attribute is defined with a specific data type and range.

Object Models Collections of data attributes and methods that represent a specific component of the wind turbine, such as a blade, 
gearbox, or generator. Object models define how data is organized and related within the system.

Hierarchical Structure This structure facilitates the organization and retrieval of data, ensuring that the relationships between different 
components of the wind turbine are logically represented.

Standardized Naming 
Conventions

Specifies naming conventions for different data elements. This uniformity is crucial for interoperability and easy 
integration with various SCADA systems.

Table 1. Attributes of the information models.

Communication Protocols Protocols and methods for data exchange, ensuring compatibility and efficiency in communication between 
different systems and devices.

Data Exchange Patterns The standard outlines various patterns of data exchange such as request-response, publish-subscribe, and 
report by exception. These patterns define how data is transmitted, received, and processed.

Security and Reliability Aspects of secure and reliable data transmission are covered. This includes encryption, authentication, and 
error-checking mechanisms to ensure that data exchange is secure and error-free.

Interoperability Guidelines
Provides guidelines for ensuring that different systems and devices can work together seamlessly. This 
is especially important in environments where components from different manufacturers need to 
communicate with each other.

Real-time Data Exchange It emphasizes the capability for real-time data exchange, which is critical in operational monitoring and 
control, as well as in failure detection and response scenarios.

Table 2. Protocols and communication patterns.

https://doi.org/10.1038/s41597-024-03067-9
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completed with its value. The Smartive-developed driver then stored the value in the RDS historical table. This 
data path represents the sole source of truth, as there is no alternative means to access the raw wind turbine data.  
The engineer responsible for the driver implemented a range check based on the SCADA variable information 
endpoint provided by the mita-teknik hub before storing the raw data. To facilitate the use of this dataset, we 
have made it publicly available in a self-contained JSON format, eliminating the need for third-party software 
or specific drivers like parquet or SQL. To validate the dataset’s accuracy, we performed a comparison with the 
original RDS by sampling several rows from different turbines and time intervals.

Usage Notes
We downloaded the package fuhrlander-master.zip from the repository25 or the GitHub located at https://github.
com/alecuba16/fuhrlander. After downloading the package, we proceeded to extract its contents directly into 
the designated working directory. The extracted content included the following files: LICENSE, which contains 
the licensing information, and README.md, which provides instructions and essential information about the 
package, the python program export_variable_info_from_json.py and the directories dataset, matlab and r.

The program called export_variable_info_from_json.py is used to extract alarm information from the dataset. 
Within the dataset directory, you will find five zipped files, along with a single file in.json format. This particular.
json file contains comprehensive information about the wind farm, including details related to alarms and wind 
turbines. Each of the zipped files contains individualised data for a specific wind turbine.

To facilitate the use of the information in the database, we have provided additional resources in the form 
of functions and examples. These resources are located in the directories matlab and r, respectively. The matlab 
directory contains functions and examples specifically designed to support the use of database information in 

System Variable Group Stat Type Signal Name

ID id single turbine_id

TIME time single date_time

WMET

wmet_MetAlt1_Hum

min wmet_min_MetAlt1_Hum

avg wmet_avg_MetAlt1_Hum

sdv wmet_sdv_MetAlt1_Hum

max wmet_max_MetAlt1_Hum

wmet_DewPTmp

min wmet_min_DewPTmp

avg wmet_avg_DewPTmp

sdv wmet_sdv_DewPTmp

max wmet_max_DewPTmp

wmet_MetAlt1_Press

min wmet_min_MetAlt1_Press

avg wmet_avg_MetAlt1_Press

sdv wmet_sdv_MetAlt1_Press

max wmet_max_MetAlt1_Press

Table 3. Extract from the list of variables, divided into systems and variable groups, for the ID, TIME and 
WMET systems.

