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MatKG: an autonomously 
generated knowledge graph in 
Material Science
Vineeth Venugopal   & Elsa Olivetti  

In this paper, we present MatKG, a knowledge graph in materials science that offers a repository 
of entities and relationships extracted from scientific literature. Using advanced natural language 
processing techniques, MatKG includes an array of entities, including materials, properties, 
applications, characterization and synthesis methods, descriptors, and symmetry phase labels. The 
graph is formulated based on statistical metrics, encompassing over 70,000 entities and 5.4 million 
unique triples. To enhance accessibility and utility, we have serialized MatKG in both CSV and RDF 
formats and made these, along with the code base, available to the research community. As the largest 
knowledge graph in materials science to date, MatKG provides structured organization of domain-
specific data. Its deployment holds promise for various applications, including material discovery, 
recommendation systems, and advanced analytics.

Background & Summary
In science, few fields offer as much wealth and complexity as materials.Yet, this knowledge is distributed across 
millions of scientific papers, databases, and other sources, making it challenging to integrate and exploit effec-
tively. It is estimated that at least 10 million scientific papers are related to materials science1, covering a diverse 
range of topics such as material synthesis and processing, materials characterization techniques, mechanical, 
electrical, magnetic, optical, and photonic properties of materials, thermodynamic and transport properties, 
materials for energy and environmental applications, biomaterials and biomedical applications, nanomaterials 
and nanotechnology, composites and hybrid materials, sustainable materials and green chemistry, materials for 
electronic, optoelectronic, and spintronic devices, materials for advanced manufacturing and 3D printing, mate-
rials for aerospace and transportation applications, and computational materials science and materials informat-
ics. Furthermore, this corpus grows at the rate of about a million papers a year at present1.

The assimilation of this corpus for current and future scientific research has become a challenge for all 
scientific and technological advancements leading to increased siloing of information within topical sub-
communities2, restricted design and exploration spaces of materials, and the absence of machine readable 
property-chemistry-processing databases3,4. The latter specifically could be one of the reasons why AI-driven 
materials discovery lags behind5 other fields such as vision6, natural language processing7, and robotics8

The apparent dissonance and lack of structure in databases make querying materials data a difficult and 
often frustrating task2,9. For example, it is challenging to answer generic questions such as identifying all the 
properties of a given material (e.g., “what are the properties of single crystal LiMnO3?”), listing all the materials 
that possess a particular property (e.g., “what are all the materials that are thermoelectric?”), identifying all the 
properties associated with a given processing method (e.g., “what are all the defects shown by solid state sintered 
bulk lead zirconium titanate”), or determining whether a particular characterization method has been attempted 
on a given material (e.g., “has a high-temperature AFM study been performed on a TiO2-PVDF composite 
system?”) without consulting a domain expert or relevant literature. In contrast, other knowledge bases such 
as Wikidata10, Google11, Bing, Ask.com, DuckDuckGo, etc have become powerful tools for answering specific 
questions, such as “What is fly ash?” (A fine powdery residue from coal fired plants) or “What is the capital of 
Tonga?” (Nuku’alofa) without the need to navigate through other web resources.

The lack of a federated and structured materials database remains a significant bottleneck for data-driven 
discovery in this field. Current databases of scientific literature such as Scopus, Web of Science, and Crossref 
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only index papers by their keywords, making it difficult to extract nuanced data. Furthermore, recent online 
data repositories such as Materials Project12, OQMD13, and NOMAD14 largely contain data computed through 
quantum mechanical calculations, which may not necessarily correspond to experimental observations. While 
these resources provide valuable information, they are not always aligned with the needs of experimentalists or 
the broader materials science community. A more comprehensive and integrated approach to organizing and 
sharing materials data is needed to enable effective data-driven discovery and to advance the field.

One promising solution is the use of Knowledge graphs, which can represent data as a network of intercon-
nected entities and relationships15, enabling researchers to navigate and explore data more efficiently. Knowledge 
graphs provide a powerful solution for representing and integrating heterogeneous data from multiple sources, 
including scientific papers, databases, and ontologies. By mapping out relationships between entities, knowledge 
graphs enable researchers to connect and analyze data in new ways, facilitating data-driven discovery in materi-
als science. They also offer a means of organizing and sharing data in a more comprehensive and accessible way, 
ultimately accelerating scientific progress and advancing our understanding of the world around us.

