
1Scientific Data |          (2024) 11:199  | https://doi.org/10.1038/s41597-024-03048-y

www.nature.com/scientificdata

Chromosome-level genome 
assembly of the Japanese sawyer 
beetle Monochamus alternatus
Yong-Fu Gao1,2, Fang-Yuan Yang  2, Wei Song2, Li-Jun Cao2, Jin-Cui Chen2, Xiu-Jing Shen2, 
Liang-Jian Qu3, Shi-Xiang Zong1 ✉ & Shu-Jun Wei  2 ✉

the Japanese sawyer beetle Monochamus alternatus (Coleoptera: Cerambycidae) is a pest in pine forests 
and acts as a vector for the pine wood nematode Bursaphelenchus xylophilus, which causes the pine wilt 
disease. We assembled a high-quality genome of M. alternatus at the chromosomal level using Illumina, 
Nanopore, and Hi-C sequencing technologies. The assembled genome is 767.12 Mb, with a scaffold N50 
of 82.0 Mb. All contigs were assembled into ten pseudo-chromosomes. The genome contains 63.95% 
repeat sequences. We identify 16, 284 protein-coding genes in the genome, of which 11,244 were 
functionally annotated. The high-quality genome of M. alternatus provides an invaluable resource for 
the biological, ecological, and genetic study of this beetle and opens new avenues for understanding 
the transmission of pine wood nematode by insect vectors.

Background & Summary
The pine wilt disease is currently considered one of the most serious threats to pine forests worldwide1–3. This 
disease is caused by the pinewood nematode Bursaphelenchus xylophilus (Steiner and Buhrer) (Nematoda: 
Aphelenchoididae), an invasive species originally from North America2. The natural spread of pinewood nem-
atode usually requires insect vectors4. The longhorn beetles from the Monochamus (Coleoptera: Cerambycidae) 
are the primary vectors of the pinewood nematode5–7. The Japanese sawyer beetle Monochamus alternatus 
(Hope) (Coleoptera: Cerambycidae: Lamiinae) is an effective vector of the pinewood nematode8. The M. alter-
natus can cause damage directly to various species of pine trees from the genera Pinus, Cedrus, Abies, Picea, 
and Larix4. This beetle is widely distributed in Japan, Korea, Laos, Vietnam, and the surrounding countries9,10. 
Single M. alternatus can harbor, on average, 15,000 and up to 280,000 pinewood nematodes in its tracheal sys-
tem11,12. Monochamus saltuarius is another species that was reported as the vector beetle of pinewood nematode 
in Japan, Europe, and China. It was first reported to transmit the pinewood nematode to native Pinus species 
in Liaoning Province, China13. It is crucial to understand the ecology and genetics of M. alternatus and how it 
transmits pinewood nematodes14,15. The genome of M. saltuarius has been sequenced and assembled16. However, 
the genome of M. alternatus has yet to be determined. Bridging this knowledge gap will greatly aid our control 
efforts against M. alternatus and pine wilt disease17.

In this study, we assembled the chromosome-level genome of M. alternatus using a combination of 
Nanopore, Illumina short-read sequencing, and chromosome conformation capture (Hi-C) technologies to 
provide genomic resources for future investigations on the ecology, genetics, and evolution of the M. alternatus 
and the interaction between the pinewood nematode and its insect vector.

Methods
Sample preparation. Samples of M. alternatus were from a laboratory strain reared at the Key Laboratory of 
Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, 
Chinese Academy of Forestry, Beijing, China. This strain was reared for about 30 generations in the laboratory.  
A single female adult was used to construct libraries of Illumina short read, Oxford Nanopore Technology (ONT) 
long read sequencing, and Hi-C. The samples were starved for 24 hours, and the guts of the adults were removed 
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to minimize contamination from gut microbes. In addition, we collected three larvae, pupae, and adults of  
M. alternatus for transcriptome sequencing. All samples were frozen in liquid nitrogen and stored at −80 °C until 
further usage.

Genomic DNA and rNA sequencing. For short-read sequencing, genomic DNA was extracted using the 
QIAGEN® Genomic DNA extraction kit (Qiagen, Hilden, Germany) according to the standard operating proce-
dure provided by the manufacturer. The pair-end library with an insert size of about 300 bp was prepared using 
VAHTSTM Universal DNA Library Prep Kit for Illumina® V3 (Vazyme, ND607, Nanning, China) and sequenced 
on the Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA). We obtained 42.5 Gb Illumina short 
reads (Table 1).

