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a simulated ‘sandbox’ for exploring 
the modifiable areal unit problem in 
aggregation and disaggregation
Jeremiah J. Nieves  1 ✉, andrea E. Gaughan  2, Forrest R. Stevens  2, Greg Yetman3 & 
andreas Gros4

We present a spatial testbed of simulated boundary data based on a set of very high-resolution census-
based areal units surrounding Guadalajara, Mexico. From these input areal units, we simulated 10 
levels of spatial resolutions, ranging from levels with 5,515–52,388 units and 100 simulated zonal 
configurations for each level – totalling 1,000 simulated sets of areal units. These data facilitate 
interrogating various realizations of the data and the effects of the spatial coarseness and zonal 
configurations, the Modifiable Areal Unit Problem (MAUP), on applications such as model training, 
model prediction, disaggregation, and aggregation processes. Further, these data can facilitate the 
production of spatially explicit, non-parametric estimates of confidence intervals via bootstrapping. We 
provide a pre-processed version of these 1,000 simulated sets of areal units, meta- and summary data to 
assist in their use, and a code notebook with the means to alter and/or reproduce these data.

Background & Summary
Decision-making criteria regarding the spatial scale and zonation of areal units has a fundamental impact on 
the nature of geographic spatial analysis1–7. While this phenomenon has been acknowledged in the geographic 
literature for decades1–6, being cognizant of the implications in how underlying data is constructed matters for 
any field, with particularly useful examples noted for demographic8, health9,10, urban11, and ecological12 applica-
tions. Considering that no rule set or agreed upon standards currently exist for areal aggregation in spatial anal-
ysis1,2,4,5, it is critical to determine the underlying rationale for a given spatial resolution in geographical analysis 
as the sensitivity of associated outcomes is tied directly to the decision-making criteria of model development 
and the underlying characteristics of the data1,2,5.

Notably, the modifiable areal unit problem (MAUP) is a well-known issue in the geographical literature and 
describes how sensitive analytical results are to the size and configuration of the areal units informing the anal-
ysis1–7. Different spatial scales chosen for the aggregation of the data can result in different outputs. Similarly, 
how the data is aggregated can also impact the spatial analysis and modelling outputs1–3,13,14. Recent work high-
lights considerations of spatial properties associated with the MAUP effect on both the underlying data and the 
underlying processes, also drawing attention to differences of fitting a model locally or globally15. The influence 
of MAUP is a result of spatially varying processes and distributions of data that can, at least partially, be assessed 
through model estimates or statistical properties associated with a given decision criteria and should be con-
sidered an inherent aspect of geographical analysis1–5,15. Geographical analyses that depend on spatial units for 
analysis require clear articulation regarding decision criteria for data choice, manipulation, and aggregation 
processes. Even with specific spatial scales rationalized, reproducibility and replicability can be challenging due 
to MAUP properties15.

Previous works have used nested hierarchical sets of areal units, e.g., census-based subdivisions, to provide 
calculations tied to the various units. However, those units remain only one potential zonal configuration at the 
given spatial scale, or resolution, used in analysis1,16–18. Relative to the number of works utilising spatial anal-
ysis in some form, very few works have examined simulated aggregations, which may be better able to capture 
the range of potential scales and zonal arrangements that a fixed area could conceivably be partitioned into.  
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Those that did were limited in their extent and complexity due to: i) computational constraints of the time,  
ii) scope of the research question, and or iii) their comparability was limited due to different areal units and 
study areas used or method specific conclusions2,4,13,19–21.

We explore such challenges with gridded population data, a product derived from a modelling process that 
has become more prevalent in applied contexts since the 1990s22. The use of gridded population data continues 
to provide important and timely information on the spatial and temporal distributions of population count and 
density, and these data products are widely used by international agencies, governments, and academic institu-
tions world-wide23. With a world population over 8 billion, and continued rapid growth, demographic changes 
will have significant socioeconomic, development and health impacts, radically alter land use and affect the cli-
mate change risk landscape23–27. Effective planning and resource allocation strategies require a strong evidence 
base that takes these changes, their spatial distribution and scale into account, necessitating timely measuring 
and mapping of population23,26,27. However, the demand for gridded population data products is tempered by 
an awareness that not all gridded products are created equal, driven by differences in the underlying model 
structure, assumptions, inputs, data uncertainty, and, particularly, the spatial scale and configuration of the input 
areal population data22.

