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Water footprints and crop water 
use of 175 individual crops for 
1990–2019 simulated with a global 
crop model
Oleksandr Mialyk   ✉, Joep F. Schyns  , Martijn J. Booij, Han Su  , Rick J. Hogeboom & 
Markus Berger

The water footprint of a crop (WF) is a common metric for assessing agricultural water consumption and 
productivity. To provide an update and methodological enhancement of existing WF datasets, we apply 
a global process-based crop model to quantify consumptive WFs of 175 individual crops at a 5 arcminute 
resolution over the 1990–2019 period. This model simulates the daily crop growth and vertical water 
balance considering local environmental conditions, crop characteristics, and farm management. 
We partition WFs into green (water from precipitation) and blue (from irrigation or capillary rise), 
and differentiate between rainfed and irrigated production systems. The outputs include gridded 
datasets and national averages for unit water footprints (expressed in m3 t−1 yr−1), water footprints of 
production (m3 yr−1), and crop water use (mm yr−1). We compare our estimates to other global studies 
covering different historical periods and methodological approaches. Provided outputs can offer 
insights into spatial and temporal patterns of agricultural water consumption and serve as inputs for 
further virtual water trade studies, life cycle and water footprint assessments.

Background & Summary
The water footprint of growing a crop (further referred to as WF)—the volume of water consumed per unit of 
a harvested crop—is a common metric for evaluating agricultural freshwater appropriation1. The consumptive 
WF includes appropriated green water from precipitation and blue water from irrigation or capillary rise2. Both 
green and blue WFs can be used to evaluate water productivity and pressure on freshwater resources, which are 
key pillars of sustainable water management3.

Global WF patterns were first studied by Mekonnen and Hoekstra4 who covered around 150 individual crops 
focusing on the year 2000 (this dataset is further referred to as M&H2000). The authors concluded that global 
crop production consumes around 5.8 trillion m3 of green and 0.9 trillion m3 of blue water, collectively account-
ing for 87% of humanity’s water consumption5. To estimate WFs, they applied a soil water balance model and 
crop coefficient approach to obtain crop water use (CWU), defined as the volume of evapotranspired water over 
the growing season, and a corresponding crop yield. Both variables were calculated for rainfed and irrigated pro-
duction systems separately. For rainfed areas, they estimated only green CWU since blue CWU from capillary 
rise was not considered. For irrigated areas, the authors estimated both green and blue CWU by performing two 
runs: the first run without irrigation to estimate green CWU and the second one with fully satisfied irrigation 
requirements to estimate the total CWU. The difference between the two was defined as blue CWU. Crop yields 
for both production systems were calculated based on a strong relationship between the yields, crop coefficients, 
and evapotranspiration6. Such methodology pioneered spatially explicit analysis of crop WFs, however, it also 
contained many limitations and uncertainties7,8. For instance, one study suggests that WF differences of ±30% 
in some regions can be expected due to uncertainty in input data9. Nonetheless, M&H2000 have been widely 
used in further studies, ranging from local evaluations of water use efficiency of specific crops to global assess-
ments of virtual water trade1,10.
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In the following years, several other studies simulated WFs using more advanced methods but for a small 
number of crops and limited spatial coverage11–15. More recently, Tamea et al.16 projected M&H2000 over the 
1961–2016 period. Assuming CWU values remain constant in time, the authors scaled national crop yields 
to historical statistics allowing them to produce the desired WF time series. However, this approach not only 
propagates uncertainties embedded in M&H2000 but further adds more uncertainty by disregarding historical 
changes in CWU, which are affected by climatic variability and changes in rainfed and irrigated croplands. 
To address these shortcomings, Mialyk et al.17 presented a process-based global gridded crop model ACEA 
able to simulate the WF time series of individual crops at a high spatial resolution. This model is based on 
AquaCrop-OSPy—the Python version of FAO’s AquaCrop18—and can simulate the daily crop growth and verti-
cal soil water balance considering local environmental conditions, crop characteristics, and farm management. 
Also, ACEA has integrated partitioning of green and blue water fluxes in the soil and, hence, can distinguish 
three consumptive WF components: green, blue from irrigation, and blue from capillary rise. Moreover, it con-
siders historical agricultural developments by scaling rainfed and irrigated harvested areas and simulated crop 
production to census data. The model showed high computational efficiency when the authors simulated maize 
production over 1986–2016. The produced maize WFs were smaller than in M&H200017 but aligned well with 
the broader literature, suggesting that ACEA can be further applied to provide up-to-date WF time series of 
other widely-grown crops.

Here, we simulate annual green and blue WFs of 175 individual crops over the 1990–2019 period at a 5 arc-
minute resolution (~8.3 km around the equator). Following the methods of Mialyk et al.17, we supply ACEA with 
state-of-the-art input data to calculate CWU (in mm yr−1) and crop yields (in t ha−1 yr−1) in each grid cell (see Fig. 1).  
We consider historical dynamics in the distribution of rainfed and irrigated harvested areas by combining data 
from SPAM201019, historical datasets on cropland extent20,21, and national statistics from FAOSTAT22. The latter 
is also used to scale the simulated crop yields. Resulting WFs are provided in terms of consumptive unit WF 
(further referred to as uWF; in m3 t−1 yr−1) and WF of crop production (further referred to as pWF; in m3 yr−1).

We validate our data records by comparing estimates of crop yield, CWU, and WFs to other studies. Crop 
yields we compare with the gridded dataset by Iizumi and Sakai23 which covers maize, rice, wheat, and soya 
beans in the 1990–2014 period. Our CWU estimates we compare with: (i) Chiarelli et al.24 who provide gridded 
CWU of multiple crops in 2016, (ii) Jägermeyr et al.25 who also provide gridded data but for maize, rice, wheat, 
and soya beans in 1990–2015 simulated by multiple global crop models, and (iii) locally observed values across 
several crops and locations from the literature. The WF comparisons are first performed for pWF around 2000 
against four global studies4,24,26,27 and then for uWFs of 145 crops against the mentioned earlier M&H2000.

Our datasets offer uWF, pWF, and CWU estimates at country (CSV format) and grid levels (NetCDF for-
mat) to be used for various applications including agricultural water management, environmental economics, 
Water Footprint and Life Cycle assessments10. Gridded uWF and CWU data are provided for 43 main crops that 
together account for 90% of global crop production. Before using our data, we advise users to familiarise them-
selves with interpretation guidelines and underlying uncertainties.