For long-read sequencing, high molecular weight genomic DNA was isolated using the QIAGEN® Genomic 
DNA extraction kit (Qiagen, Hilden, Germany) according to the standard operating procedure provided by 
the manufacturer. A total of 3–4 μg DNA was used as input material for the ONT library preparation. Long 
DNA fragments were selected using the PippinHT system (Sage Science, USA). The A-ligation reaction was 
conducted with the NEBNext Ultra II End Repair/dA-tailing Kit (Ipswich, MA, USA). The adapter in the 
SQK-LSK109 (Oxford Nanopore Technologies, UK) was used for further ligation reaction. About 700 ng DNA 
library was constructed and performed on a Nanopore PromethION sequencer instrument (Oxford Nanopore 
Technologies, UK) at the GrandOmics Biosciences Co., Ltd. (Wuhan, China), and 142.7 Gb long reads were 
generated (Table 1).

For Hi-C sequencing, the library was prepared according to the standard protocol described by Belton with 
minor modifications18. An adult of M. alternatus was cut into pieces and mixed with 2% formaldehyde solution 
for cross-linking. Glycine (2.5 M) was added to stop this reaction, and the sample was homogenized to separate 
the nuclei. The purified nuclei were dissolved in SDS and incubated at 65 °C for 10 min. After quenching the 
SDS with Triton X-100, the sample was digested with Dpn II and marked by incubating with biotin-14-dCTP. 
Biotin from nonligated DNA ends was removed by T4 DNA polymerase. Then, the Hi-C library was prepared 
by Truseq Nano DNA HT Kit (Illumina, USA) and sequenced on the Illumina HiSeq platform with paired-end 
150-bp reads (Illumina, San Diego, CA, USA) at Annoroad Gene Technology Co., Ltd. (Beijing, China). A total 
of 81.7 Gb (106 × coverage) of clean data was generated (Table 1).

For transcriptome sequencing, total RNA was extracted from a single M. alternatus (larva, pupa, and adult, 
respectively) using the RNAprep Pure Tissue Kit (Tiangen, China). Library was constructed using a TruSeq 
RNA sample preparation kit (Illumina, San Diego, CA, USA) and sequenced on the Illumina NovaSeq 6000 plat-
form (Illumina, San Diego, CA, USA) with the paired-end mode at GrandOmics Biosciences Co., Ltd. (Wuhan, 
China). A total of 18.9 Gb transcriptome data was obtained (Table 1).

estimation of genomic characteristics. The Illumina raw reads were checked and filtered 
using Trimmomatic version 0.39-219 to discard reads with adaptors, unknown nucleotides (Ns), or >20% 
low-quality bases. Genome size, heterozygosity, and duplication were estimated by using Jellyfish version 2.2.1020 
and GenomeScope version 2.021 based on the 17-mer depth distribution. The estimated genome size was 667 Mb, 
with a heterozygosity rate of 1.31% and a duplication rate of 1.55% (Fig. 1A).

Genome assembly. A draft genome at contig level was assembled using NextDenovo version 1.2.5 (https://
github.com/Nextomics/NextDenovo) with default parameters (genome-size = 667, read-cutoff = 3k) based on 
Nanopore long reads. Purge_dups was used to remove alternative haplotype and redundant fragments in the con-
tig assembly. We performed Hi-C analysis to further anchor the assembly into chromosome-scale linkage groups. 
The Hi-C clean reads were cleaned using Fastp22 and mapped to the contigs using BWA. YaHS version 1.2a.123 and 
Juicertools version 1.19.0224 were used to assemble and manual correction. As a result, 98.21% of the contigs were 
anchored to 10 pseudo-chromosomes, which were presented in the heatmap of the chromatin contact matrix 
(Fig. 1B). At last, two rounds of polishing with ONT reads and Illumina reads were performed using NextPolish 
version 1.4.025. The output chromosome-level genome has a size of 767.12 Mb, N50 of 82.0 Mb, maximum length 
of 149.24 Mb, and GC content of 32.35% (Table 2).