Knowledge graphs (KGs) are currently being used in a wide range of fields and applications, including search 
engines16, social media platforms17, recommendation systems18, healthcare19, finance20, and more21. In materials 
science, several knowledge graphs have been developed to integrate and organize data from various sources, 
including scientific papers, databases, and ontologies, to support data-driven research and discovery. Examples 
include the Materials Experiment Knowledge Graph22, the Materials Platform for Data Science (MPDS)23, 
Propnet24, and the Open Organic Materials Database25, among others. These knowledge graphs are being used to 
advance materials science research, from developing new materials to optimizing existing ones, and are helping 
to pave the way for more efficient and effective data-driven discovery in the field.

In addition, some domain specific knowledge graphs and knowledge organization schemes such as mof-kg26 
and Nanomine27 have also been proposed. However, these knowledge graphs require manual curation of data 
and the development of custom ontologies which are both laborious and time consuming. Consequently, they 
have largely been limited in scope and contain relatively few entities and relationships when compared to the 
controlled vocabulary of the domain they serve.

In this paper, we introduce MatKG, an extensive knowledge graph of materials science that captures a diverse 
range of entities and relationships from literature. MatKG includes materials, properties, applications, charac-
terization methods, synthesis methods, symmetry phase labels, and descriptors, among other entities, which 
are extracted automatically using advanced natural language processing methods. Relationships between these 
entities are established using statistical metrics, resulting in a knowledge graph with over 70,000 entities and 
5.4 million unique triples. MatKG is the largest knowledge graph in the field of materials science at the time of 
writing, and its development represents a significant advance in the organization and accessibility of materials 
science data.

Methods
Data collection and parsing. A corpus of 5 million scientific papers related to materials science were 
parsed using Python-based parsers to extract raw text from HTML/XML pages. The detailed development of this 
database has been described elsewhere28 and the code base to reproduce the database is given in the correspond-
ing Github repository29. The Elsevier API was used to extract around 20 million image captions from Elsevier 
publications.

Named entity recognition (NER). The data extraction task was focused solely on the abstracts and figure cap-
tions within the corpus. Due to the nature of the role that they serve within the paper, these sections tend to 
be highly focused and contain very little information peripheral to the main hypothesis of the study2,3. This is 
relevant for the subsequent relation determination task which relies on a statistical count of triples and hence 
can be easily biased by noise from other sections.

A BERT-based NER model was used to classify every token in the document (i.e., abstract or figure cap-
tion) into one of seven categories: Materials (CHM), Symmetry Phase Label (SPL), Synthesis Method (SMT), 
Descriptor (DSC), Property (PRO), Characterization Method (CMT), and Application (APL)30. It is well known 
that BERT models perform best when their domain of application is concurrent with its domain of training and 
hence a MatBERT model31 - trained on a corpus of some 5 million papers on Material Science - was used as 
the base model. The specific NER schema and the performance of MatBERT on a test set have been evaluated 
elsewhere32.

Each extracted entity, its NER tag, part of text (abstract, caption) and the DOI of the paper from which it is 
extracted are stored as triples in the form [Entity, Tag, Part-of-text, DOI], resulting in a list of over 85 million 
triples.

Data cleaning. The raw strings extracted by the transformer-based NER model are subject to a variety of aber-
rations, enumerated as follows:

 1. Syntactic Variations: These encompass variations stemming from grammatical idiosyncrasies and diverse 
punctuation or notation. Examples include:
[‘electrodes.’, ‘electrodes,’, ‘Electrode’, ‘electrodes:’, ‘electrodes;’, ‘Electrodes’, ‘electrodes)’, ‘Electrodes:’, 
“electrode’s”, “electrodes”], [‘nano-hybrid’, ‘nano-hybrids’, ‘nanohybrid’, ‘nanohybrids’], [‘Microtwins’, 
‘micro-twins’]

