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The first global multi-timescale daily 
SPEI dataset from 1982 to 2021
Xuebang Liu   , Shuying Yu, Zhiwei Yang, Jianquan Dong & Jian Peng    ✉

Global warming accelerates water cycle, causing more droughts globally that challenge monitoring and 
forecasting. The Standardized Precipitation Evapotranspiration Index (SPEI) is used to assess drought 
characteristics and response time of natural and economic systems at various timescales. However, 
existing SPEI datasets have coarse spatial or temporal resolution or limited spatial extent, restricting 
their ability to accurately identify the start or end dates or the extent of drought at the global scale. To 
narrow these gaps, we developed a global daily SPEI dataset (SPEI-GD), with a 0.25° spatial resolution 
from 1982 to 2021 at multiple timescales (5, 30, 90, 180 and 360 days), based on the precipitation from 
European Center for Medium Weather Forecasting Reanalysis V5 (ERA5) dataset and the potential 
evapotranspiration from Singer’s dataset. Compared to widely used SPEIbase dataset, the SPEI-GD 
can improve the spatial-temporal resolution and the accuracy of SPEI in areas where meteorological 
sites are lacking. The SPEI-GD significantly correlates with site-based SPEI and soil moisture. Our 
dataset solidly supports sub-seasonal and daily-scale global and regional drought research.

Background & Summary
Drought is a major natural hazard caused by a persistent water deficit over a period of time1, which can cause 
devastating impacts on regional agriculture2–4, water resources5 and vegetation coverage6,7, as well as on human 
health8, with far-reaching influences in an increasing globalized world9. For example, during 2003 central 
Europe drought, the gross primary productivity was estimated to reduce by 30%, which was equal to 4-year net 
carbon uptake of European ecosystem10. A more severe drought attacked Russia in 2010, which caused ~55,000 
deaths, reduced crop yields by ~25%, and led to ~US$15 billion total economic loss5,11. As global warming accel-
erates the terrestrial water cycle12, droughts have increased substantially in many regions13,14 and are projected 
to become more frequent, severer and longer in the warmer future1,15. Therefore, deeply understanding and 
monitoring drought is crucial to carry out risk management and adaptive strategy for drought hazard.

Droughts are usually classified into four categories: meteorological, agricultural, hydrological, and soci-
oeconomic drought16. Propagation can occur in different droughts. That is to say, the lack of precipitation 
accompanying meteorological drought can lead to the deficiency of soil moisture, runoff or regional water avail-
ability, implying that meteorological drought can propagate into agricultural, hydrological or socioeconomic 
drought17–19. Meanwhile, different types of drought have differed characteristics, in terms of intensity, duration 
and frequency, making it very difficult to characterize quantitatively20,21. In addition, different physical mecha-
nisms can cause drought at different timescales. For droughts at interannual or decadal timescales, large-scale 
internal climate variability (e.g. El Niño–Southern Oscillation or Pacific Decadal Variability) play critical 
roles22,23. For droughts at seasonal timescale, the local and remote land-atmosphere feedbacks are dominant 
drivers24,25. For droughts at sub-seasonal timescales or rapid-onset drought (flash drought), which can develop 
into severe droughts within a few weeks, the primary drivers are large precipitation deficits and abnormally high 
evapotranspiration26,27. These various and multiscale droughts can interact among above climate drivers to pro-
duce complex drought characteristics, raising great challenges for drought forecasting and impact mitigation28.

In order to accurately assess droughts, several drought indices have been proposed. The Standardized 
Precipitation Index (SPI) requires only long-term precipitation data and is recommended by the World 
Meteorological Organization29. Its biggest strength lies in the ability to characterize the response time of dif-
ferent usable water sources to precipitation deficits by varying the timescales after a relatively simple calcula-
tion30,31. However, SPI neglects the effects of evaporation stemming from temperature and other meteorological 
factors, which leads to misrepresentation of actual drought conditions especially in arid regions32,33. The Palmer 
Drought Severity Index (PDSI) is calculated using a rather complex water-budget system based on historic 
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records of precipitation, temperature and the soil characteristics34,35. Therefore, PDSI measures soil moisture 
deficit and is more suitable for characterizing agricultural drought36. The SPEI combines the sensitivity of the 
PDSI to changes in evaporation demand (caused by temperature fluctuations and trends) with the multitem-
poral nature of the SPI32. It not only accounts for the effect of evaporation on drought, but also characterizes 
different types of droughts at multiple timescales37,38. This makes SPEI more informative in the aspect of actual 
drought effects over various natural systems and socioeconomic sectors21,30.