Methods
crop model description. ACEA is based on AquaCrop-OSPy v6.118 which simulates daily crop growth 
and the vertical soil water balance using crop, soil, climate, field and irrigation management data (see Fig. 2). 
Crop growth is expressed by dynamic rooting depth and canopy cover, both controlled by heat units (growing 
degree days). Through canopy cover, the crop transpires water abstracted by roots which drives the above-ground 
biomass growth via a CO2-adjusted water productivity parameter. Throughout the growing season, crop devel-
opment is subjected to thermal and water stresses, which may slow down crop development or even lead to crop 
failure. Nutrient cycles, soil fertility and salinity stresses are not considered in this AquaCrop version. At the end 
of each growing season, the accumulated biomass is converted into a dry crop yield (in t ha−1 yr−1) via a stress-ad-
justed harvest index. The original soil water balance was upgraded by Mialyk et al.17 to consider green and blue 
water inflows through precipitation, irrigation, and capillary rise and outflows through runoff, soil evaporation, 
transpiration, and deep percolation. When green and blue water enters or moves through the soil profile, it mixes 
with prestored water at a particular depth. These fluxes are traced daily allowing for precise estimation of green 
and blue water volumes consumed for transpiration and soil evaporation28. At the end of each growing season, 
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Fig. 1 The workflow of crop water footprint simulations in this study.

https://doi.org/10.1038/s41597-024-03051-3


3Scientific Data |          (2024) 11:206  | https://doi.org/10.1038/s41597-024-03051-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

evapotranspired water is summed up to estimate green and blue CWU (in mm yr−1). For more information on 
AquaCrop mechanics, please refer to the original model documentation29–31.

AquaCrop was originally developed to simulate annual herbaceous crops. However, the model was recently 
applied to simulate grapes—a perennial deciduous crop32. The planting date was replaced with a bud break 
date (appearance of first green leaves), rooting depth was kept constant, and a minimum canopy cover was 
maintained during the leafless period to mimic shadow effects caused by branches and trunk. For our study, 
we replicated the same methodology for all deciduous crops. For the evergreen ones, we kept the canopy cover 
relatively static throughout the year. Green and blue CWU of perennial crops were estimated over the entire 
calendar year2.

Simulation setup. We selected all 175 crops listed in FAOSTAT33 representing 13 crop groups: cereals, fibres, 
fodder crops, fruits, nuts, oil crops, others, pulses, roots, spices, stimulants, sugar crops, and vegetables. Out of 
those, we selected 55 core crops with sufficient input data for crop modelling, such as harvested area distribution, 
crop parametrisation, and calendars. The remaining 120 crops are derived from core crops based on agronomical 
similarities, namely genetic closeness and cropping patterns (see Table S1).

For each core crop, we run ACEA to obtain CWU and crop yields. A detailed description of the model and its 
input data are provided in sections “Crop model description” and “Input data”, respectively. The crop modelling 
was performed at a 30 arcminute resolution (~50 km around the equator) and daily timestep starting from the 1st 
of January 1988. The earlier start allowed for a two-year warm-up period needed to generate initial soil moisture 
in 1990. We continued simulations until the end of 2019 including fallow periods to account for soil moisture 
changes in between crop-growing seasons. We then allocated 30 arcminute outputs among corresponding 5 arc-
minute grid cells (~8.3 km around the equator) according to the distribution of rainfed and irrigated areas from 
SPAM2010. All subsequent analyses, including the scaling of crop yields and WF calculation, were conducted at 
the latter resolution and described in “Post-processing”.

For derived crops, we assigned the same gridded CWU and crop yields as for the representative core crops 
but the further post-processing was based on the information specific to each derived crop.

Input data. We summarise the main input data in Table 1. The first part of inputs covers data needed to run 
the crop model, which includes historical climate and atmospheric CO2 concentration, crop parameters, crop cal-
endar, soil composition, groundwater levels, and irrigation management. The second part contains inputs needed 
in the post-processing, such as the distribution of crop-specific rainfed and irrigated harvested areas, historical 
cropland extent, and crop production statistics. More details on specific data inputs are provided below.

Historical climate data on daily rainfall, temperature, surface shortwave radiation, wind speed, and relative 
humidity were taken from the ISIMIP3 project which provides the bias-corrected GSWP3-W5E5 dataset34. 
These data were further used to calculate reference evapotranspiration according to the Penman-Monteith equa-
tion35. Atmospheric CO2 concentration36 was assumed to be uniformly distributed around the world.

Crop calendars we obtained from Jägermeyr et al.37 who provide planting and harvest dates for 18 annual 
crops, including two main growing seasons of rice and the distinction between winter and spring wheat. For the 
rest of annual crops, we took calendars either from agronomically similar crops or from the literature. ACEA 
could adjust these planting and harvest dates based on climatic variability. For instance, it allowed up to 15% 
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Fig. 2 AquaCrop-OSPy simulation scheme. Green boxes indicate crop growth, blue boxes water cycle, and grey 
boxes climatic inputs. Adopted from Mialyk et al.17.
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extension of the growing season for annual crops to ensure crop maturation during cold years. On the contrary, 
in warm years, annual crops could accumulate heat units required for maturity faster and hence the harvest dates 
occurred earlier. Also, crop emergence was delayed up to one month if soil moisture content was insufficient 
which subsequently postponed the harvest. During fallow periods, we assumed the presence of cover crops like 
grasses and short weeds, which is a common practice to reduce soil erosion38. For deciduous perennials, we 
generated bud break and harvest dates based on the crop-specific temperature requirements found in the liter-
ature. Evergreen perennials were always harvested on the 31st of December. We did not consider crop rotation 
and multi-cropping.

To parametrise core crops (listed in Table S1), we first obtained data for ten crops provided with AquaCrop 
by default and for another 45 core crops, we retrieved parameters either from the literature or generated our-
selves based on expert knowledge. To account for regional differences in cultivars, we adjusted heat unit require-
ments for crop development stages in each grid cell39. Other differences in cultivars were not considered due to 
data limitations.

The soil profile had a 3 m depth subdivided into eight compartments ranging from 0.1 to 0.7 m in thickness17. 
For crops with shallow rooting depth, such as peas and cassava, the soil profile was instead limited to 2 m with 
seven compartments to reduce computational load. The gridded soil texture data were taken from the ISIMIP340.