ID SYS SUBS DESC

0 Turbine Control Cabinet System OK

5 Turbine Control Cabinet Vibration

7 Turbine Control Cabinet Turbine is serviced

9 Turbine Control Cabinet Remote stop

13 Turbine Control Cabinet Manual stop

16 Turbine Control Cabinet Emer.stop cont.panel

23 Turbine Control Cabinet Repeating error

30 Nacelle Control Cabinet Nacelle temp.

31 Nacelle Control Cabinet Nacelle temp. stop

41 Turbine Control Cabinet UPS battery low

45 Turbine Power Cabinet Main ctrl. Supply

55 Turbine Control Cabinet Main ctrl.man.reboot

66 Turbine Control Cabinet Fire alarm

93 Turbine Control Cabinet Service hatch

100 Turbine Control Cabinet Repeated grid error

Table 4. List of the first 15 alarms provided by the manufacturer. Each alarm is identified by a numeric ID. Note 
that ID numbers are integers, ordered from lowest to highest, but not consecutive.

https://doi.org/10.1038/s41597-024-03067-9
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the MATLAB environment, while the r directory provides corresponding resources for use in the R program-
ming language.

To exploit the full potential of the database and the accompanying functions described in this section, we 
have prepared four illustrative examples. Although the examples have been implemented in MATLAB, they can 
easily be adapted for use in Python or R programming environments.

The first example demonstrates the necessary dependencies and paths that must be built into the develop-
ment environment to efficiently access the supplied data and functions. This example assumes that the directory 
structure provided in the repository remains intact after unpacking. By following the prescribed directory struc-
ture, developers can easily access the data and functions needed to facilitate their work.

As a quick start to help users use the dataset, we have implemented outlier detection methods in the reposi-
tory, as detailed in Section 1 of the Supplementary Material. Users can choose between two options: (i) to remove 
values outside the range mean ± 3 standard deviations, or (ii) to remove values outside the range median ± 2 
absolute deviations from the median. This process is applied to each block of data and the remaining data are 
used to calculate the mean or the median, depending on the user’s choice. However, users can explore alternative 
strategies by downloading the data without applying any pre-processing.

The dataset includes all subsystem variables, sorted according to the time events they capture. In addition, 
warnings and alarms that occurred during the period are provided separately. Users have the possibility to 
download only the variable data or both the variable data and the associated warnings and alarms, as described 
in Section 1 of the Supplementary Material.

This dataset has already been used in a number of previous works, demonstrating its value in improving 
maintenance strategies. For more information on the content and potential applications of the dataset, we 
encourage users to consult the relevant publications22–24,27). These resources will provide valuable context and 
guidance on how to make the most of the dataset.

In the second example, we illustrate the process of reading the file named wind_plant_data.json and storing the 
wind farm information in a MATLAB structure. In this particular example, we will refer to the structure as ‘WF’. 
Next, we illustrate how to retrieve the alarm identifiers associated specifically with the ‘Gearbox’ subsystem. 
By accessing the organised data within the WF structure, a vector of numeric alarm identifiers related to the 
specified subsystem can be obtained. This approach can be similarly applied to acquire information on alarm 
identifiers linked to any wind turbine system or subsystem.

The third example shows how to obtain the raw data of the WT80. This data is compressed in the file tur-
bine_80.json.bz2 and the function get_turbine_data decompresses it. The SCADA system of these machines 
provides the 4 statistical measurements in intervals of 5 minutes, so the Data Rate must be 300 s as it is required 
in seconds. The data of the desired WT is obtained by simply changing the identifier of each WT (80, 81, 82, 83, 
84). The result is a table named WT80 in this example 3.

Because of the importance of the statistical distribution of variables, the following example explains how to 
obtain a summary of the statistics of any selected variable. A Matlab function has been prepared for this purpose:

https://doi.org/10.1038/s41597-024-03067-9
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The summary statistics for the variable ‘wgdc_avg_TriGri_PhV_phsA’ of the WT80 can be obtained by the 
following instruction:

The result generated by the function is shown below (see Fig. 3).
Finally, the last example shows the process of synchronising data and alarm information. From the previous 

example, we will establish a connection between the selected data of the subsystem ‘Gearbox’ and the data cor-
responding to the WT80 by means of the function get_turbine_data.