There are two widely used global SPEI datasets: SPEIbase39 and Global Precipitation Climatology Centre 
Drought Index (GPCC-DI)40. The monthly SPEIbase is developed from Climatic Research Unit Time Series 
datasets with a 0.5° spatial resolution, while monthly GPCC-DI is developed from GPCC precipitation data 
and Climate Prediction Center’s temperature data with a 1° spatial resolution. The coarse spatial resolution of 
the two datasets restricts them to be only conducted at the regional or global scale. Meanwhile, the monthly 
temporal resolution also limits their ability to analyze droughts at sub-seasonal scales or those with a duration 
less than one month. Although some higher spatial or temporal resolution SPEI datasets have been produced 
recently21,33,41,42, the spatial extents of these datasets are limited to specific regions (e.g., China, pan-African, 
Central Asia). With the climbing number of sub-seasonal drought researches such as“flash drought”, which 
require data at a pentad or daily scale, the existing SPEI datasets hardly meet the increasing demand. Therefore, 
it is urgent to develop a SPEI dataset with daily timescale and global spatial coverage simultaneously.

In such a context, this study developed a global daily SPEI dataset (SPEI-GD) with a 0.25° spatial resolution 
based on daily precipitation and potential evapotranspiration. The dataset covers the period from 1982 to 2021 
and provides five timescales (5, 30, 90, 180 and 360 days). We then evaluated the accuracy of the SPEI-GD 
against coarser SPEIbase and site-based SPEI, the SPEI-GD was proved to identify more precisely both the 
spatial extent of drought and the onset and end time of drought. These improvements are critical for monitoring 
and assessing drought, especially for the accelerating flash drought.

Methods
Precipitation.  The hourly precipitation data with a 0.25°spatial resolution for the period 1982–2021 was obtained 
from the ERA5 dataset (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form).  
The hourly precipitation was summed to the daily scale. The ERA5 is the latest reanalysis data from European 
Center for Medium Weather Forecasting Reanalysis (ERA) and replaces the ERA‐Interim, which has been proved 
to be highly reliable for investigating climate change43. The ERA5 uses more historical observations (especially 
satellite data) in advanced data assimilation and modelling systems to estimate atmospheric conditions more 
accurately44. The 4D-Var data assimilation technique in cycle 41r2 is applied as well, which can help to explain 
errors between observation and prediction models, giving users more confidence in analysing atmospheric 
parameters at different scales of time and space45.

Potential evapotranspiration.  The gridded potential evapotranspiration (PET) data developed by 
Singer et al.46 for the period 1982–2021 was used (https://doi.org/10.5523/bris.qb8ujazzda0s2aykkv0oq0ctp).  
This PET data was produced based on output from the ERA5-Land reanalysis dataset, over the period from 1981 
to present, with hourly temporal resolution and 0.1° spatial resolution. This PET data was calculated via the 
FAO’s Penman-Monteith (PM) method, which required seven climate variables including zonal and meridional 
components of wind speed, air and dew point temperature, net solar and net thermal components of radia-
tion, and atmospheric pressure at the Earth’s surface. Compared to the Priestley-Taylor (PT) method, the PM 
method considers adiabatic sources of energy to drive evaporation. Therefore, Singer’s PET can not only have a 
broadly similar geographical pattern to the PET products (GLEAM and PT-JPL) based on the PT method, but 
also more accurately characterize low PET values in northern latitudes (due to low atmospheric energy availabil-
ity), and high PET values in equatorial region and the Southern Hemisphere46. In addition, Sheffield et al. have 
shown that the PM method takes full account of changes in available energy, humidity, and wind speed, while the 
Thornthwaite method simply takes into account temperature, resulting in an overestimation of PET35. To match 
the precipitation, the spatial resolution of Singer’s PET was resampled to 0.25° based on bilinear method, and the 
originally hourly data was integrated to daily data.