Shallow groundwater presence was only considered for rainfed crops since we assumed that farmers would 
not irrigate if crops could access water from capillary rise instead. The only exception was rice which is com-
monly grown under flooded conditions41. Daily groundwater levels were derived by interpolating monthly aver-
ages42. To avoid aeration stress, we assumed soils to be drained to 1 m depth in areas where groundwater reaches 
the surface17. Note that we do not consider the effects of groundwater pumping or interannual variability.

Common irrigation practices—surface, sprinkler, and drip—were defined for each crop43. The timing of 
irrigation events was controlled by thresholds for soil moisture depletion within the root zone. We defined these 
crop-specific thresholds according to water stress sensitivity44, ranging from 50% depletion for least sensitive 
crops (e.g. maize and chickpea) down to 25% for most sensitive ones (e.g. tomato and onion). Rice had no irri-
gation threshold to imitate flooding conditions and additional 0.3 m soil bunds were placed to prevent surface 
runoff. Irrigation thresholds for all crops are provided in Table S1. Irrigation volumes were only limited by the 
field capacity of the soil within the rooting zone. We do not consider water availability constraints and convey-
ance efficiency as we only focus on net irrigation requirements at the field level2. Thus, our irrigation estimates 
and corresponding blue CWU reflect potential values.

Distributions of crop growing areas were obtained from SPAM2010, which provides rainfed and irrigated 
areas for 42 crops and crop groups around 2010. Areas of alfalfa were taken from GAEZ + 201545, which reports 
them as a part of fodder crops; areas of missing crops were copied from agronomically similar ones.

Post-processing. For each crop, grid cell, and year, we estimated uWF by dividing green or blue CWU 
by corresponding crop yield2. We focused on the year of harvest and hence CWU could be summed over dif-
ferent calendar years. This happened for crops planted in a year other than harvested, such as winter wheat. 
Modelled yields were first converted from dry to fresh using crop water content fractions6. The fresh yields were 
subsequently scaled to match national statistics reported in the FAOSTAT database22 (scaling procedures are 
described below). Note that the latter does not provide statistics for fodder crops. Therefore, to scale their yields, 
we obtained an older version of the database46 which we linearly extrapolated to fill the missing years.

Both rainfed and irrigated uWFs were estimated by summing corresponding green and blue uWFs. For 
rainfed systems, blue uWF refers to blue water consumed from capillary rise; for irrigated systems, blue uWF 
refers to blue water either consumed from irrigation or from both capillary rise and irrigation in the case of 
rice. To estimate pWF, we multiplied uWF with the corresponding annual crop production. National values for 

Data input Period Timestep Spatial resolution Source

For crop modelling

Climate variables 1990–2019 daily 30 arcminute GSWP3-W5E534

Atmospheric CO2 
concentration 1990–2019 annual global NOAA36

Crop calendar — — 30 arcminute Jägermeyr et al.37 and the crop-specific literature

Crop parameters — — — Default AquaCrop crop files, the crop-specific 
literature, and expert knowledge

Soil composition — — 30 arcminute ISIMIP340 based on Harmonized World Soil 
Database 1.278

Groundwater levels 2004–2014 average monthly 5 arcminute Fan et al.42

Irrigation management 2004–2009 average — 30 arcminute Jägermeyr et al.43

For post-processing

Harvested areas 2010 annual 5 arcminute SPAM201019, GAEZ + 201545

Irrigated cropland 1985–2005 5-year 5 arcminute HID20

Irrigated and rainfed 
croplands 1980–2017 10-year till 2000 

then annual 5 arcminute HYDE 3.221

Crop production statistics 1990–2019 annual national FAOSTAT22

Table 1. Overview of input data for the crop modelling and post-processing.
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uWFs were estimated by taking production-weighted averages and for CWU and crop yields by taking harvested 
area-weighted averages.

Our scaling procedures were similar to Mialyk et al.17 and included both the scaling of harvested areas and of 
crop yields. For the scaling of the former, we projected crop-specific rainfed and irrigated harvested areas from 
SPAM2010 over the 1990–2019 period using historical datasets on cropland extent20,21. The resulting annual 
harvested areas were then scaled to fit corresponding values from FAOSTAT. For the scaling of the latter, we 
multiplied fresh yields with scaled harvested areas to obtain the simulated production of a crop within a country, 
which was then scaled to match its counterpart in FAOSTAT. The resulting national scaling factor was equally 
applied over the whole country; for example, if the scaling factor is 0.5, then all rainfed and irrigated crop yields 
are halved. This procedure allowed us to account for historical agricultural developments that were not captured 
by ACEA, such as increases in fertiliser use, improvements in irrigation and machinery, or access to better crop 
varieties and pest control. The CWU scaling was not necessary as it is much less affected by agricultural devel-
opments compared to yields17.

Data Records
We provide four types of datasets (available in 4TU.ResearchData at https://doi.org/10.4121/7b45bcc6-686b-
404d-a910-13c87156716a.v147): national average uWFs for all 175 crops, global gridded pWFs for aggregated 
crop production, global gridded uWFs, and global gridded CWU. For the last two datasets, we only provide data 
for 43 crops that together add up to 90% of the global crop production in 2019. We also include an accompany-
ing readme file with the metadata, supporting crop and country classifications.

National unit water footprints of crops. Name: national_wf_crop_production_1990_2019.csv (1 file)
Format: CSV (comma separated)
Period: annual values for 1990–2019
Resolution: national values, country list according to FAOSTAT33

Content: green and blue uWFs and related variables of 175 crops. The list of variables is in Table 2. Users can 
estimate pWF by multiplying uWFs with the corresponding crop production. CWU can be derived by multiply-
ing uWF with the corresponding crop yield and further dividing by 10.

Global gridded water footprint of crop production. Name: wf_prod_{wf_type}_1990_2019.nc, where 
wf_type is one of: irrigated_blue, irrigated_green, rainfed_blue, rainfed_green, or total (5 files)

Format: NetCDF4
Period: annual values for 1990–2019 (30 bands)
Extent: 180°E–180°W and 90°S–90°N according to a WGS84 coordinate system
Resolution: 5 arcminutes (0.083333 decimal degrees), 4320 columns and 2160 rows
Content: aggregated green and blue pWF of all crops (in m3 yr−1) reported for rainfed and irrigated produc-

tion systems and for both combined (total).