Census-based disaggregative models are a modelling approach where population counts are redistrib-
uted from coarser irregular spatial resolution units to a smaller scale of standardised grid squares28–32. This 
“top-down” method of generating continuous raster surfaces of population counts and/or densities gained trac-
tion in the 1990s with the Gridded Population of the World project and dataset28,33. Continual advancement in 
method development informed by data extraction techniques (e.g. land cover, urban designations, settlement 
mapping) and different statistical tools (e.g. machine learning, probability estimation) has resulted in multiple, 
open-access global and regional data products (https://www.popgrid.org/). A good review of these different data 
products and an in-depth summary of their fitness for use is found in22. The gridded population modelling field 
continues to advance methods to include hybrid census techniques34,35, other demographic characteristics36, and 
dynamics and mobility characteristics37, but a base population denominator remains a vital population attribute 
underlying most human related data.

Recognizing there are multiple ways to spatially model population22,30–32,35,38–42, a widely used and con-
temporary method leverages the random forest (RF) algorithm38. RFs are a machine learning approach first 
described in43, increasing the robustness of single classification and regression tree (CARTs) predictions through 
an ensemble approach that combines multiple CARTs with random bagging sampling44. In a dasymetric pop-
ulation disaggregation context, countries have different numbers of available units for training and prediction 
along with the underlying populations having complex, non-linear, and varying relationships to the predictive 
covariates45. As such, RFs are useful given their robustness to large and small sample sizes and noise, ability to 
capture non-linear relationships, and minimal manual parameter adjustment.

However, in using a top-down dasymetric disaggregation approach, the gridded population outputs are 
trained at a coarser “source” level than the finer “target” level31, which creates differences in the range of popula-
tion densities from source to target level and introduces potential underestimation in the dispersion of the data 
as well as extremes in the distribution46 Also noted in the literature is the tendency to overestimate population 
densities in urban areas while underestimate in more rural areas, a direct reflection on the unit sizes and aggre-
gation levels that represent more highly populated areas versus not37. Little rigorous examination exists on how 
any spatial model, or aggregation/disaggregation procedure, is affected by choice of spatial resolution and zonal 
configuration of the areal units1–5,13,20,21.

Challenges persist on fine scale validation of modelled population data, the quantification of uncertainty, 
and any potential systemic biases that result from the combination of the input data, spatial scale and zonal 
configuration of such data, and the disaggregative model process. More specifically, how well do the modelled 
populations perform across the spatially varying characteristics of the true underlying population? Part of why 
these questions have not been answered is the expense, e.g., time, computation, and code, to produce multiple 
realisations of areal units and the lack of a standard benchmark dataset from which different approaches could 
be tested and compared against.

To further research production, knowledge-sharing, and engagement for modelling gridded population, we 
present a set of data47 and corresponding code for exploring relationships of scale, bias, and accuracy with 
census-based disaggregative population modelling. We utilise a building- to block-level population dataset in 
Guadalajara, Mexico to simulate 10 levels of spatial resolutions, ranging from levels with 5,515 - 52,388 units and 
100 simulated zonal configurations for each level – totalling 1,000 simulated sets of areal units. These data47 can 
facilitate interrogating various realizations of the data and the effects of the spatial coarseness and zonal config-
urations, the MAUP, on applications such as model training, model prediction, disaggregation, and aggregation 
processes.

We briefly exemplify this by utilising a RF-informed dasymetric disaggregation of population counts to 
100 m pixel level from various spatial resolutions and simulated zonal configurations. More broadly, these types 
of data (hierarchical, simulated aggregations of areal units) might be useful for testing and development in a 
variety of spatial statistical contexts, including those of small area estimation (SAE)48,49 and other spatial dis-
aggregation approaches (e.g. post-stratification of survey50, or aggregation processes). Though the data47 we 
provide do not attempt to aggregate attributes other than population counts, the underlying census data could 
be linked with various demographic or socioeconomic attributes.
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Methods
Study area. The data presented here comprise the urban region of Guadalajara, Mexico and its rural sur-
roundings. It is bounded roughly by the rectangle with corners at 19.92° N, 104.09° W, and 21.08° N, 102.95° 
W. This region around Guadalajara, Mexico, covers parts of the states of Jalisco and Aguascalientes and is char-
acterised by a diverse landscape of urban areas, rural farmland, mountains, valleys, and arid plains. The city of 
Guadalajara, the capital of Jalisco, is centrally located within this region and is surrounded by the Sierra Madre 
Occidental mountain range and the Lerma River basin. To the south, the area is dominated by primarily agri-
cultural land use, with extensive areas of farmland punctuated by small towns and village areas and cropland. 
Moving northward, the terrain becomes more mountainous, covered in pine and oak forests, with peaks reaching 
over 3,000 meters.