SPEIbase.  In order to verify the reliability of the SPEI-GD in this study, the SPEIbase for the period 1982–
2020 was used (https://digital.csic.es/handle/10261/332007). The SPEIbase is based on monthly precipitation 
and potential evapotranspiration from the Climatic Research Unit of the University of East Anglia following 
the FAO-56 Penman-Monteith estimation of potential evapotranspiration39. The SPEIbase offers SPEI data at 
multi-timescales between 1 and 48 months, with a 0.5° spatial resolution and a monthly temporal resolution. 
To date, it covers the period between January 1901 and December 2020. The SPEIbase has been evaluated and 
applied by many studies47–50. In comparative analysis, in order to match the spatial resolution of SPEIbase, the 
spatial resolution of new developed SPEI-GD was resampled to 0.5° based on bilinear method.

Daily and site-based SPEI.  Developed by Wang et al.41 for the period 1982–2018, the daily and site-based 
SPEI was used to evaluate the performance of SPEI-GD. This data based on multiple factors (daily precipi-
tation, daily average air temperature, daily minimum air temperature, daily maximum air temperature, and 
sunshine duration) from 1961 to 2018 at 427 meteorological stations across China (https://doi.org/10.6084/
m9.figshare.12568280). It should be noted that the daily potential evapotranspiration was calculated by the 
Hargreaves model based on temperature and solar radiation51,52. Although air temperature and solar radiation can 
explain at least 80% of evapotranspiration variability, they also introduce uncertainty into this site-based SPEI data.
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Soil moisture.  The SPEI-GD was compared with surface soil moisture (SSM) and root zone soil moisture 
(RSM) from Global Land-surface Evaporation: the Amsterdam Methodology (GLEAM) version 3.6 dataset 
(https://www.gleam.eu/#downloads) to further assess its robustness. By this way, daily SSM and RSM data with 
a spatial resolution of 0.25° during 1982–2021 were obtained. GLEAM is designed to estimate land surface evap-
oration and root zone soil moisture based on remote sensing observations and reanalysis data53,54. The root zone 
soil moisture is derived from a multilayer water balance driven by precipitation observations and updated with 
microwave soil moisture estimation. To correct random forcing errors, observations of surface soil moisture were 
also assimilated into the soil profile.

Aridity index.  Climate regions based on aridity index (AI) were used to further verify the correlation 
between SPEI-GD and soil moisture. The annual mean aridity index developed by Zomer et al.55 for the period 
1970–2000 with nearly 1 km spatial resolution was applied (https://doi.org/10.6084/m9.figshare.7504448.v5). 
The AI was calculated by the ratio of precipitation to PET, where PET was calculated according to the FAO-56 
Penman-Monteith formula. According to the assessment, there is a high correlation between this dataset and 
the station-based data. AI values are unitless, increasing with more humid condition and decreasing with more 
arid conditions. Therefore, the climate regions were divided according to the AI values: hyper-arid (AI < 0.03), 
arid (0.03 ≤ AI < 0.2), semi-arid (0.2 ≤ AI < 0.5), sub-humid (0.5 ≤ AI < 0.65), and humid (AI ≥ 0.65). The spatial 
resolution of Zomer’s AI was resampled to 0.25° based on bilinear method.

SPEI calculation.  The calculation of SPEI requires the accumulating deficit or surplus (Di) of water balance40 
at different timescales (5, 30, 90, 180, and 360 days). Di were calculated by subtracting PET from precipitation 
using the following equation at a given day i:

= −D P PET (1)i i i

The obtained Di were summed at different timescales Dk
j,i, which represented a given day i and year j depend-

ing on the chosen timescale k (days). The equation is as follow:
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where 365(366) represents the number of days in a non-leap or leap year, respectively. The Dk
j,iwere then normal-

ized into a log-logistic probability distribution, which was recommended to be the best for calculating SPEI32,56. 
The probability density function of log-logistic is as follow:
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where the parameters β, γ and α indicate shape, origin and scale, respectively. The probability distribution func-
tion of log-logistic is as follow:

F x
x

( ) 1
(4)

1
α

γ
=









+



 −














β −

Finally, the SPEI was obtained by standardizing the F(x) using the following equation:
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where C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308. The values 
of W were calculated as below:

= −W P2 ln( ) (6)

where P = 1 − F(x), when P ≤ 0.5. If P > 0.5, the P is replaced by (1 − P) and the sign of SPEI is reversed.
The negative and positive SPEI indicate dry and wet conditions, respectively. The classifications of dry and 

wet conditions based on SPEI are presented in Table 1, which is similar to the classifications of SPI57. Due to low 
hydroclimatic variability, the SPEI was not reliable over sparsely vegetated and barren areas39,56, the two specific 
land cover types were masked based on the International Geosphere-Biosphere Programme (IGBP) classifica-
tion of Moderate Resolution Imaging Spectroradiometer (MODIS) landcover product (MCD12C1v061)58.