There are two different methods to link alarms and data. In this particular case, the output of the function 
will be in table format. The initial 312 columns of the table represent the 312 signals derived from the SCADA 
system of WT80. These alarm-related columns are coded in binary format, with a value of 0 indicating no alarm 
activation and a value of 1 indicating alarm activation.

It is important to note that the function get_turbine_data has additional functionalities beyond the linking of 
data and alarms. In the context of this example 5, in addition to establishing the link between data and alarms, 
the information is integrated in time intervals of one hour (3600 seconds). Furthermore, the ‘filtered_3sdv_
mean’ option is used to filter outliers present in all variables using the 3σ-rule.

Options and possibilities of the get_turbine_data function can be found in the Supplementary Material.

Illustrative example. In this section, we will present the results of a simple normality model applied to the 
WT84 turbine. It is known that this turbine experienced a major failure and remained out of service for a long 
period of time. Our aim is to demonstrate how a normality model, built using Extreme Learning Machines (ELM) 
as discussed in23, can effectively anticipate and detect such incidents at an advanced stage.
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In this example, we will illustrate how a part of the database can be used to develop a model that estimates a 
target variable within the gearbox subsystem based on a set of related variables. It is important to note that the 
gearbox has the longest downtime in the event of a failure. Despite the maturity and reliability of the manufac-
turing technology, this subsystem is prone to breakdowns and failures within a 5-year operating period due to 
the demanding operating conditions. Apart from the replacement costs, gearbox failure causes system down-
time, which lengthens repair times, as it is one of the slowest systems to repair. The cost of gearbox replacement 
can be up to 14.5% of the maintenance cost of the wind turbine28. Consequently, gearbox failure prediction 
becomes a top priority, which is why it has been selected for this example.

Normality models aim to identify the point at which model predictions deviate from actual values, serving 
as a potential indicator of failure. In a previous study on ELMs applied to WT condition monitoring, the use 
of ELMs was explored23,27. Accordingly, we adopted the same network structure used in that work. The set of 
selected variables and the target variable for building the normality model can be found in Table 5. It should 
be noted that the target variable and the variables used remain consistent with those used in23, although their 
application may differ. This section will show the same target variable as in the previous study.

Since the aim is to demonstrate the usefulness of the released database rather than to carry out an exhaustive 
study of it, we will focus on presenting the results for the WT84 turbine only. This particular turbine suffered a 
major failure and was out of service for a long period of time. Therefore, we will use the WT84 turbine to train 
a model and test it when it is working properly, as well as before the failure, in order to illustrate how simple 

Fig. 3 At the top, the table summarises the statistics of the selected variable. At the bottom, the representation 
of this summary using a boxplot.

Variable Name Description

wgdc_avg_TriGri_PwrAt Transformer, grid side, active power

wgdc_avg_TriGri_PF Transformer, grid side, power factor

wtrm_avg_TrmTmp_GbxOil Temperature of the gearbox oil, in degrees Celsius.

wgen_avg_RtrSpd_WP2035 Speed of the rotor main shaft before gearbox in RPM

wnac_avg_WSpd1 Wind speed in m/s measured by the anemometer at the WT’s nacelle

wtrm_avg_TrmTmp_GbxOil Temperature of the gearbox oil

wnac_avg_ExlTmp External temperature

wtrm_avg_TrmTmp_GbxBrg151 Speed of the rotor main shaft before gearbox in the point 151

wtrm_avg_TrmTmp_GbxOil Temperature of the gearbox oil

Target Name Description

wtrm_avg_TrmTmp_GbxBrg152 Temperature of the gearbox bearing 152, at the high speed shaft (output)

Table 5. List of variables selected to feed the ELM and the estimated target to monitor the gearbox subsystem.
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models can be used to monitor wind farms and often predict critical failures. This approach allows us to see how 
SCADA data can be used to detect the early stages of system deterioration.

Specifically, the model is trained using the first 25% of the initial WT84 data. The remaining data (75%) is 
used for various tests. The model consists of a feed-forward network with H = 50 hidden nodes and a sigmoid 
activation function, following the architecture presented in23. The model is not optimised and no formal fea-
ture selection is performed. The choice of variables is made intuitively based on knowledge generated in pre-
vious studies, as the problem was studied in23. The optimal network size (number of hidden nodes) is also not 
explored. The initial calculation of the ELM output weights is the solution presented, as different realisations 
yield similar results.