The source data used to produce the synthetic datasets covered by this descriptor begin with a polygonal 
dataset of 55,146 features covering the study area and joined to 2010 Mexico Census data counts containing a 
total population of 5,027,901. The spatial and 2010 census data originate from the National Institute of Statistics, 
Geography and Informatics (INEGI) of Mexico, and are of mixed spatial resolution resulting from a bifurcated 
process of census data aggregation. Areas of more dense population are covered by small polygons, hereafter 
simply “units,” representing blocks or even buildings and correspond to administrative unit “Level 5,” known 
as the “manzana” level. Areas of less dense population are covered by coarser, Thiessen polygons, created from 
INEGI microdata centroids representing administrative unit “Level 3,” or “localidades.” These units are areas 
with populations under 5,000 people total51.

The very high-resolution data contained within higher population density regions contain street gaps or 
boundaries between units, which for the sake of uniformity with typical contiguous census data representations 
used in common applications, we removed prior to any further processing. The goal was to create shared borders 
by removing the imposed street network and open data within settlement agglomerations and exclude areas of 
no data. To rectify this, the polygons, representing the units, were tessellated using a morphological Voronoi tes-
sellation executed with the package momepy52 in Python53. This expanded the polygons beyond the road gaps 
to where they now bordered all their nearest polygons, following the Voronoi tessellation logic (Fig. 1). These 
were the data that were then aggregated in the simulations and subsequently used in the population modelling.

As produced, the final combined population census data consisted of 55,146 polygons with an average spatial 
resolution (ASR) of 0.461 km. The range of spatial areas for the produced units was 29.52 m2 at minimum to a 
maximum of 6.88 × 107 m2 (Q1: 2919.95, Median: 5213.63, Q3: 9526.25). An overview of the dataset and the 
study area is shown in Fig. 2.

Simulation Methods. Simulated Areal Population Data for Disaggregation. Since we wished to withhold 
the original fine scale areal population data for validation and calculation of error metrics, we needed to aggregate 
the areal data into datasets having a coarser spatial resolution. That is, we needed to create simulated coarsened, 
hereafter simply “coarsened”, areal population data sets. We created the coarsened data sets through a simulated 
aggregation procedure (Fig. 3) that selected a spatial unit quasi-randomly, i.e., with preference for units with 
smaller area, and then dissolved it with the neighbouring unit that has the most similar, average population 
density. The population counts of the two dissolved units were summed before moving to the next quasi-random 
unit selection and dissolving iteration. This iterative procedure continued until the desired number of aggregate 
units was met.

Fig. 1 Example of the original high-resolution census-based, polygonal data with streets, water bodies, and 
other open spaces left as “no data” (left, shown as white space) and the same polygons after morphological 
tessellation (right) with the location of the study area in Mexico given in the inset map in the lower right. Each 
aggregated unit was then joined with its total population count corresponding to the 2010 census. These joined 
localidades and manzana data for the study region represent the base data product from which all previous 
syntheses were produced.

https://doi.org/10.1038/s41597-024-03061-1
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Fig. 2 General overview of the entire polygonal dataset in the Guadalajara, Mexico study area.

Fig. 3 Procedure diagram of the aggregation procedure to create simulated sets of areal population data.
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We say “quasi-random” as the selection was based upon probabilities defined by an exponential curve over 
the distribution of polygon areas. Specifically, Eq. 1 describes the probability of selection for a given unit i.
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This resulted in a preferential sampling of smaller, i.e. more urbanised, polygons for merging. We determined 
this to be appropriate as the majority of population and polygons are located in urbanised areas and we did not 
want a scenario where the majority of less densely populated areas, typically characterised by larger polygons, 
were always aggregated firstly. We determined the scale factor ρ to use in defining the probability curve based 
upon trial and error. We selected ρ = 4 as providing a balanced mix of more densely populated and less densely 
populated polygons being selected for merging, but this could be modified in the provided code to produce 
different behaviour. The merging criteria between any two units was to minimise the loss in variability of the 
population density values.