Data Records
The global daily SPEI dataset59 (SPEI-GD) at 0.25° spatial resolution from 1982 to 2021 are provided open access 
via Zenodo, available at https://doi.org/10.5281/zenodo.8060268. This depository includes the five files of the 
daily SPEI data with five timescales (5, 30, 90, 180, and 360 days). All data are geographical latitude-longitude 
projection and NetCDF format.
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Technical Validation
To compare the daily SPEI-GD with the monthly SPEIbase, in this study we compared the SPEI of the selected 
month of SPEIbase with the SPEI of the last day of the corresponding month of SPEI-GD at multi-timescales (30, 
90, 180 and 360 days). For example, when comparing with SPEIbase at the 1-month timescale of June 1995, the 
SPEI at the 181st day (corresponding to the last day of June 1995) of SPEI-GD at 30 days’ timescale would be used. 
Based on such correspondence, the correlation between SPEI-GD and SPEIbase was further analyzed using the 
Pearson’s correlation coefficient, and only statistically significant results were accepted and presented. Meanwhile, 
the Pearson’s correlation was also conducted to reveal the relevance between the site-based SPEI and SPEI-GD 
over China. Because neither SPEIbase nor site-based SPEI provided SPEI at a timescale shorter than one month, 
we did not validate SPEI-GD at a 5 days’ timescale. It is worth noting that the SPEI-GD at 5 days’ timescale used the 
same parameters as the SPEI-GD at other timescales. Soil moisture is an important drought assessment index28, 
and previous studies have found that it has the highest correlation with 6-month SPEI60, and this relationship has 
been applied to verify the accuracy of new SPEI dataset21,33. Therefore, the correlation between daily SPEI-GD at 
180 days’ timescale and daily soil moisture (SSM and RSM) were evaluated both temporally and spatially.

Evaluation of the SPEI-GD with monthly SPEIbase.  The global pattern of SPEI at an example day 
(30 June 1995) at multi-timescales (30, 90, 180 and 360 days) obtained from the daily SPEI-GD were shown in 
Fig. 1 in comparison with SPEI obtained from monthly SPEIbase at the corresponding month (June 1995) and 
timescales (1, 3, 6 and 12 months). The reasons for choosing June 30 were as follows: on the one hand, the varia-
bilities of precipitation and temperature in June were relatively higher, the differences of SPEI driven by different 
precipitation and temperature were larger, and thus June was a good time to prove the robustness of SPEI-GD; on 
the other hand, June 30 is the end of June, the daily timescale (30, 90, 180 and 360 days) of SPEI-GD could exactly 
correspond to the monthly timescale (1, 3, 6 and 12 months) of SPEIbase. As for 1995, it was just a random year in 
the time span of the SPEI-GD. The daily SPEI-GD and monthly SPEIbase showed quite similar dry and wet pat-
terns. However, their details differed to some extent, especially in tropical rainforest of the Southern Hemisphere, 
where the SPEI-GD showed higher SPEI than SPEIbase, implying a lower severity of drought.

