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Metabolism Regimes in Regulated 
Rivers of the Illinois River Basin, 
USa
Judson W. Harvey   ✉, Jay Choi & Katherine Quion

Metabolism estimates organic carbon accumulation by primary productivity and removal by respiration. 
In rivers it is relevant to assessing trophic status and threats to river health such as hypoxia as well as 
greenhouse gas fluxes. We estimated metabolism in 17 rivers of the Illinois River basin (IRB) for a total 
of 15,176 days, or an average of 2.5 years per site. Daily estimates of gross primary productivity (GPP), 
ecosystem respiration (ER), net ecosystem productivity (NEP), and the air-water gas exchange rate 
constant (K600) are reported, along with ancillary data such as river temperature and saturated dissolved 
oxygen concentration, barometric pressure, and river depth and discharge. Workflows for metabolism 
estimation and quality assurance are described including a new method for estimating river depth. IRB 
rivers are dominantly heterotrophic; however, autotrophy was common in river locations coinciding 
with reported harmful algal blooms (HABs) events. Metabolism of these regulated Midwestern U.S. 
rivers can help assess the causes and consequences of excessive algal blooms in rivers and their role in 
river ecological health.

Background & Summary
Aquatic metabolism measures the balance between organic carbon accumulation by primary productivity of algae 
and other autotrophs and the rate of carbon removal by respiration of autotrophs and heterotrophs such as bac-
teria. River metabolism is relevant to assessing causes and consequences of eutrophication such as hypoxia, serv-
ing as an early warning indicator of changing river functions and health as well as indicating shifts in greenhouse 
gas emissions1,2. Here we focused on metabolism of regulated rivers in the Illinois River basin (IRB) where river 
algal blooms and associated toxins have been reported3–7. To quantify metabolism, the rate of oxygen production 
and consumption in the aquatic system is measured over time to estimate gross primary productivity (GPP) and 
ecosystem respiration (ER). GPP is a positive quantity that estimates the daily growth rate of autotrophs and 
ER is a negative quantity that estimates the daily rate of organic carbon loss by organism respiration including 
respiration of autotrophs and respiration associated with microbial decomposition of detrital organic matter.  
The sum of GPP and ER is the net ecosystem productivity (NEP), which estimates the daily balance between 
organic carbon build up and depletion in the system by primary productivity and respiration. To use the oxygen 
balance method to estimate metabolism it is necessary to also quantify the rate of dissolved oxygen exchange 
with the atmosphere, which depends on water temperature and atmospheric pressure as well as water mix-
ing and turbulence. As methods improve to measure metabolism, the numbers of studies have substantially 
increased. However, most long-term estimates in flowing waters are confined to small streams and wadable 
rivers2.

For the present study we estimated aquatic metabolism at 17 river sites in the Illinois River basin (IRB)8 
that encompassed extensive agricultural areas and a major metropolitan area in northeastern Illinois as well as 
agricultural and suburban areas in northwestern Indiana and in southern Wisconsin that drain to the Illinois 
River (Fig. 1, Table 1).

The selected IRB sites represent a variety of river sizes and characteristics, including mainstem sites on the 
Illinois River as well as several large tributaries and a few smaller streams. The Illinois River is substantially reg-
ulated by a series of locks and dams to maintain minimum water levels for navigation through the upper Illinois 
River as it enters the Des Plaines River tributary and headwaters of the Chicago Area Waterway System (CAWS). 
Not surprisingly, water quality and ecological conditions are substantially impaired in IRB rivers, including high 
nutrients and suspended sediments3,4. Large tributaries of the Illinois River include the Kankakee River which 
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drains large areas of corn and soybean agriculture and has been dredged and straightened to increase its con-
veyance, and now has significant problems with high turbidity and sedimentation3. The Fox River flows through 
agricultural areas in southern Wisconsin and then traverses the western edge of the Chicago urban corridor 
before joining the Illinois River5. Dam storage in the Illinois and Fox Rivers maintains significant water depths 
and lengthens water residence times while also increasing water clarity4. Recently, excessive plankton blooms 
and associated algal toxins have been observed in the Illinois and Fox Rivers5–7.