 2. Semantic Variations: These refer to phrases with synonymous vocabulary but varied linguistic expres-
sions. For instance: [‘Dry Reforming Of Methane’, ‘Dry Reforming Of Methane Reaction’], [‘Light-Harvest-
ing Ability’, ‘Light-Harvesting Capability’]
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 3. Non-ASCII Entities: These consist of special characters such as Greek letters and mathematical symbols.
 4. Equivalent Entities: These phrases represent the same concept but utilize different vocabularies. Examples 

are: [‘CH4’, ‘Methane’], [‘NH3’, ‘Ammonia’], [‘SEM’, ‘Scanning Electron Microscope’]

In the current iteration of MatKG, equivalent entities remain unmodified. However, the graph-based formal-
ism lends itself well to downstream applications for identifying semantically similar entities.

To disambiguate and standardize other entities, we employ the following methodology:

 1. Entries containing purely non-ASCII characters, such as Greek letters, are purged from the database. This 
helps to maintain data uniformity and simplify processing, especially given the difficulty in distinguishing 
symbols denoting properties from those used as variables in equations.

 2. The remaining entities are sorted and clustered based on their Levenshtein edit distance using Python’s 
Fuzzy Sort algorithm. This effectively groups similar entities, for instance, [‘electrode’, ‘electrodes’], based 
on stringent thresholds of 95% and 90% fuzzy similarity. However, this approach may inadvertently group 
semantically dissimilar entities, such as [‘methanol’, ‘ethanol’] and [‘chemical age’, ‘chemical image’].

 3. Subsequently, the ChatGPT API is employed to deduce a canonical representation for each cluster of 
similar entities. For example, it returns ‘electrode’ as the canonical form for both ‘electrode’ and ‘electrodes’, 
while retaining disparate entities like ‘chemical age’ and ‘chemical image’ as distinct. The performance of 
ChatGPT on identifying chemical strings was specifically improved by using few-shot prompts that includ-
ed numerous examples of similar chemical terms, thereby enhancing its ability to recognize and differenti-
ate between such terms accurately.

 4. The canonical entity identified in step 3 is used to standardize all entities within its respective cluster.
 5. This entire sequence of operations is iterated five times.

The use of ChatGPT was found to be significantly helpful in identifying a general English language form of 
the entities under consideration and is crucial in the automation process. Indeed, recent studies have shown that 
ChatGPT outperforms crowd work in many tasks33. The exact prompt used for the API call is included in the 
code repository34.

Relationship determination. MatKG is constructed by merging rows that share identical DOIs. Specifically, 
consider two entities, E1 and E2, that are found under the same DOI, termed as DOI-1. If the database houses 
the triples [E1, Tag1, DOI–1] and [E2, Tag2, DOI-1], then a novel triple [E1, rel, E2] is created. In this context, 
rel is defined as Tag1-Tag2, and a co-occurrence frequency v is assigned to this triple, where v is the number of 
DOIs containing both E1 and E2.

For example, if Fe2O3 with an NER tag of CHM and ‘catalyst’ with an NER tag of APL are discovered to 
co-occur in 123 documents, then the triple [Fe2O3, CHM-APL, ‘catalyst’] is added to MatKG. Furthermore, a 
weight factor of 123 is affixed, thus forming the quartet [Fe2O3, CHM-APL, ‘catalyst’, 123]. Semantically, this 
signifies a strong material-application association between Fe2O3 and ‘catalyst’. Additional analyses from neigh-
boring nodes enable us to deduce that ‘catalyst’ is indeed an application for Fe2O3, particularly in the decompo-
sition of sulfuric acid35. The intricacies of such connections will be further elucidated in the section on technical 
validation.

Linking to other databases. The integration of external knowledge sources is an essential feature of knowledge 
graphs. Wikidata/DBpedia is a large-scale, open, and linked data knowledge base that serves as a central hub for 
the semantic web10. As such, it represents an invaluable resource for knowledge graph construction, especially in 
areas such as material science where there is a high degree of interdisciplinarity. Therefore, the entities in MatKG 
were searched within Wikidata and the corresponding URLs were recorded.