Since the ELM technique is robust to moderate outliers, no outlier filtering is performed in this example. The 
only processing applied to the raw data is a z-score normalisation of the variables and the target. The obtained 
normalisation constants (mean and variance) will be used to normalise and denormalise the test data.

Therefore, it is a simpler example compared to the one included in the repository (example_elm.m), and it 
can be performed using the methods of the implemented ELM class elm_classifier.m, also included in the repos-
itory, which facilitates the development and testing of the model.

Fig. 4 Time interval of the test phase in which the model follows the signal. The horizontal axis represents the 
number of samples and the vertical axis the temperature in degrees Celsius.

Fig. 5 Scatter plot of the above results, where the model follows the signal. The horizontal axis represents the 
measured signal and the vertical axis the estimated signal. The identity function is shown in black.
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The main difference from the example_elm.m model is our specific focus on WT84. We develop a dedicated 
model exclusively for this turbine, with a single iteration (unlike the multiple iterations used in the example to 

Fig. 6 Representation of the estimated and measured target within the time window that captures the onset of 
gear system malfunction and system failure. Note that the mismatch between the model and the system starts 
to be observed before sample 7000 (measured values depicted in blue color), while the failure occurs around 
sample 8000, after which the WT84 stops working and the target measurement tends toward room temperature 
values (measured values depicted in green color). Taking into account that each sample is spaced 5 minutes 
apart, the detection of anomalies 1000 samples (5000 minutes) before the failure indicates that the first signs 
could have been observed approximately 17 days before the event.

Fig. 7 Scatter plot of the above results, where the model starts to diverge of the signal. The horizontal axis 
represents the measured signal and the vertical axis the estimated signal. The identity function is shown in 
black. Blue dots correspond to the first 7000 points of the measured variable (shown in blue in Fig. 5), in which 
the WT84 works properly. Green points correspond to the last 3000 points (shown in green in Fig. 5) in which 
the WT84 had a failure. It can clearly be seen that these (green) measured values are far away from the values 
predicted by the ELM model.
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calculate output weights and identify the best solution). Additionally, we limit the training data to only the first 
25% of the available data for WT84, obtained through Example 3, without incorporating any failure data. Since 
no optimization has been performed, we do not present accuracy measures or make other comparisons. In this 
context, our presentation includes a time segment during which WT84 operates correctly. Figure 4 displays this 
time segment, showcasing the model estimate alongside the actual measurements. Additionally, Fig. 5 presents 
the corresponding regression model for this segment. Furthermore, Fig. 6 illustrates the representation of the 
estimate and the target over a time interval spanning both before and after the gearbox failure. The failure caused 
a breakdown, leading to an extended period of WT84 being out of service. In the figure, the first 7000 samples, 
denoted in blue, represent the actual measured values. The remaining samples, depicted in green, correspond to 
the data points when WT84 was not functioning correctly.

For a clearer visualization of the disparity between the real measured target and the one predicted by the 
EML model, refer to Fig. 7. In this figure, the blue points represent the first 7000 samples, where the model pro-
duces an accurate estimate of the target. On the other hand, the green points correspond to the remaining sam-
ples, where the model noticeably deviates from the target due to the malfunction of WT84 during that period.

Code availability
The turbine dataset was generated by aggregating the SCADA data obtained from the entire wind farm. It consists 
of five wind turbines, all of them of the same model and manufacturer: Fuhrländer FL2500 2.5 MW. To facilitate 
the manipulation and pre-processing of the data, we have developed functions in the programming languages 
R and MATLAB to serve as an interface. These functions efficiently transform the raw data into a structured 
table format. In this format, each variable corresponds to a column, while each entry represents a five-minute 
interval of data recorded in the rows. The database and the code are freely available at25 and at the GitHub page  
https://github.com/alecuba16/fuhrlander.
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