The type of autotrophs in water bodies (e.g., benthic vs. planktonic algae vs. submerged aquatic vegetation) 
depends on light availability which is affected by tree and bank shading and water-column light attenuation, 
disturbance frequency and severity, and other factors1,2. Benthic algae are usually thought to dominate GPP in 
streams and small rivers where the river bed is illuminated1,2. Many benthic algal species are adapted to shading 
by forest canopies, as well as the high-flow events that scour stream beds and disrupt GPP2. Planktonic algae are 
usually thought to dominate in lakes, reservoirs, and estuaries; however, the expectation for large rivers is less 
clear9. However, unshaded rivers with low or moderate turbidity have the potential for high water-column GPP 
from phytoplankton growth8,9.

Phytoplankton and harmful algal blooms (HABs) have increasingly been observed in large rivers and res-
ervoirs of the Midwest and Great Plains areas of the United States such as the Kansas, Ohio, and Mississippi 
Rivers10–13, as well as in the Illinois River5–7 and elsewhere14,15. Flow extremes are moderated in regulated rivers 
such as the Ohio, Mississippi, and Illinois Rivers where locks and dams lengthen the water residence time and 
increase the water clarity in the quiescent river pools between the dams16,17. Regulated rivers also often have 
abundant nutrient supply3–6 which can support phytoplankton blooms during low flow periods, when water 
residence time is prolonged, when water is warmer than average, and when turbidity from suspended sediments 
is often at its lowest16,17.

Chlorophyll-a (chl-a) is often used as a measure of phytoplankton, however, riverine chl-a can reflect a 
myriad of algal types and is not distinctly diagnostic of phytoplankton18. Also, the relationship between chl-a 
and autotrophic biomass may vary greatly depending on light, nutrients, temperature, and other factors19. Use 
of metabolism metrics in rivers can improve understanding of the drivers of river algal blooms20 and can help 
anticipate future changes in river health21–23. For example, changes in the sign of NEP and in the temporal corre-
lation of GPP and ER can signal changes in the relative importance of phytoplankton versus submerged aquatic 
vegetation as dominant primary producers in rivers21.

Fig. 1 Seventeen river sites in the Illinois River Basin (IRB) selected for metabolism modeling. Site names and 
numbers reference data sourced from the U.S. Geological Survey National Water Information System (USGS | 
National Water Dashboard).
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Most previous metabolism estimation in rivers was focused on streams and small rivers2. To motivate further 
use of the IRB metabolism data8, we plotted long-term average metabolism for 17 IRB river sites (Fig. 2). Like 
many heterotrophic streams and rivers that process substantial inputs of allochthonous organic matter1,2,9,23, the 
metabolism of IRB rivers was generally heterotrophic (Fig. 2).

The overall productivity of IRB rivers (mean GPP = 2.77 g O2 m−2 d−1) was representative of the relatively 
high productivity of a subgroup of 18 high productivity “unshaded and stable flow” rivers evaluated as part of 
a study of 220 rivers and streams2 (Fig. 2). Productivity was generally higher in unshaded and stable flow rivers 
compared to most other streams and rivers because of greater light availability and because smaller variations 
of river discharge disturb autotrophs less frequently2. Only one of our IRB study rivers (Fox R. with an average 
GPP of 7.13 g O2 m−2 d−1) was a standout in productivity compared to the unshaded and stable flow subgroup. 
However, nearly all IRB rivers were substantially higher (more negative) in ER (mean ER = −6.05 g O2 m−2 d−1) 
compared with the unshaded and stable flow subgroup from the broader analysis2 (Fig. 2).

Our dataset indicates that IRB river metabolism is heterotrophic overall (mean IRB river NEP = −3.28 g 
O2 m−2 d−1), however, IRB rivers were intermittently autotrophic, accounting for between 1 and 56% of the 
measured days (Table 6 and Fig. 2). At one extreme the Kankakee and Des Plaines Rivers were usually strongly 
heterotrophic and were only autotrophic on 1% and 5% of days, respectively. At the other extreme the Illinois 
River and Fox Rivers were autotrophic 33% and 43% of days, respectively. Tributaries were intermediate in their 
autotrophy ranging between 12% and 23% of days (Table 6 and Fig. 2).

Frequent autotrophy in rivers is an indicator but does not in itself imply phytoplankton production21. 
However, the correspondingly high chlorophyll-a (chl-a) measurements in the Illinois and Fox Rivers6 com-
pounded with visual reporting and analytical determinations of planktonic algae5,7 indicate that phytoplankton 
blooms are common in the IRB. We encourage further analysis of our IRB river metabolism data set8 in the con-
text of water quality24,25 and river conditions26–28 to better understand the triggers and consequences of riverine 
planktonic algal blooms, in the IRB and elsewhere.