The outcome of this search is twofold. First, it enables the enrichment of MatKG with additional informa-
tion from Wikidata. For example, if a material entity in MatKG is linked to a chemical compound entity in 
Wikidata, additional information about the compound such as its molecular weight or boiling point can be 
added to MatKG. Second, it provides a mechanism for linking MatKG to other knowledge graphs and datasets 
that are already represented in Wikidata. This is important for enabling cross-domain knowledge discovery and 
integration.

The process of searching for MatKG entities within Wikidata was performed using a Python script that que-
ried the Wikidata API for each entity in the MatKG. The script utilized the Levenshtein distance algorithm to 
match the entity names in MatKG with those in Wikidata, allowing for the identification of potential matches 
with slight variations in spelling or formatting. The API returned a list of URLs corresponding to potential 
matches in Wikidata, which were then recorded and stored in MatKG as part of the entity metadata.

The inclusion of Wikidata URLs in the MatKG entity metadata provides additional contextual information 
and connections to external knowledge sources, allowing for more comprehensive and diverse data analysis. In 
cases where multiple URLs were returned for a given entity, the user can choose the one that is most relevant for 
their specific research task. The inclusion of Wikidata links also facilitates the integration of MatKG with other 
knowledge graphs and databases, enabling cross-disciplinary research and collaboration.

The SparkQL API of wikidata identified around 53740 entities that were found to have endpoint URL, repre-
senting 61 percent of all entities in MatKG. Additionally, the PyMatGen rest API was used to link 3000 chemical 
entities in MatKG with material records in the Materials Project12.
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Data Records
Knowledge graphs are frequently represented using specialized database languages, including but not limited 
to the Resource Description Framework (RDF)36, Labeled Property Graphs (LPG)37, Web Ontology Language 
(OWL)38, and JSON-LD39. Such formats facilitate the integration of these graphs into the broader semantic web 
and optimize their accessibility via existing search engines. It is important to note that each of these data formats 
have its own set of merits and limitations, making the choice of format contingent upon the specific objectives 
and constraints of the project. In the case of MatKG, the knowledge graph is articulated as an amalgamation of 
two distinct RDF graphs40, details of which are delineated in subsequent sections. For direct access to the raw 
data, we additionally provide the dataset in CSV file format40.

The dataset generated through BERT-based Named Entity Recognition (NER) models comprises an exten-
sive collection that associates a ‘raw entity’ with its corresponding attributes: ‘NER Tag’, ‘Part of Text’, ‘Digital 
Object Identifier (DOI)’, and ‘Preferred Entity’. The term ‘raw entity’ denotes the string as initially extracted, 
prior to any data cleaning procedures described in the Methods section. Following this cleaning process, the 
resultant form of the raw entity is designated as the ‘Preferred Entity’ and is included with each dataset entry. It 
should be noted that raw entries discarded during the cleaning stage are labeled with ‘None’ as their Preferred 
Entity. Additionally, to ensure a comprehensive record, the ‘Year’ corresponding to the publication of each DOI 
is appended to the dataset. The ‘NER Tag’ corresponds to one of the seven ontological categories, namely ‘CHM’, 
‘PRO’, ‘APL’, ‘SMT’, ‘CMT’, ‘DSC’, and ‘SPL’. The ‘Part of Text’ field indicates the source of the raw entity, dis-
tinguishing between the abstract (‘abs’) and the caption (‘cap’) of the document. This dataset, containing in 
excess of 85 million entries, serves as an exhaustive catalog of ontological categories in Materials Science, com-
plete with their respective mappings. The collection is disseminated in the form of a CSV file, denominated as 
‘ENTPTNERDOI’.

The [subject, relationship, objec, count] dataset is generated from ENTPTNERDOI through the procedure 
described in Methods. This dataset has 5.7 million entries as is denominated as SUBRELOBJ in the csv format.

Resource description framework database. A Resource Description Framework (RDF) database is a 
type of database that uses a standardized format for representing and exchanging information. RDF databases 
are particularly relevant for knowledge graphs because they enable the representation of data as a set of triples 
consisting of a subject, a predicate, and an object36. This structure enables the representation of complex relation-
ships between entities, facilitating efficient and flexible querying of the data. The subject is the resource being 
described, the predicate is the relationship between the subject and the object, and the object is the value of the 
relationship. The subject, predicate, and object are typically represented as URIs (roughly equivalent to a URL) 
or literals in RDF data41.