Global gridded unit water footprints of crops. Name: wf_unit_{crop_name}_average_2010_2019.nc, 
where crop_name is one of 43 selected crop names (43 files)

Format: NetCDF4
Period: average values for 2010–2019
Extent: 180°E–180°W and 90°S–90°N according to WGS84 coordinate system
Resolution: 5 arcminutes (0.083333 decimal degrees), 4320 columns and 2160 rows
Content: seven layers with uWFs of a corresponding crop (in m3 t−1 yr−1) averaged over ten years. Average 

values are weighted by the production to reduce contribution from years with extreme values. Each layer 
named wf_unit_{wf_type} where wf_type is one of: rainfed, rainfed_blue, rainfed_green, irrigated, irrigated_blue, 

Variable Unit Description

1 crop_code Crop code

2 crop_name Crop name

3 country_code Country code

4 country_name Country name

5 year yr Year of harvest (crop can be planted and harvested in different years)

6 harvarea_ha ha yr−1 National harvested area

7 irrigated_harvarea_fraction Fraction of harvested area under irrigation

8 production_t t yr−1 National crop production

9 crop_yield_t_ha t ha−1 yr−1 Crop yield

10 wfg_m3_t m3 t−1 yr−1 Green unit water footprint

11 wfb_cr_m3_t m3 t−1 yr−1 Blue unit water footprint from capillary rise

12 wfb_i_m3_t m3 t−1 yr−1 Blue unit water footprint from irrigation

13 wf_tot_m3_t m3 t−1 yr−1 Total unit water footprint (sum of 10–12)

Table 2. Overview of variables included in the dataset on the national water footprints of crop production. 
Country and crop naming and codes are aligned with FAOSTAT33.
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irrigated_green, or total. The layer rainfed is a sum rainfed_green and rainfed_blue, the layer irrigated is a sum 
irrigated_green and irrigated_blue, and the layer total is weighted by the production average of rainfed and 
irrigated.

Global gridded crop water use of crops. Name: cwu_{crop_name}_average_2010_2019.nc, where crop_
name is one of 43 selected crop names (43 files)

Format: NetCDF4
Period: average values for 2010–2019
Extent: 180°E–180°W and 90°S–90°N according to WGS84 coordinate system
Resolution: 5 arcminutes (0.083333 decimal degrees), 4320 columns and 2160 rows
Content: three layers with average CWU of a corresponding crop (in mm yr−1). Average values are weighted 

by the harvested area to reduce contribution from years with extreme values. Each layer is named cwu_{cwu_
type} where cwu_type is one of: rainfed, irrigated, or total. The layer total is weighted by the harvested area aver-
age of rainfed and irrigated. Note that we report the average CWU of only one growing season—the CWU of 
crops planted several times a year (such as rice) are not summed up but averaged instead.

Technical Validation
comparison of crop yields. Simulated yields of maize, rice, wheat, and soya beans are compared with the 
global gridded dataset by Iizumi and Sakai23—a hybrid of agricultural statistics and remote sensing products 
covering the 1990–2014 period. The data is reported at a 30 arcminute resolution without differentiating between 
rainfed and irrigated crops. Therefore, we derive corresponding values in ACEA by taking weighted by harvested 
area averages.

We first evaluate the agreement on historical trends. The studies agree on the global direction of crop yield 
changes: maize yield increased on average by 65% (69% in our study), wheat by 35% (42%), rice by 52% (56%), 
and soya bean by 31% (33%), which is expected as both studies are aligned with FAOSTAT. However, grid-level 
crop yield time series correlate only moderately—the average Pearson correlation coefficient (weighted by har-
vested area) ranges from 0.46 for wheat to 0.63 for maize. Next, we evaluate spatial differences between crop 
yield maps averaged around 2010. Global medians of grid-level differences are below 8% for all considered 
crops. Pearson correlation coefficients range from 0.42 for wheat to 0.73 for maize. As shown in Fig. 3, the stud-
ies demonstrate better agreement on distributions of low- to mid-range yields for maize, rice, and wheat (high 
concentration of red hexagons along the black line) but generally disagree on the distribution of higher yields. 
Overall, Iizumi and Sakai tend to report higher values as indicated by regression lines (in orange).

Moderate correlations likely stem from input data differences such as cropland extents, crop calendars, and 
agricultural census statistics, which was also noticed by Grogan et al.45. For instance, only 35% of ACEA’s grid cells 
with soya beans have corresponding values from Iizumi and Sakai. Furthermore, global crop models (includ-
ing ACEA) commonly consider a limited number of non-climatic factors that affect interannual variability48,49.  
This can lead to large uncertainties in final crop yield estimates, especially in regions where such factors play a 
key role (e.g. socio-economic instability, natural disasters). In our study, we reduce such uncertainties with crop 
yield scaling (see “Post-processing”).

comparison of crop water use. Similarly to crop yields, we compare our CWU estimates with other global 
gridded datasets. First, we compare to Chiarelli et al.24 who provide values for multiple crops in 2016 at a 5 
arcminute resolution. The authors estimate CWU using the soil water balance and crop coefficients approach 
(described in “Background & Summary”). The maps for 13 selected crops demonstrate moderate correlations 
with our estimates (see Table 3). Among the rainfed crops, the two studies indicate a good agreement for sugar 
cane, ground nut, and potato; among the irrigated crops, the studies demonstrate high correlations for grapes, 
sugar cane, and soya bean. Our rainfed and irrigated CWU values are generally smaller with large regional dif-
ferences between the studies, in particular for rainfed crops (see maize example in Fig. 4). The most discrepant 
crops are rice, wheat, and barley. They show large differences in average CWU and low spatial correlations. This 
is likely caused by how studies report CWU values for crops with multiple growing seasons within one calendar 
year. Chiarelli et al. may have aggregated all seasons in one value whereas we report an average value weighted by 
the harvested area. Other contributing factors for such discrepancies are discussed in “Comparison of crop water 
footprints”.