Furthermore, the SPEI-GD showed much more spatial details due to higher spatial resolution. Specifically, the 
spatial dry and wet patterns presented by SPEIbase mostly showed isolated high-value (absolute) centers, while 
SPEI-GD presented not only high-value centers, but also relatively low values around these centers. In the case of 
drought assessment, SPEI-GD could identify the spatial extent of the impacts caused by severe drought center, as 
well as the extent of potential impacts caused by the moderate drought around the center. Meanwhile, the spatial 
information of the gradient change of drought degree displayed by SPEI-GD could be conducive to the attribution 
analysis of drought, combined with the spatial change of climatic factors (e.g., precipitation, PET or tempera-
ture). These advantages have led to discrepancies between SPEI-GD and SPEIbase in identifying spatial extent of 
drought, especially across Eurasia. This is because the daily resolution of SPEI-GD showed the spatial extent of 
both the long-time severe drought and the short-time mild drought, while the monthly resolution of SPEIbase 
smoothed out the mild drought and showed only the long-time severe drought. As the timescale of SPEI increases, 
the duration of water deficit gradually escalates as well. For example, in June 1995, northern North America expe-
rienced a long-time and extremely severe drought (lasting at least more than a year), while north-central Asia 
experienced a short drought (lasting about 90 days). This trait can be used to separate meteorological (30 days’ 
timescale), agricultural (90–180 days’ timescale), and hydrological (360 days’ timescale) droughts21,41.

To further quantify the difference between SPEI-GD and SPEIbase, the correlation between them was calcu-
lated spatially at multi-timescales (Fig. 2). In general, the SPEI-GD and SPEIbase were more consistent at longer 
timescale. This is because longer timescale not only integrates more water deficits, but also loses more information 
on water changes, making the two SPEI series smoother and thus more correlated. Furthermore, the correlation 
existed obviously spatial heterogeneity, with high correlations in America, Europe and China, while low correlations 
in Amazon, central Africa and central Asia. The input data of SPEIbase relies heavily on meteorological stations, 
and the number of stations in latter regions is very few, resulting in low accuracy of SPEIbase. In contrast, the newly 
developed SPEI-GD data in this study is based on reanalysis data, which combines data from multiple sources such 
as satellites, observation sites and models, largely avoiding the problems caused by the lack of input data.

Additionally, the correlations between SPEI-GD and SPEIbase at different timescales in different seasons 
were compared over the entire period (Fig. 3). The correlation coefficients in each season were averaged in the 
corresponding months in each hemisphere. For example, summer correlation coefficients were averaged from 

SPEI Climate condition

SPEI ≥ 2.0 Extremely wet

1.5 ≤ SPEI < 2.0 Severely wet

1.0 ≤ SPEI < 1.5 Moderately wet

0.5 < SPEI < 1.0 Mildly wet

−0.5 ≤ SPEI ≤ 0.5 Normal

−1.0 < SPEI < −0.5 Mildly dry

−1.5 < SPEI ≤ −1.0 Moderately dry

−2.0 < SPEI ≤ −1.5 Severely dry

SPEI ≤ −2.0 Extremely dry

Table 1.  Classification of dry and wet conditions indicated by SPEI.
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the monthly correlation coefficients for June to August in the Northern Hemisphere and December to February 
in the Southern Hemisphere. In general, the SPEI-GD and SPEIbase matched well with each other in all sea-
sons, with median correlation coefficients greater than 0.70. Lower correlation coefficients were mainly found 
in the Amazon, central Africa and northern North America (Figs. S1–S4 in the Supplementary Information). 
Considering that SPEIbase was already widely used in drought monitoring in different seasons, the strong cor-
relation between SPEI-GD and SPEIbase confirmed that SPEI-GD would also be highly reliable in drought 
monitoring in different seasons. The median correlation coefficients had a slight tendency to increase as the 
timescale increased. This is because the larger timescale smoothed out short-term fluctuations in the SPEI series. 
The lower correlation coefficients in summer may be attributed to the greater variability of temperature and 
precipitation, when the ERA5 and CRU data used to calculate SPEI-GD and SPEIbase respectively, were biased.

Fig. 1  Spatial patterns of multi-scales SPEI in June 1995 based on daily SPEI-GD and monthly SPEIbase. 
In order to match the temporal scales, the 30, 90, 180 and 360 days of SPEI-GD corresponds to 1, 3, 6 and 
12 months of SPEIbase, respectively. The SPEI for the 181st day of SPEI-GD corresponds to that for June of 
SPEIbase in 1995. The daily SPEI-GD is calculated from ERA5 precipitation and Singer’s PET with a 0.25° 
spatial resolution, while the monthly SPEIbase is calculated from CRU TS datasets with a 0.5° spatial resolution.
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Evaluation of the SPEI-GD with daily site-based SPEI.  Data products based on the inversion of site 
observations are considered to be the most reliable. In this study we further calculated the correlation between 

Fig. 2  Statistically significant (p < 0.05) correlation between SPEI-GD and SPEIbase at different timescales 
during 1982–2020. The numbers of lower left corner of each subplot indicate the timescale, with days for 
SPEI-GD, and months for SPEIbase. For spatial matching, the original resolution of 0.25° of SPEI-GD was 
resampled to 0.5°, consistent with SPEIbase.