RDF databases can be queried using a standardized query language called SPARQL (SPARQL Protocol and 
RDF Query Language), which allows for complex queries across multiple triples and graphs42. SPARQL queries 
can be used to retrieve specific subsets of data from the RDF database, enabling researchers to extract meaning-
ful insights and patterns from the data. An example SPARQL query to retrieve the properties of graphene from 
MatKG is given in Table 1.

In the case of MatKG, we have created an RDF database using the python library RDFLib43 to enable efficient 
storage, retrieval, and querying of the vast amount of data captured in the knowledge graph. By representing 
MatKG as an RDF database, we are able to take advantage of the standard format and query language of RDF, 
as well as the many tools and technologies that have been developed to work with RDF data. This enables us to 

SPARQL Query

PREFIX ex:<http://example.com/>

SELECT?object?count WHERE

  ?index ex:hasSubject <http://example.com/CHM/Graphene>;

  ex:hasRelationship <http://example.com/CHM-PRO>;

  ex:hasObject?object;

  ex:hasCount?count.

ORDER BY DESC(?count)

Table 1. An Example SPARQL Query to extract the properties of graphene from MatKG.

Tag Number in Test Set Number disagreed % Disagreement

Application 74 2 2.7

Material 318 3 0.9

Characterization Method 111 6 5.4

Descriptor 101 6 5.9

Property 517 69 13.3

Synthesis Method 304 67 22.03

Symmetry Phase Label 75 19 25.3

Table 2. The annotater agreement/disagreement metrics of the entities in MatKG on a randomly selected test set.
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more easily integrate MatKG with other RDF-based knowledge graphs and to leverage existing RDF-based tools 
and frameworks for data analysis and visualization.

Specifically, MatKG is the union of two RDF Graphs, ENTPTNERDOI and SUBRELOBJ. The overall schema 
is described below and illustrated in Fig. 1

ENTPTNERDOI. The [‘raw entity’, ‘part of text’, ‘NER tag’, ‘DOI’, ‘year’] dataset is expressed as ENTPTNERDOI.
nt file with the following schema:

•	 Each row in the dataset serves as a distinct node in the ENTPTNERDOI graph.
•	 The raw Entity is denoted as a literal and is associated with its respective node via the predicate hasEntity.
•	 The part of text is denoted as a literal and is linked to the node through the predicate partOfText.
•	 The NER Tag is denoted as a literal and linked to the node by the predicate hasNER_Tag.
•	 The DOI is denoted as a URI and is linked to the node using the predicate hasDOI.
•	 The preferred entity  is denoted as a URI and is linked to the node using the predicate 

hasPreferredEntity.

In addition,

•	 The year is denoted as a literal and is linked to the DOI node using the predicate hasYear.

SUBRELOBJ. The [subject, relationship, object] triple is expressed as SUBRELOBJ.nt file with the following 
schema:

•	 Each row in the dataset acts as a unique node in the SUBRELOBJ graph.
•	 The subject is represented as a URI and is associated with its corresponding node through the predicate 

hasSubject.
•	 The object is also represented as a URI and is linked to its respective node via the predicate hasObject.
•	 The relationship is designated as a URI and is connected to the node using the predicate hasRelationship.
•	 The count is denoted as a literal and is associated with the node through the predicate hasCount.

The two RDF graphs, ENTPTNERDOI and SUBRELOBJ, are interconnected through specific nodes: the 
‘preferred entities’ node in ENTPTNERDOI and the ‘subject’ and ‘object’ nodes in SUBRELOBJ. Essentially, the 

Fig. 1 This schematic represents the MatKG RDF dataset schema, mapping out the interconnections between 
its elements. The central ‘ENTDOI Node’ links to the ‘Raw Entity’ and ‘NER Tag’ as well the bibliographic 
data via ‘Year’ and ‘DOI’. It interfaces with the ‘SUBRELOBJ Node’ that branches out to ‘Object’, ‘Subject’, and 
‘Relationship’ nodes, demonstrating the dataset’s relational structure. The ‘DBpedia’ and ‘Materials Project’ 
nodes indicate integration with external data sources and specific data subsets.
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URIs for the preferred entities in the ENTPTNERDOI graph are reused to create the subject and object nodes 
in the SUBRELOBJ graph. This congruency in URIs serves as a linking mechanism, enabling the association of 
[subject, relationship, object] triples in the SUBRELOBJ graph with the corresponding DOIs, years of publica-
tion, and part-of-text information present in the ENTPTNERDOI graph.