Another study by Jägermeyr et al.25 provides gridded CWU estimates generated by several process-based 
gridded crop models for 1901–2016 at a 30 arcminute resolution. The simulation protocol is analogous to our 
study as we apply similar input data for soil, climate, and crop calendars. The authors provide irrigated crops 
with enough water to maintain the soil water content at field capacity, whereas in our study we use certain 
soil moisture depletion thresholds (see “Input data”). For our analysis, we consider the 1990–2015 period and 
include maize, rice (two seasons), wheat (winter and spring), and soya bean; instead of comparing to individual 
models, we use the mean CWU value of the ensemble of four models LPJmL, EPIC-IIASA, pDSSAT, and PEPIC. 
For the description of the models please refer to the study. Rainfed crops generally demonstrate high spatial 
correlations (see Table 4) and relatively similar CWU between the maps (see maize example in Fig. 4). Among 
irrigated crops, maize and soya bean are well-correlated with similar CWU, while rice and wheat show moder-
ate correlation and larger CWU in ACEA. The latter is likely caused by differences in the way models simulate 
irrigation. For example, unlike other models, we account for the flooding of rice fields (see “Input data”) which 
likely leads to a larger CWU in our study.

Finally, we compare the locally measured CWU of eight diverse crops from the literature to the correspond-
ing values in ACEA. We only consider studies which report relatively similar crop calendars to ones in ACEA 
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as CWU values are sensitive to planting and harvest dates. In total, we collected 23 values for various historical 
periods, production systems, and locations (see Table 5). Our estimates generally agree with other studies—the 
average CWU difference per crop is less than +12.1% with an overall average among 23 values of +5.0% (rainfed 
+1.3%, irrigated +6.3%).

comparison of crop water footprints. For green and blue pWFs, we provide comparisons to four global 
studies4,24,26,27 that report corresponding estimates around the year 2000 (see Table 6). ACEA’s total pWFs are 
consistently smaller with the blue pWF generally demonstrating larger discrepancies. Shares of green water in 
the total pWF are relatively similar among studies. When looking at specific crops, ACEA also shows consistently 
smaller total pWFs with substantial variation among the studies.

Such discrepancies stem from differences in crop maps and CWU estimates (since pWF is the multiplication 
of the two). We use SPAM2010 crop maps adjusted to represent historical dynamics (see “Post-processing”), 
whereas the other studies use static MIRCA2000 maps50. This leads to a mismatch in the distribution and size 
of rainfed and irrigated areas. For instance, we estimate 11–15% smaller global irrigated harvested area around 
2000, which most likely leads to smaller blue pWFs. ACEA’s estimate for 2005–2009, however, deviates by less 
than 7% from the values reported in the literature20,43,51,52. As for the CWU estimates, multiple factors can explain 
the differences among the studies. Below, we listed the factors that most likely lead to smaller CWU in ACEA:

•	 Crop modelling. ACEA simulates both the vertical soil water balance and crop growth (see “Crop model 
description”), with the latter being temperature and water-dependent and constrained by water and heat 
stresses. Additionally, water volumes available for evaporation and transpiration are controlled by soil 

Fig. 3 Crop yield comparisons of maize, rice, soya bean, and wheat around 2010 covering matching 30 
arcminute grid cells between our study and Iizumi and Sakai23. Colour bars show the number of grid cells in 
a specific hexagon (maximum is adjusted to the sample size), r is the Pearson correlation coefficient, n is the 
sample size, the black line represents no difference, and the orange line is a linear regression fit. Extreme values 
are filtered out.
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characteristics and variable rooting depth. The other studies however model only the soil water balance with 
crop development being expressed by predefined crop coefficients and rooting depth. They also consider the 
limited effects of water deficit and do not account for heat stress. Consideration of such biophysical processes 
in ACEA likely leads to smaller CWU, especially in water-limited areas. When compared to the other pro-
cess-based crop models, our estimates agree well (see “Comparison of crop water use”).

•	 Irrigation management. ACEA triggers irrigation once the soil water content within the rooting zone drops 
below a certain threshold which depends on the crop’s tolerance to water stress (see “Input data”). Irriga-
tion volume is controlled by the type of irrigation system (surface, sprinkler, or drip) and the maximum 
holding capacity of the soil. The other studies trigger irrigation once actual evapotranspiration supported by 
soil moisture is below the potential one (under no water stress); irrigation volume is equal to the difference 
between the actual and potential evapotranspiration. This likely results in smaller irrigation volumes and 
hence blue CWU in ACEA (see Table 6). When compared to the global agro-hydrological models, our global 
net irrigation volume is also smaller. In ACEA, this estimate for 2004–2009 is 959 km3 compared to 1257 km3 
in LPJmL43 and for 2000 it is 952 km3 compared to 1098 km3 in PCR-GLOBWB53. Larger estimates by both 
studies are likely caused by their simplified crop representation, different land use data, smaller soil moisture 
depletion thresholds, and consideration of additional water consumption from canopy interception and con-
veyance losses. The latter can be as high as 30% for open canal systems43.

•	 Green-blue partitioning. ACEA has green-blue partitioning integrated into the daily soil water balance cal-
culations—a recommended method for a more precise way of estimating green and blue CWU28. The other 
studies do this partitioning by equalising green CWU to actual rainfed evapotranspiration and blue one to the 
difference between the latter and potential evapotranspiration under fully satisfied irrigation water require-
ments. This implies that all blue water is immediately consumed once irrigated. However, in reality, some 
water ends up being lost to runoff, stored in the soil, or drained to layers deeper than the rooting zone and 
thus not consumed in WF terms. Moreover, the daily fluxes of green and blue water within the soil profile 
affect the fractions of both water types in the final CWU. For example, some blue water volume irrigated in a 
given season can be stored in the soil and consumed for evapotranspiration in subsequent seasons, potentially 
decreasing irrigation needs. These dynamics are considered in ACEA and ultimately result in a 10% smaller 
blue CWU at the global level compared to the net irrigation requirement (see Table 6).

•	 Initial soil moisture. Another assumption concerns the initial soil moisture which is commonly generated by 
starting simulations several years in advance. However, Mekonnen and Hoekstra4 simulated only one average 
year and assumed the initial soil moisture was at field capacity holding only green water. This likely leads to 
an overestimation of green and an underestimation of blue CWU. The other considered studies simulated 
multiple years including the fallow periods which generated more reasonable soil moisture conditions. How-
ever, they did not account for daily green and blue water fluxes within the soil, which resulted in different 
compositions of the final CWU.