We simulated the coarsened areal population datasets across 100 random seeds, i.e., numerous random start-
ing points, used for determining sampling. We determined that using 100 seeds, i.e. producing 100 different 
simulation trajectories, was appropriate, based on convergence behaviour and for users to be able to carry out 
procedures such as estimating non-parametrically bootstrapped confidence intervals. These simulations were 
done in 5 percent, i.e. 2,757 areal unit, increments resulting in coarsened data with 95, 90, 85,…10 percent of 
the original areal units. For clarity, by iterative, we mean that, for a given seed, the 90 percent simulation derives 
from the 95 percent simulation, the 85 percent simulation from the 90 percent simulation, and so on. In total, 
this resulted in 1,800 coarsened datasets – 18 (corresponding from 95 - 10 percent) per seed or 100 per target 
number of coarsened units.

For computational efficiency, and given the correlative interdependency between runs of a given seed, from 
here we only examine the data corresponding to the 95, 85, 75,…, 15, 10 percent datasets. Prior to the described 
aggregation procedure, the fine-scale data, i.e., validation population, needed to be pre-processed for this task. 
An example of the progressive coarsening process is shown in Fig. 4 and demonstrates the variation in the merg-
ing between seeds.

Fig. 4 Example of the changing boundaries of the spatial units, in central Guadalajara, as a given simulation 
seed progresses from the original 55,146 unit boundaries (lighter grey lines) to target, merged unit boundaries 
(darker lines). Two random seeds are shown here for selected numbers of target units to show relative 
progression from 55,146 to 5,515 units.

https://doi.org/10.1038/s41597-024-03061-1
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All simulation computation was done utilising R Statistical Software v. 4.1.054 and the packages55–63 indicated 
in the provided code notebook. It took 567 hours of computation to produce the simulated datasets, with each 
job utilising one core and 9.5GB RAM of a standard core on the Barkla High Performance Computing (HPC) 
environment at the University of Liverpool (https://www.liverpool.ac.uk/it/advanced-research-computing/
facilities/high-performance-computing/). The jobs were run in parallel across seeds, but sequentially for each 
five-percent decrease in the number of units for each seed (Fig. 3).

Data Records
The simulated data47 produced using the aforementioned procedures is stored at in a Harvard Dataverse Data 
Repository (https://doi.org/10.7910/DVN/XBKPLE) and contains four folders: Merge_Logs, Original_
Units, Simulated_Units, and Supplementary.

Merge_Logs. This compressed folder contains a single.RDS file holding a R data.frame object. Here, 
each row corresponds to the merge of areal units in a given iteration of the simulation (Fig. 3) and is composed 
of columns that record the simulation seed, iteration counter, the target number of units of the simulation, the 
unique ID of the areal unit that was merged and the unique ID of the areal unit it was merged with (and was rela-
belled as). From this data.frame, it is possible to retrace the sequence of areal unit merging and even represent 
this as a network diagram.

original_Units. This compressed folder contains two folders, both containing a single shapefile containing 
polygons representing our areal units. The Street_Gapped folder contains the original census-based units 
with no data where streets lay within more densely populated areas. The Tessellated folder contains the same 
data after it went through the momepy processing, extending the areal boundaries to fill in the street gaps. The 
Street_Gapped and Tessellated folder data correspond to the left and right panels of Fig. 1, respectively.

simulated_Units. This folder contains nine folders, each corresponding to a set of 100 simulated areal units 
of a given number of units (Fig. 3), as indicated in the folder name “Units_ < no. of areal units > ”. 
These folders contain a number of compressed archives that can be unzipped utilising free software such as 7-zip 
(https://7-zip.org/) or tools such as the R archive package64. Within these archives are the simulated areas in 
Shapefile format. The archives within the folders are all below 2.5GB in size (when compressed) to comply with 
repository limits and to are provided for individual download as many users will not want to utilise the entire 
collection.

Within each archive are shapefiles with each of these shapefiles corresponding to a unique random seed uti-
lised to facilitate the merging process to produce the simulated data sets. There are 100 shapefiles for each folder, 
totalling 900 shapefiles overall. The shapefiles adopt the following structured naming convention indicating the 
parameters of the creation of the simulated data.