Further, the code base34 allows the identification of the most similar indexes from Wikidata/DBpedia and 
Materials Project to the ‘prefered entity’ URIs, allows crosssection of MatKG with these databases. Mapping 
to WikiData was chosen due to its comprehensive coverage and open-access nature, which aligns well with 
our goal of enhancing the accessibility and interconnectedness of materials science data. WikiData’s structured 
format and widespread use facilitate the integration of diverse data sources, making it an invaluable resource 
for expanding the reach and utility of MatKG. Similarly, the Materials Project was selected for its extensive data-
base of material properties and its prominence in the materials science community. By linking MatKG with the 
Materials Project through the PyMatGen rest API44, we are able to enrich our knowledge graph with detailed 
material property data, thereby enhancing the depth and practical applicability of MatKG for researchers and 
practitioners in the field.

technical Validation
As noted earlier, the extracted tokens have gone through several rounds of cleaning, checking, and assimilation 
from the NER extraction step. During this process tokens that do not meet the requirements of a controlled 
vocabulary such as incomplete strings (‘-methyl’, ‘-(OH)2’, ‘ reaction’, etc), syntactic and semantic variations of 
the same string (‘electroded’, ‘electrodes’, ‘reaction’, ‘reactions’, etc) and non-ascii character strings (‘rho’, ‘tau’, ‘phi’)  
are either removed, altered, or merged with a more suitable morphological representation. During this stage, 
the total number of extracted entities reduced from around half a million to just under 70,000 while the num-
ber of extracted triples diminish from 11 million to 5.4 million, suggesting that the cleaning process is able to 
concentrate the triple database.

For further validation, 1500 entities from the database were randomly selected and checked by five human 
annotators who were graduate students in Material Science. The entities were selected such that each annotator 
received 70% entities that had a high degree in the graph (>1000) while 30% had a low degree (<100). Since 
nodes with high degrees are present in a larger number of triples, ultimately this ensured that around 200,000 
rows were checked for morphological conformation and validity.

The annotators were presented with the NER tag of the entity and were asked to report if they agreed with the 
tag assigned to the entity by the MatBERT-NER model. The results of this experiment are presented in Table 2.

It is observed that for the categories of application, material, characterization method, and descriptor, the 
level of disagreement between the assigned tag and the model-defined tag is below 6 percent. For the synthesis 
and symmetry phase label categories, this number is higher but still less than 30% all entities in the category. It 
is important to note that certain entities may be difficult to strictly categorize as one or the other NER tag, hence 
such behavior is expected. However, a complete understanding of entities requires the consideration of multiple 
NER tags to capture the different aspects of the entity’s characteristics. The NER model’s performance is crucial 
in ensuring the accuracy of the knowledge graph, and the relatively low disagreement percentage indicates its 
suitability for the task.

Due to the size of MatKG, manually validating each extracted relationship is not feasible. To address this, 
co-occurrence frequency has been incorporated as a weighted parameter within the tripleset, functioning as 
an implicit validation method. Essentially, a higher co-occurrence frequency between two entities suggests a 
stronger correlation and, consequently, higher confidence in their relational association. It’s important to note 
that these relationships, extracted through statistical methods, can represent either actual causation, as seen in 
the example [‘TiO2’, ‘CHM-APL’, ‘Coating’], or mere correlation, like in [‘Alkyl Hydroperoxide’, ‘CHM-CHM’, 
‘Alkane’]. Currently, MatKG does not differentiate between causative and correlative relationships, as acknowl-
edged in the ‘limitations’ section.