Besides the mentioned above, other factors certainly contribute to CWU differences but the relative contri-
bution of such factors is unclear:

Crop (with *  
if perennial)

Rainfed production Irrigated production

Average CWU 
(mm)

Matching 
cells

Spatial 
correlation

Median of 
differences

Average CWU 
(mm)

Matching 
cells

Spatial 
correlation

Median of 
differences

Our 
study

Chiarelli 
et al.

Our 
study

Chiarelli 
et al.

Wheat 331 589 75.1% 0.38 −41.5% 406 778 86.5% 0.36 −46.2%

Maize 367 434 82.3% 0.36 −18.7% 461 627 89.1% 0.64 −27.1%

Rice 370 885 63.9% 0.11 −54.9% 562 935 90.3% 0.16 −35.5%

Barley 214 493 75.6% 0.09 −52.8% 325 455 85.0% 0.59 −28.1%

Sorghum 396 406 78.8% 0.55 −6.6% 549 638 80.4% 0.66 −12.2%

Soya bean 394 450 81.7% 0.50 −12.6% 471 634 88.8% 0.68 −23.9%

Potato 350 329 71.3% 0.63 +5.9% 453 568 85.1% 0.63 −20.9%

Sugar cane* 755 872 68.3% 0.66 −11.9% 1192 1291 89.7% 0.73 −6.7%

Oil palm* 908 1020 80.9% 0.60 −8.8% 1153 1532 44.2% −0.32 −26.4%

Ground nut 412 397 75.2% 0.65 +6.0% 495 573 71.4% 0.60 −9.7%

Grapes* 353 498 42.6% 0.59 −31.5% 541 708 29.1% 0.73 −27.6%

Cotton 502 497 64.2% 0.47 −1.0% 696 842 89.9% 0.59 −15.5%

Coffee* 647 960 79.9% 0.43 −30.9% 824 1237 67.1% 0.37 −29.0%

Average 72.3% 0.46 −19.9% 76.7% 0.49 −23.8%

Table 3. Comparison of our crop water use (CWU) estimates with Chiarelli et al.24 for a set of selected crops. 
The average CWU refers to the global non-weighted average, matching cells correspond to the percentage of 
our grid cells which have corresponding values in the other study, spatial correlation corresponds to Pearson 
correlation coefficients among the matching cells, and median of differences refers to the global median of grid-
level differences relative to values provided by the other study. Grid cells with values below 50 mm are excluded 
from this comparison.
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•	 Different input datasets for climate and soil texture. Climate variables affect many biophysical processes in 
ACEA, such as the water deficiency effect on canopy development or pollination failure due to extreme heat. 
Soil texture affects hydraulic properties and hence water balance, e.g. sandy soils need more irrigation as they 
store less water and drain faster compared to loamy and clayey ones. Hence, any differences in these inputs 
(amplified by other factors mentioned earlier) may lead to substantial CWU differences.

Fig. 4 Comparison of crop water use (CWU) estimates for rainfed maize with Chiarelli et al.24 in 2016 and with 
Jägermeyr et al.25 averaged for 2010–2015. The latter study is represented by the mean CWU of the ensemble of 
four models LPJmL, EPIC-IIASA, pDSSAT, and PEPIC. Grid-level differences are calculated relative to values 
provided by the other studies (yellow to red colours indicate smaller values in ACEA). Extreme values are 
filtered out. The map is rendered using the Equal Earth projection98.
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•	 Consideration of capillary rise. Among these studies, only ACEA considers shallow groundwater, which pro-
vides blue water for rainfed crops via capillary rise. This may lead to larger rainfed CWU in countries with the 
widespread presence of shallow groundwater like the Netherlands or Bangladesh. On the other hand, we also 
consider shallow groundwater for irrigated rice, which likely reduces its irrigation needs.

•	 Crop parametrisation. In our study, we cover 175 crops of which 55 are simulated as individual crops and the 
rest are derived (see Table S1). Most other studies simulate only 26 individual crops (or groups) as provided 
by MIRCA2000, which likely results in large uncertainties. For instance, the crop group ‘other annual crops’ 
in MIRCA2000 contains all vegetables which can vary greatly in crop parameters and calendars. This can 
lead to both different daily evapotranspiration rates and growing season periods. Moreover, we allow for 
adjustments in growing seasons to provide more time for maturity in cold years and less time in warm years 
(see “Input data”).

As a final step, we compare our uWF estimates against the values of 145 corresponding crops from 
M&H20004. Similarly to the total pWF, ACEA simulated 20% smaller values on average. Nevertheless, the 
crop-by-crop correlation is high—the Pearson correlation coefficient is 0.97. Since crop yields in both studies 
undergo scaling to historical statistics (see “Post-processing”), we presume that most discrepancies between 
uWFs stem from CWU differences, as explained earlier.

Usage Notes
Potential applications. You can use our WF datasets for various needs. The foremost purpose is to study 
historical patterns in crop water productivity (uWFs) and water consumption (pWFs). The latter can be com-
bined with water availability data to evaluate water scarcity54,55. Moreover, our data serves as a basis for perform-
ing Water Footprint Assessment (WFA) and Life Cycle Assessment (LCA) of crop-derived products or industrial 
products containing agricultural production in their supply chains10. For example, WF data are required in the 
ISO 14044:2006 standard for the environmental impact assessment of a product56. Furthermore, coupled with 
trade statistics or Multi-Regional Input-Output Tables (MRIO), our datasets enable analysis of virtual water 
trade57.

Datasets on CWU can serve you as a reference point for assessing regional crop water needs. For instance, 
you can estimate how much water is needed to cultivate variable areas of rainfed and irrigated crops in a specific 
region. Coupled with optimisation algorithms, this can facilitate the sustainable allocation of water resources.

Note that national outputs are less affected by inherent biases and uncertainties compared to gridded 
counterparts (see “Limitations and uncertainties”). When using the latter, we recommend aggregating data to 
regional levels (e.g. hydrologic or administrative units). You should also be aware that we represent historical 
changes in national borders, for example, the post-Soviet countries are covered from 1992 onwards.