 “MEX_admin_SIMULATED_Aggregation_seed_ < random seed value > _scale_ < scale 
value used in probabilities > _target_ < no. of areal units > .shp”

Each shapefile contains four columns, corresponding to each feature’s: 2010 population count (P2010), 
area in km2 (AREA), the corresponding population density (POP_DENS), and the unique geographic ID 
(GUBID_INT).

Supplementary. This folder contains a single compressed folder titled Unit_Frequency_In_
Simulations. Within this folder, are two files: a shapefile, with the original 55,146-unit boundaries, containing 
information on how often the individual features are present across all target values in the 1000 simulations of 
coarsened data and a README.txt file describing the shapefile data.

The shapefile should be utilised by end users to understand how many simulations a given, individual areal 
unit was merged with at least one another unit. Of particular use would be the creation of choropleth maps 
where the number or percentage of simulations for a given target value are mapped to the colour scale.

This is important for inclusion/exclusion of error metrics calculated in units when assessing end use impacts 
or unit scale and zonation. For instance, if looking at calculating error metrics for modelled population in the 
area covered by the original unit ID “XXXXXX” for target value 5515, and the choropleth map shows that, across 
all 100 simulations, this unit was merged with one or more unit in only four of those simulations. A user would 
want to exercise more caution in the robustness of error metrics, particularly in comparison another unit which 
may have been merged with one or more units in, say 90 of 100 simulations. This is particularly so when trying 
to create non-parametric bootstrapped estimations of confidence intervals or similar procedures as, following 
the above example, one of these would be created with an effective sample of four versus another unit being 
created with an effective sample of 90.

technical Validation
The following serves not only as a technical validation of the dataset47, but also a practical one with the simu-
lated data used to produce dasymetrically modelled gridded population data. Given the described simulation 
procedure, for simulated population counts we would expect a rightward shift in the distribution of values, i.e., 
increase in unit population count values, as we decrease the number of units, given that we are summing the 
counts during our merging processes. We would also anticipate that the number of units with population counts 
of zero would approach zero as the number of units decreases due to the same summation process.

For simulated areas, we would expect a decrease in the near zero values due to the quasi-random sampling 
process that increased the probability of selecting smaller units for merging, along with a general rightward shift 
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in the distribution of values. Related to these, we would expect that the changes in population density distribu-
tions to be some combination of these shifting distributions, by definition. However, due to our merging process, 
which selected the neighbouring unit with the least difference in population density, the shifts in the general 
shape of the population density distributions are minimised.

To interrogate if the simulated areal units presented here behaved as expected, and to ensure that they are fit 
for further modelling and analytical purposes, we produce a few brief case studies of RF-informed dasymetri-
cally disaggregated gridded population surfaces. This procedure disaggregates areal population counts to smaller 
spatial units within each source area, utilising weights generated by a RF regression trained at the source unit 
level and using environmental covariates38. To do so, we utilise the popRF package65

We can see in Fig. 5 that our assumptions for the simulated data were met. In all, for area and population 
count, we see a trend of decreasing median and mean values as the number of units decreases. For area, we also 
see a corresponding decrease in variability with decreasing number of units, and a similar, more muted decrease 
in variability of population counts. The largest finding here is just how effective our merging process was at 
retaining the overall range of population density values (bottom panel, Fig. 5). There is very little change in the 
shape and spread of the distribution of population density values. In the context of dasymetric disaggregations of 
population counts as informed by statistical means, this is important because it preserves much of the variance, 
i.e., information, for the weights producing model to train upon while still increasing the variance of population 
counts and areas where the weights will be used to redistribute the data.

For our limited population modelling example, we selected two random seeds and looked at three target values 
from across the range of target values available (Fig. 6). Examining the people per pixel (ppp) subfigures, we can only 
see subtle visual differences in the distributions of values for a given number of target units. As we look at the same 
ppp subfigures across the range of target units for a given seed, we start to see more obvious differentiation which 
could be generally described as an increased spatial smoothing with the decreased number of units. These differ-
ences, both across target units and across seeds, become more apparent when looking at the Normalised Difference 
Population Index (NDPI) which, like the more common Normalised Difference Vegetative Index (NDVI), treats 
differences in values at both low and high magnitudes with equal weight. NDPI is calculated as shown in Eq. 2.