Fig. 3  Statistically significant (p < 0.05) correlation between SPEI-GD and SPEIbase at different timescales in 
different seasons during 1982–2018. The numbers of lower middle corner of each subplot indicate the timescale, 
with days for SPEI-GD, and months for SPEIbase.
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SPEI-GD and site-based SPEI, and specifically, the daily SPEI-GD of the raster at the station location of site-based 
SPEI was used (Fig. 4). In general, positive correlations with mostly larger than 0.5 (p < 0.05) between SPEI-GD 
and site-based SPEI were found at each timescale (30, 90, 180 and 360 days), and especially, for 360 days. 
Considering the sample size of 13880 (38 years with 365/366 days for each year) involved in the correlation 
analysis, a correlation coefficient of 0.5 or more indicated that the SPEI-GD developed in this study had a very 
high accuracy against site-based SPEI. However, the relatively low correlation coefficients in the arid regions of 
northwest China and drought-prone southwest China61 may result from the low hydroclimatic variability, and the 
large uncertainty in the SPEI series39,56.

Comparison against surface and root zone soil moisture.  The SPEI-GD and SPEIbase were also compared 
with surface and root zone soil moisture at the timescales of 180 days and 6 months during 1982–2020. As shown 
in Fig. 5, SPEI-GD showed stronger positive correlations with SSM and RSM than SPEIbase globally, especially in 
Amazon and central Africa. Given the large uncertainty of SPEIbase in these regions as mentioned above, the results 
presented here suggested a higher accuracy of SPEI-GD than SPEIbase. In addition, both SPEI-GD and SPEIbase 
showed relatively higher correlations with RSM than SSM. This is mainly due to the fact that SSM is more susceptible to 
non-meteorological factors such as vegetation activities and human activities than RSM, and thus has a relatively lower 
correlation with the meteorological drought index of SPEI62. This interpretation can be further verified from Fig. 5e, 
which calculated the daily global mean of SSM, RSM, and SPEI-GD. The amplitude of SSM was relatively lower than 
RSM, and the time series were more stable. The correlation coefficient between global means of SPEI-GD and SSM 
was as high as 0.81 with 0.88 for that between SPEI-GD and RSM, further indicating the high accuracy of SPEI-GD.

In addition, the correlation between SPEI-GD, SPEIbase and soil moisture in different climate regions were 
calculated (Fig. 6). Overall, no matter SSM or RSM, their correlation with SPEI-GD were higher than that 
with SPEIbase in almost all climate regions, except hyper-arid region. Compared with SPEIbase, the increase 
of correlation coefficient of SPEI-GD with soil moisture was particularly significant in humid and sub-humid 
regions. In details, in the sub-humid region, the median correlation coefficient with RSM (SSM) increased from 
0.40 (0.34) to 0.53 (0.43); in the humid region, the median correlation coefficient with RSM (SMM) increased 
from 0.35 (0.26) to 0.60 (0.46). The correlation between SPEI-GD and soil moisture gradually increased with 
decreased dryness, which was expected that higher water availability in wetter regions leaded to slower soil mois-
ture consumption and thus more correlated with longer timescales SPEI. In contrast, the median correlation 

Fig. 4  Statistically significant (p < 0.05) correlation between SPEI-GD and site-based SPEI at different 
timescales during 1982–2018. The numbers of upper center of each subplot indicate the timescale. SPEI-GD and 
site-based SPEI are both daily data.

https://doi.org/10.1038/s41597-024-03047-z
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coefficient between SPEIbase and soil moisture was lower in sub-humid and humid region than in semi-arid 
region, possibly because the CRU data driving SPEIbase had a larger error in sub-humid and humid regions.