However, even with this limitation, MatKG is a powerful knowledge base to query material science literature 
as shown in Fig. 2. In order to respond to the customized query “What are the applications of TiO2”, the top ten 
triples with the subject ‘TiO2’ and the relation ‘material-property' are extracted from MatKG. It is immediately 
seen that the top applications of TiO2 are as electrodes, for coating, as catalysts, for dye sensitized solar cells, 
photocatalysts etc. Following the same procedure it is seen that the top symmetry and phase labels associated 
with TiO2 are anatase, rutile, and perovskite. Similarly, for Cadmium Telluride the top applications are seen to 
be solar cells, optoelectronic detectors, back contacts, absorbers etc while the top properties are seen to be ‘sem-
iconductor’, ‘optical properties’, ‘bandgap’ etc. These agree with our knowledge of these materials and demon-
strate the ease with which MatKG can answer focused and nuanced queries from literature, thereby addressing 
one of the challenges mentioned in the introduction to this paper.

An extension of this procedure allows for the creation of specific bipartite graphs as shown in Fig. 3 where 
the top materials and properties associated with some applications are listed. It is seen that the top material 
associated with being a catalyst is ‘platinum’, which is also strongly associated with electrodes. Similarly, the key 
property associated with being a catalyst is ‘activity’, while the property associated with electrodes is ‘conductiv-
ity’. While these well known relations assert the validity of MatKG as a query and exploration tool, it should be 
noted that it is very difficult to extract these relations autonomously through other means at this time.

Limitations
MatKG represents a significant step forward in bringing materials science into the age of the semantic web, both 
in terms of the breadth of relations it captures and the size of the resulting graph. However, it is important to 
acknowledge the limitations of the methodology used to generate this knowledge base. Specifically, MatKG cap-
tures connections found in the studied corpus, rather than representing the entirety of materials science. With 

https://doi.org/10.1038/s41597-024-03039-z


7Scientific Data |          (2024) 11:217  | https://doi.org/10.1038/s41597-024-03039-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

a large corpus of 5 million papers, it is likely that many of the captured relations are asymptotically true while 
some may not hold up under scrutiny.

While statistical co-occurrence frequency is a useful measure for filtering out noisy correlations, it does not 
establish causation. For example, a material that is commonly used during a synthesis method and a material 
synthesized using that method will both have a high co-occurrence frequency for the material-synthesis method 
triple. However, the former is only a correlation, whereas the latter represents a true causal relationship. Even 
when there are strong correlations in the extracted triples, their precise relationship can still be different. For 
example, in MatKG both (‘In2O3’, ‘Optical Material’) and (‘Bismuth’, ‘Nuclear Reactor’) are connected by the 
relationship ‘CHM-APL’ indicating that the tuple connects a material to an application. However, In2O3 ‘is an’ 
optical material while Bismuth ‘is used in’ a nuclear reactor. Hence, it is important to make this distinction in 
the analysis of relations extracted from MatKG. Future versions of the graph can incorporate triples extracted 
using relationship extraction models that can add high fidelity without significant expression in text, thereby 
addressing this limitation.

Fig. 2 The image shows the top ten applications and properties of TiO2 and CdTe extracted from MatKG. (a–c) 
shows that the most common applications of TiO2 and CdTe are photocatalysts and solar cells respectively (b) 
shows that Anatase and Rutile are the main symmetry phase labels of TiO2 and (d) shows that semiconductivity 
and efficiency are the most commonly mentioned properties of CdTe.

Fig. 3 The figure presents bipartite graphs extracted from MatKG, depicting representative relationships 
between materials and their applications, as well as properties and their applications. For each application, two 
highly relevant connections are shown.
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Usage Notes
The RDF Datasets and the processed CSV files for ENTPTNERDOI and SUBRELOBJ are given in https://doi.org/ 
10.5281/zenodo.1002272640.

The github repository34 contains detailed tutorial style notebooks that demonstrate:

 1. The extraction of the [subject, relationship, object] database from ENTPTNERDOI.csv file
 2. The creation of the RDF graphs ENTPTNERDOI.nt and SUBELOBJ.nt from their respective csv files
 3. SPARQL based querying of the two RDF graphs to generate Figs. 2, 3 and Table 1.
 4. Linking of entities in the RDF graphs to Wikidata and to the Materials Project

The dataset and the code base allows easy reproduction of the data, as well as nuanced focused query of 
MatKG.

Code availability
The code base is made available in34 as noted above.
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