Crop

Average CWU (mm)

Spatial 
correlation

Median of 
differences

Historical change (%)

Our 
study

Ensemble 
mean Our study

Ensemble 
median

Rainfed

Maize 363 351 0.90 +1.8% +0.2% −1.3%

Soya bean 379 352 0.83 +7.0% −0.5% −1.5%

Winter wheat 314 277 0.83 +14.2% −2.1% −1.1%

Spring wheat 302 250 0.88 +18.4% −0.4% −2.2%

Rice main season 389 368 0.89 +6.0% +0.4% −0.9%

Rice second 327 301 0.90 +9.5% +1.7% −0.3%

Average 0.87 +9.5% −0.1% −1.2%

Irrigated

Maize 460 482 0.86 −8.1% +1.1% −1.3%

Soya bean 479 472 0.92 −0.1% +1.9% +0.1%

Winter wheat 432 381 0.75 +4.7% +0.3% −0.3%

Spring wheat 492 373 0.61 +18.7% +1.8% −1.7%

Rice main season 570 436 0.65 +20.7% +0.1% −2.0%

Rice second season 511 381 0.67 +23.8% −0.7% −1.8%

Average 0.74 +10.0% +0.7% −1.2%

Table 4. Comparison of crop water use (CWU) estimates for 1990–2015 between our study and Jägermeyr et 
al.25 for a set of selected crops. The other study is represented by the mean CWU of the ensemble of four models 
LPJmL, EPIC-IIASA, pDSSAT, and PEPIC. The average CWU refers to the global non-weighted average, spatial 
correlation corresponds to Pearson correlation coefficients among the matching cells, median of differences 
refers to the global median of grid-level differences relative to values provided by the other study, and historical 
change reflects the average grid-level difference between values in 2011–2015 and 1990–1994. Grid cells with 
values below 50 mm are excluded from this comparison.
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interpreting data. In light of limitations and uncertainties, you should critically assess the applicability of 
our datasets for a given task before drawing any conclusions. To start, we only provide consumptive green and 
blue WFs. To analyse the total freshwater appropriation, you should also include water pollution as represented 
by the grey WF4. When assessing consumptive WFs, keep the following aspects in mind:

•	 Blue water consumption is not the same as irrigation. Blue water consumption from irrigation refers only to 
the potential volume of irrigated water consumed for transpiration and evaporation. Water volumes remained 
in the soil, returned to the system, or lost during conveyance are not included. Therefore, blue water con-
sumption is different from irrigation demand or withdrawal. Moreover, irrigation volumes in our model are 
controlled by constant soil moisture thresholds and irrigation practices while not being constrained by blue 
water availability (see “Input data”). As a result, our irrigation estimates and hence blue WFs reflect potential 
rather than actual values.

•	 Green water versus blue water. Due to the different nature and utility of green and blue water, stating that 
one is more valuable for humankind than the other is problematic. Nonetheless, people predominantly 
focus on blue water resources—the primary source for domestic and industrial freshwater supply and hence 
a well-studied and regulated natural resource. On the contrary, green water resources are generally taken 
for granted and neglected by water policies58 despite being the main water source for crop production (see 
Table 6) and playing a pivotal role in ecosystem functioning, e.g. soil health and erosion control, carbon 
sequestration, water and nutrient recycling. Moreover, all blue water bodies (lakes, rivers, aquifers) originate 
from green water delivered via precipitation and runoff59. Therefore, changes in green water consumption 
may affect the water cycle and potentially lead to further adverse effects on ecosystems. In WF terms, this 
means that both green and blue WFs of crops should be critically assessed on a case-to-case basis2,60, particu-
larly in the regions experiencing water scarcity54,55.

•	 Comparing uWFs between crops. We recommend selecting crops with similar nutritional and economic val-
ues. Once selected, you should convert uWF from m3 per tonne to units that adequately represent values of 
these crops4,61. For example, protein-rich crops can be compared in terms of m3 per gramme of protein or 
energy-dense crops in terms of m3 per kcal or GJ.

•	 Comparing uWFs between regions. Smaller uWF of a crop in Region A compared to Region B indicates more 
efficient crop production and (or) better climatic suitability. Due to the latter, you should rather compare 
this uWF to an appropriate benchmark level tailored to the local climate type62,63. This allows for assessing 
production efficiency limited by climatic suitability. If the value is above the corresponding benchmark (not 
efficient), you can evaluate the potential degree of uWF reduction. Note that this reduction can be also limited 
by non-environmental factors such as lack of human, economic, and institutional capacity64 or access to bet-
ter agricultural inputs including crop varieties, machinery, fertilisers, and pest control65. Also, smaller uWFs 
may come at the expense of carbon, chemical, or biodiversity footprints66,67.

Crop (with * if irrigated) Country Location Period(s) CWU difference Reference

1 Rice* Philippines 14°14′ N, 121°26′ E 2008–2009 −5.3% 79

2 Rice* India 29°43′ N, 76°58′ E 1994 −1.9% 80

3 Rice* India 20°26′ N, 85°56′ E 2015–2016 +30.8% 81

4 Rice* USA 39°21′ N, 122°05′ W 2007–2009 +9.3% 82

5 Rice*
China 32°21′ N, 118°68′ E 2015–2018

−12.5%
83

6 Wheat +16.3%

7 Wheat* China 39°36′ N, 116°48′ E 2005–2008 −2.1% 84

8 Wheat* India 30°56′ N, 75°52′ E 2006–2008 +9.1% 85

9 Maize (corn)* USA 36°69′ N, 108°31′ W 2011–2014, 2017 +6.1% 86

10 Maize (corn)*

USA 41°09′ N, 96°28′ W 2001–2005

+9.1%

87
11 Maize (corn) +1.3%

12 Soya bean* +3.5%

13 Soya bean −8.9%

14 Soya bean* USA 33°42′ N, 90°55′ W 2016 +13.3% 88

15 Seed cotton* Syria 36°01′ N, 36°56′ E 2004–2006 +6.8% 89

16 Seed cotton* China 85°49′ E, 44°17′ N 2010 −0.9% 90

17 Sorghum* Spain 39°03′ N, 2°05′ W 2007, 2010 −3.1% 91

18 Sorghum USA 36°13′ N, 97°10′ W 2011–2013 −0.6% 92

19 Sorghum* USA 29°13′ N, 99°45′ W 2006–2008 +28.8% 93

20 Sugar cane* Brazil 20°43′ S, 51°16 W 2016–2018 +21.0% 94

21 Sugar cane* India 19°52′ N, 74°58′ E 2015–2016 +3.1% 95

22 Oil palm Indonesia 4°16′ S, 105°36′ E 2017–2019 −0.4% 96

23 Oil palm Malaysia 01°44′ N, 103°32′ E 2006 +0.1% 97

Table 5. Comparison of crop water use (CWU) estimates between local studies and corresponding values in 
our study for eight crops. CWU difference is relative to the value provided by the other study.
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Limitations and uncertainties. Uncertainties arise at each step of our study (see Fig. 1), starting with the 
quality of input data and ending with the post-processing of crop model outputs. Quantifying these uncertainties 
would require a large number of additional simulations using different input data and crop models. Such analysis 
would go beyond the scope of our study as we only aim to use one specific crop model and set of input data to 
estimate crop WFs and compare the resulting estimates to the broader literature. Thus, in this section, we do not 
quantify uncertainties but briefly discuss their main sources and suggest ways of reducing them in future studies.