Summary.  Based on ERA5 daily precipitation and Singer’s daily potential evapotranspiration, the global daily 
SPEI dataset (SPEI-GD) was produced. The SPEI-GD dataset covers the complete daily series of 40 years from 
1982 to 2021 with a spatial resolution of 0.25°. The SPEI-GD provides multi-timescales accumulated SPEI, includ-
ing 5, 30, 90, 180 and 360 days. We hope this new dataset can reduce the cost of time for researchers and avoid 
duplication of effort. Compared with existing SPEI datasets (SPEIbase and site-based SPEI for China), SPEI-GD 
not only has higher temporal and spatial resolution, and wider spatial extent, but also has a higher correlation 
with surface and root zone soil moisture from GLEAM, especially in areas where site observations are missing, 
such as Amazon and central Africa tropical rainforests. These results indicate our new dataset improves the spa-
tial and temporal resolution of the available SPEI data while enhancing the simulation accuracy.

These improvements can better support global or regional drought monitoring and response at a daily scale, 
such as quantifying the characteristics of sub-seasonal droughts63,64, including accurately extracting the onset 
and end days of various droughts instead of the onset and end months, as well as the number of drought duration 
days. Based on daily SPEI-GD data, the onset or end dates of the drought could be determined based on SPEI 
below or above a certain threshold. For example, a specific day with the first SPEI < −1 indicates the onset date 
of a moderate drought, and the followed day with SPEI > −0.5 indicates the end date of the drought. The number 
of days of drought duration could be determined by the difference between the onset date and end date. Through 
the analysis of these characteristics at daily scale, the evolution process of drought could be accurately clarified.

Fig. 5  Statistically significant (p < 0.05) correlation between daily SPEI-GD, SPEIbase and soil moisture at the 
timescales of 180 days and 6 months during 1982–2020. (a,b) Surface soil moisture (SSM). (c,d) Root zone soil 
moisture (RSM). (e) The time series of global mean SSM, RSM and SPEI-GD, where R indicates the correlation 
coefficient.
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Flash droughts are typically sub-seasonal droughts characterized by rapid onset that can develop into severe 
droughts within a few weeks28. The SPEI has been proved to be a reliable and robust metric to identify and quan-
tify flash drought65–67, and a flash drought is defined to have: (1) a minimum length of 4 weeks in the develop-
ment phase; (2) a ΔSPEI equals to or < −2 z-units; and (3) a final SPEI equals to or < −1.28 z-units. Due to the 
lack of daily SPEI, SPEI at 1-month timescale or weekly time resolution was used in previous studies, resulting 
in the characterizing of flash droughts (duration, and timing of onset and end) only at a weekly time resolution. 
Our SPEI-GD data with daily time resolution can further improve the temporal accuracy of flash drought char-
acteristics (e.g., which day its onset or end is, and how many days it lasted).

There are also uncertainties that need to be explored in future works. Firstly, in SPEI calculation, we used 
the widely accepted log-logical probability distribution to fit the deficit or surplus of the water balance, which 
needed to be further compared with other fitting functions (Normal, Pearson type III and Generalized Extreme 
Value). Secondly, we mainly used the reanalysis data of ERA5 as input data. Future work could integrate obser-
vational data to improve the robustness of SPEI-GD, such as daily precipitation data from Global Precipitation 
Climatology Centre (GPCC), and daily temperature data from Climate Prediction Center (CPC). Lastly, we pro-
posed the advantage of daily SPEI-GD in identifying flash drought characteristics, but the associated thresholds 
(e.g., the minimum lasted days in the development phase) needed to be further determined.

Code availability
Since the newly developed SPEI-GD dataset has a high temporal and spatial resolution (the amount of data in 
the intermediate process is about 2 000 GB), we ran codes on MATLAB and R programming Language, utilizing 
parallel computing tools and chunked computation algorithms to solve the problem of limited computer memory 
and long computation time. The code files are available at https://github.com/XuebangLiu/SPEI-GD.

Received: 7 September 2023; Accepted: 5 February 2024;
Published: xx xx xxxx

Fig. 6  Statistically significant (p < 0.05) correlation between SPEI-GD, SPEIbase and soil moisture at the 
timescales of 180 days and 6 months during 1982–2020 in different climate regions. (a) Spatial pattern of global 
climate regions classified based on AI. (b) Correlation between SPEI-GD and SSM. (c) Correlation between 
SPEIbase and SSM. (d) Correlation between SPEI-GD and RSM. (e) Correlation between SPEIbase and RSM.
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