Genome annotation. The protein-coding genes in the M. alternatus genome were predicted under three 
lines of evidence, including RNA-based, ab initio, and homology-based methods. For the RNA-based method, 
short transcriptome reads were mapped to the genome using Hisat226. Then, the aligned BAM files were used 
to assemble the transcripts using Stringtie version 2.1.427. The genes were predicted using PASA version 2.0.2 
with default settings28. The ab initio prediction was performed using Augustus version 3.4.029 and SNAP version 
2006-07-2830. The gene models in Augustus and SNAP were trained based on transcripts longer than 300 bp  
generated by PASA. In the homology-based prediction, we gathered evidence of homologous genes from 

Sequencing strategy Platform Usage Insertion size Clean data (Gb) Coverage (X)

Short-read Illumina Genome survey 300 bp 42.50 55

Long-read Nanopore Genome assembly 10–20 kb 142.7 186

Hi-C Illumina Hi-C assembly 300 bp 81.7 106

RNA-seq Illumina Anno-evidence 300 bp 18.9 27

Table 1. Library sequencing data and methods used in this study to assemble the Monochamus alternatus 
genome.
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Coleoptera species, including Anoplophora glabripennis31, Tribolium castaneum32, Dendroctonus ponderosae33 
and Diabrotica virgifera34. Redundant genes in the pooled gene set were removed using CD-HIT35. Maker version 
3.01.0436 pipeline was used to perform the homology-based prediction. At last, the evidence from these methods 
was combined using EvidenceModeler (EVM) version 1.1.137 to obtain a non-redundant consensus official gene 
set (OGS).

The predicted genes were functionally annotated using Eggnog-Mapper version 2.1.938. Five methods were 
used to search against several public databases, including Gene Ontology (GO), Clusters of Orthologous Groups 
of Proteins (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), CAZY, and Pfam. In summary, we 
identified 16,284 protein-coding genes (Table 2), of which 11,244 were functionally annotated (Table 3).

repeats prediction. Homology-based and de novo prediction methods were used to detect transposable ele-
ments (TEs). Briefly, repeats sequences were detected using RepeatMasker version 4.1.2 (-no_is -norna -xsmall -q)39,  
against the Repbase, Dfam database, and species-specific repeat library identified by RepeatModeler version 
2.0.3. Finally, 63.95% of the genome was identified to be repeat DNA. Overall, 576,182 transposable elements 
(TEs), including 178,967 retroelements (189 short interspersed nuclear elements (SINEs), 144,289 long inter-
spersed nuclear elements (LINEs), and 34,489 long terminal repeats (LTR)) and 397,215 DNA transposons were 
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Fig. 1 Feature estimation and assembly of Monochamus alternatus genome. (A) Estimation of M. alternatus genomic 
features. The 17-mer distributions showed double peaks: the first peak with a coverage of 100 indicates genome 
duplication, and the highest peak with a coverage of 200 represents a genome-size peak. M. alternatus genome size 
was calculated to be 667 Mb with heterozygosity rate of 1.31% and duplication rate of 1.55%. (B) Genome-wide 
contact matrix of Monochamus alternatus generated using Hi-C data. Each black square represents a pseudo-
chromosome. The color bar indicates the interaction intensity of Hi-C contacts.

Survey statistics

Sequencing platform Illumina

Estimated genome size (bp) 667,998,064

Heterozygosity rate (%) 1.31

Duplication rate (%) 1.55

Assembly statistics

Sequencing platform Illumina, Nanopore, Hi-C

Total length (bp) 767,125,294

Longest scaffold length (bp) 149,245,057

Scaffold N50 (bp) 82,003,078

GC content (%) 32.35

Annotation statistics

Anchored to chromosome (%) 98.21%

Bases masked 63.95%

Number of annotated protein-coding gene 16,284

Number of functionally annotated gene 11,244

Table 2. Statistics for the chromosomal-level genome of the Monochamus alternatus.
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identified. Five hundred twenty-three satellites and 678 simple repeats were identified as tandem repeats (TRs), 
accounting for 0.03% of the M. alternatus genome (Table 4).

Non-coding rNA annotation. For non-coding RNA annotation, the transfer RNA (tRNA) was anno-
tated by tRNAscan-SE version 1.3.1 based on the structural characteristics of tRNA40, whereas the ribosome RNA 
(rRNA) was predicted by RNAmmer version 1.241,42. We obtained 498 tRNA and 107 rRNA genes, including 98 
8s_rRNA, five 28s_rRNA, and four 18s_rRNA genes in the M. alternatus genome (Table 5).