The primary source of uncertainty originates from the quality and resolution of input data. Most inputs were 
obtained at 30 arcminute resolution (see “Input data”), reflecting average environmental conditions in an area of 
approximately 50 × 50 km. This negates spatial variability within grid cells. For instance, local variability in soil 
composition can substantially affect water availability and hence CWU and crop yields68. In areas with shallow 
groundwater, we consider only multi-year average monthly levels which neglects interannual dynamics, such as 
the effects of pumping. Crop calendars provide only approximate planting and harvest dates over large spatial 
scales. This introduces uncertainty in the actual start and duration of growing seasons, which likely propa-
gates into CWU estimates. These limitations can be minimized in future studies once more accurate input data 
become available.

Another source of uncertainty lies in the setup and outputs of the crop model. We based ACEA on 
AquaCrop which was originally developed to study the site-based water productivity of crops calibrated to 
local agro-climatic conditions68. To enable global simulations, we derived a universal set of crop parameters 
from the literature and only calibrated crop development stages to match reported crop calendars in each grid 
cell (see “Input data”). This calibration did not account for differences in other crop parameters among culti-
vars, such as the maximum canopy cover, crop coefficients, or rooting depth—even though these are important 
in regions with sub-optimal agricultural conditions69,70. In fallow periods, we assumed the presence of cover 
crops like grasses and short weeds whereas some farmers may leave soils bare. We also assumed a common soil 
moisture-based rule to initiate irrigation application, while the farmer’s decision on timing and volume of irri-
gation depends on local environmental and economic conditions. Additionally, our version of AquaCrop could 
not explicitly simulate fertiliser inputs. Instead, we applied yield scaling to consider the combined effect of fertil-
iser use and other agricultural developments at the national level (see “Post-processing”). The above-mentioned 
uncertainties can be reduced by utilising crop yield and CWU estimates from an ensemble of crop models71,72, 
but such endeavour would make global assessments impractical due to large computational requirements. 
Additionally, the uncertainties can be further minimized by coupling crop models with remote sensing prod-
ucts73–75. Such an approach is still in the early development stage but could be implemented in future updates of 
WF datasets.

Lastly, the post-processing of outputs introduced additional uncertainty when harvested areas and crop 
production were scaled to national statistics from FAOSTAT (see “Post-processing”). The scaling of harvested 
areas added historical dynamics to otherwise static maps of rainfed and irrigated areas; the scaling of crop 

Crops
Water footprint 
type

This study (billion m3)
Mekonnen and 
Hoekstra Chiarelli et al.

Siebert and 
Döll

Liu and 
Yang

1990 2019 Around 2000

Maize

Green 480 705 508 597 (+18%) 627 (+24%) 585 (+15%) —

Blue 35 59 45 51 (+13%) 76 (+68%) 72 (+60%) —

Total 515 764 553 648 (+17%) 704 (+27%) 658 (+19%) —

Rice

Green 404 424 398 679 (+71%) 636 (+60%) 634 (+59%) —

Blue 232 266 261 202 (−23%) 273 (+5%) 307 (+18%) —

Total 636 690 659 881 (+34%) 909 (+38%) 941 (+43%) —

Soya bean

Green 234 488 314 351 (+12%) 381 (+21%) 382 (+22%) —

Blue 8 12 11 12 (+7%) 14 (+25%) 17 (+54%) —

Total 242 500 325 363 (+12%) 395 (+22%) 399 (+23%) —

Sugar cane

Green 127 222 140 180 (+29%) 162 (+16%) 173 (+23%) —

Blue 45 75 60 74 (+24%) 65 (+9%) 69 (+16%) —

Total 172 297 200 254 (+27%) 227 (+14%) 241 (+21%) —

Fodder crops

Green 625 563 541 559 (+3%) 567 (+5%) 659 (+22%) —

Blue 63 61 59 72 (+22%) 92 (+55%) 102 (+71%) —

Total 688 623 601 631 (+5%) 659 (+10%) 761 (+27%) —

Total crop 
production

Green 4535 5912 4712 5771 (+22%) 5414 (+15%) 5505 (+17%) 5011 (+6%)

Blue 699 873 815 899 (+10%) 1068 (+31%) 1180 (+45%) 927 (+14%)

Net irrigation 774 977 898 899 (0%) 1068 (+19%) 1180 (+31%) 927 (+3%)

Total 5234 6785 5527 6670 (+21%) 6482 (+17%) 6685 (+21%) 5938 (+7%)

Percentage of green 86.7% 87.1% 85.2% 86.5% 83.5% 82.3% 84.4%

Table 6. Comparison of water footprints of crop production and related variables to other global studies4,24,26,27. 
All non-percentage numbers are provided in billion cubic metres. Values in brackets show a relative difference 
between our and the other studies.

https://doi.org/10.1038/s41597-024-03051-3


13Scientific Data |          (2024) 11:206  | https://doi.org/10.1038/s41597-024-03051-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

production allowed accounting for historical agricultural developments. Both scaling procedures included mul-
tiple assumptions affecting the reliability of the final WF estimates. For instance, there was no differentiation 
between production systems in FAOSTAT and, hence, both rainfed and irrigated crop yields were scaled with 
the same scaling factors. In future updates, these factors could be adjusted according to farm sizes76 and farming 
intensity19.

code availability
The source code for AquaCrop-OSPy v6.1—the crop model upon which ACEA is based—is freely available via 
github.com/aquacropos/aquacrop. The source code and most inputs for ACEA (version 2.0) are available via 
Zenodo77. Note that some input datasets are not included but can be directly obtained from the original sources 
instead. You can find brief instructions and references to input datasets in the readme file.
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