=
−
+

NDPI
Population A Populatio B
Population A Populatio B

( )
( ) (2)

Fig. 5 Box plots of the log transformed values of the simulated unit areas and corresponding population counts 
and population densities, at specific target units. Each boxplot is composed of 100 simulations each using a 
unique random seed. The median is given by the bold black line and the mean given by a white circle (off plot 
boundaries for population density). The 2.5th and 97.5th percentiles are given by the blue horizontal lines (off 
plot boundaries for area).
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When examining between the highest number of target units and the relatively lower number of units within 
a single seed, we see the pattern of the largest negative and positive differences, where the model, informed by 
less units, overestimates the population relative to the model informed by a greater number of units, occurring 
in areas of lower population (Fig. 6, Points A - E). These also happen to occur in the larger spatial units, which 
are known to be correlated to low population areas (Fig. 6, Point E). These large magnitude NDPI areas increase 
in both magnitude and frequency as the number of target units decreases. This is to be expected, as the size of 
the source unit, to use the dasymetric nomenclature from30,31, increases, so does the spatial uncertainty in any 
disaggregation simply due to the greater number of potential target units to distribute the count values to.

Looking at the NDPI values when holding the number of target units constant and between two seeds (Fig. 6, 
bottom right), we can see that there are differences, again occurring with the highest magnitude in the largest 
and least populated units (Fig. 6, Points C - E). These differences increase between seeds as the number of target 
units decreases, in part due to spatial uncertainty in disaggregation but also due to greater simulation path diver-
gence as more units are merged using different random seeds.

Usage Notes
The data47 and their production methodology are presented here with dual purposes in mind. The first is to provide 
a common set of synthetic data, produced across an entire domain of realistic levels of spatial aggregation, usable in 
a diverse array of spatial and process-based modelling approaches. The second is to provide a common methodology 
packaged in the form of code and example usage that can be used to produce such areal unit data in contexts outside 
the Mexican subset and the synthetic datasets we provide. The most important aspect of both data and methodology 
here is the choice to conserve a feature of interest, such as population density, across levels of spatial aggregation.

With regards to the use of the finest level data for comparison against disaggregated or modelled data from 
coarser, synthetic versions, a key piece of metadata to rely on is that of how many times each original unit has 
been coarsened (refer to shapefile in Supplementary Data). This information can be leveraged to subsample data 
from the finest level for various uses (e.g. choose those original units that have been used frequently, or vice 
versa). This approach was illustrated in our use case scenario, which shows how repeat modelling simulations 
across various realisations of the aggregated data can produce bootstrapped, fine (e.g. pixel-level) prediction 
intervals in the context of disaggregation or other types of small area estimation.

We argue that these simulations, and the methods to produce them, are most useful for assessing the zonation 
and aggregation effects that are present in real-world data where areal units can be variable in size, shape, or char-
acter. The effects of incorporating such areal data into modelling and analyses at various levels of aggregation can 

Fig. 6 Brief comparison of RF-informed dasymetrically distributed populations using different realisations 
of the simulated data – between two seeds and three different amounts of simulated units. The Normalised 
Difference Population Index (NDPI) of these population rasters is shown within and between seeds.

https://doi.org/10.1038/s41597-024-03061-1
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sometimes be opaque and incorporating systematically aggregated levels of data for analysis can produce better 
predictability of these modifiable areal unit effects. With regards to population disaggregation modelling applica-
tions, this dataset is best suited for understanding the spatial sensitivity of a model to the number of units used for 
training and the effect of spatial resolution of areal units in the spatial uncertainty induced through disaggregation. 
It is not well suited for understanding how changing areal units, through coarsening, vary with population densities 
due to our density preserving merging selection criteria (Fig. 3, bottom panel). Such a simulated dataset would be 
desirable for understanding how changing distributions and ranges of input population densities then affect model 
training outcomes and predictions, but would require a modification of the procedure to merge a selected unit ran-
domly or by maximising the population density difference with the selected neighbouring unit to be merged with.

Code availability
The code utilised in producing this dataset was originally a series of individual scripts in R and, for submitting 
jobs, to the HPC, in Bash. We have compiled these scripts, including job submission scripts, into a single ordered 
R notebook to ease comprehension and replicability66. All packages indicated in the notebook utilised the most 
recent version available on November 1, 2021. The code notebook is available at the following Github repository 
release: https://github.com/jjniev01/areal_sandbox.
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