Data records
The genome project was deposited at NCBI under BioProject number PRJNA819115. Illumina sequenc-
ing data for genome survey were deposited in the Sequence Read Archive at NCBI under accession number 
SRR2611552343. Hi-C sequencing data were deposited in the Sequence Read Archive at NCBI under accession 
number SRR2614633844. Nanopore sequencing raw data were deposited in the Sequence Read Archive at NCBI 
under accession number SRR2615769845. RNA-seq data were deposited in the Sequence Read Archive at NCBI 
under accession numbers SRR26116071- SRR2611607346–48. The final chromosome assembly, genome structure 

Database name Annotated number Percent (%)

GO 8311 73.91

KEGG 4751 42.25

COG 10635 94.58

CAZY 295 2.62

PFAM 10519 93.55

Total 11244 98.44

Table 3. Number of functionally annotated protein-coding gene in different databases.

Item Number of element Length occupied (bp) Percentage of sequence (%)

Retroelements 178,967 76,112,632 9.72

SINEs 189 14,122 0

LINEs 144,289 56,571,154 7.23

LTR elements 34,489 19,527,356 2.49

DNA transposons 397,215 133,929,988 17.11

Rolling-circles 7,406 2,474,246 0.32

Unclassified 1,235,289 287,908,114 36.78

Total interspersed repeats NA 497,950,734 63.61

Small RNA 0 0 0

Satellites 523 126,782 0.02

Simple repeats 678 105,396 0.01

Low complexity 0 0 0

Table 4. Repeats elements statistics in genome of Monochamus alternatus using RepeatMasker. SINEs: short 
interspersed nuclear elements; LINEs: long interspersed nuclear elements; LTR: long terminal repeat.

Class Type Count

rRNA count

8s_rRNA 98

28s_rRNA 5

18s_rRNA 4

Cove stats

Candidate tRNAs read 9436

Cove-confirmed tRNAs 498

Bases scanned by Cove 987,197

Seq scanned by Cove 0.1%

tRNA count

tRNAs decoding Standard 20 AA 452

Selenocysteine tRNAs (TCA) 0

Possible suppressor tRNAs (CTA, TTA) 2

tRNAs with undetermined/unknown isotypes 3

Predicted pseudogenes 41

Total tRNAs 498

tRNAs with intron 43

Table 5. Statistics of non-coding RNAs in genomes of Monochamus alternatus.
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annotation, amino acid sequences and functional annotation results of protein-coding genes were deposited to 
Figshare repository under a DOI number of https://doi.org/10.6084/m9.figshare.c.6849162.v149. The final chro-
mosome assembly was deposited in GenBank under accession number JAYMDT00000000050.

Technical Validation
The Hi-C heatmap exhibits the accuracy of genome assembly, with relatively independent Hi-C signals observed 
between the ten pseudo-chromosomes (Fig. 1B). We assessed the accuracy of the final genome assembly by map-
ping Illumina short reads to the M. alternatus genome with BWA-MEM2 version 0.7.172151. The mapping rate 
for Illumina reads was 98.71%. The findings indicate that the quality of our assembled genome is high.

To assess the completeness of genome assembly and OGS, we run Benchmarking Universal Single-Copy 
Orthologues (BUSCO version 5.2.2) using the insecta_odb10 database, which contains 1367 conserved genes52. 
For Contig-level, in the first round, the BUSCO analysis showed that 93.8% (single-copied gene: 93.2%, dupli-
cated gene: 0.6%) of 1367 single-copy genes were identified as complete, 3.3% of genes were fragmented, and 2.9% 
of genes were missing in the assembled genome. For the chromosome-level assembly, BUSCO analysis showed 
that 99.7% (single-copied gene: 99.0%, duplicated gene: 0.7%) of 1367 genes were identified as complete, 0% of 
genes were fragmented, while 0.3% of genes were missing in the assembled genome. For OGS, BUSCO analysis 
showed 96.7% completeness, with only 0.5% of genes duplicated, 1.5% fragmented, and 1.8% missing (Table 6).

Code availability
There were no custom scripts or code utilized in this study.
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