Methods
Initial site selection for metabolism estimation in IRB rivers was based on the availability of dissolved oxygen 
data accessed from the U.S. Geological Survey National Water Information System25 (USGS NWIS). We used the 
USGS | National Water Dashboard link to help identify NWIS site numbers with the needed input data. USGS 
scalable maps of water-quality data collection sites that are available at that site were consulted. Potential river 
sites were identified by searching all “stream type” sites including “streams”, “canals”, and “ditches” with at least a 
year of continuous collection of dissolved oxygen data (i.e., generally 15-minute intervals). Sites were excluded 
that were obviously not lotic in character, e.g., wetlands, ponds, gravel pits, which resulted in identifying seven-
teen IRB river sites that were appropriate for modeling long-term metabolism. Selected sites were linked to the 
National Hydrography Dataset (NHDPlus)26 to take advantage of documented river and catchment attributes.

Site Name USGS NWIS Number Latitude Longitude
Presence of Lock and Dam 
(LD) Regulation

Period of Data 
Availability

ILLINOIS RIVER AT FLORENCE, IL 05586300 39.63278 −90.60778 downstream of LaGrange LD 2012-06-02 2021-01-01

ILLINOIS RIVER AT HENRY, IL 05558300 41.10722 −89.35611 between Marseilles and 
Peoria LD 2018-06-06 2020-12-31

ILLINOIS RIVER AT STARVED ROCK, IL 05553700 41.32476 −88.98397 between Marseilles and 
Peoria LD 2018-06-05 2020-12-31

ILLINOIS RIVER AT SENECA, IL 05543010 41.29972 −88.61417 between Dresden and 
Marseilles LD 2013-06-27 2020-12-13

FOX RIVER NEAR MCHENRY, IL 05549500 42.31002 −88.25147 2018-08-27 2020-10-22

FOX RIVER (TAILWATER) AT ALGONQUIN, IL 05550001 42.16194 −88.29389 2016-06-30 2018-10-11

DES PLAINES RIVER AT ROUTE 53 AT JOLIET, IL 05537980 41.53639 −88.08250 between Chicago CAWS and 
Brandon LD 2017-11-16 2020-12-31

DES PLAINES RIVER AT ROCKDALE, IL 05538010 41.50500 −88.09972 between Chicago CAWS and 
Brandon LD 2015-08-14 2017-03-21

DES PLAINES RIVER IN LOCK CHANNEL AT 
ROCKDALE, IL 05538020 41.50000 −88.10694 between Chicago CAWS and 

Brandon LD 2015-08-14 2020-12-31

KANKAKEE RIVER AT SHELBY, IN 05518000 41.18281 −87.34031 2015-12-04 2020-12-31

KANKAKEE RIVER AT DUNNS BRIDGE, IN 05517500 41.22004 −86.96836 2016-04-08 2020-12-31

KANKAKEE RIVER AT DAVIS, IN 05515500 41.38964 −86.70617 2013-12-04 2020-12-31

IROQUOIS RIVER NEAR FORESMAN, IN 05524500 40.87059 −87.30669 2018-12-14 2020-12-31

GRAND CALUMET RIVER AT COLUMBIA AV AT 
HAMMOND, IN 05536356 41.61861 −87.49983 2020-03-18 2020-10-12

LICK CREEK NEAR WOODSIDE, IL 05576100 39.71554 −89.70244 2015-06-29 2018-11-29

SUGAR CREEK NEAR CHATHAM, IL 05576195 39.65908 −89.65894 2015-06-13 2018-11-29

KICKAPOO CREEK NEAR BLOOMINGTON, IL 05579630 40.45833 −88.8775 2011-03-24 2015-07-14

Table 1. Site name, U.S. Geological Survey National Water Information System (NWIS) site number, 
geographic coordinates, presence of lock and dam regulation, and period of data availability for metabolism 
modelling at the study of 17 IRB river sites.
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We used USGS data retrieval software (dataRetrieval)29 to download between one and nine years of data 
from 17 selected IRB river sites (Table 1) including all continuous (sub-daily) measurements of dissolved oxy-
gen concentration, water temperature, specific conductivity, continuous daily water discharge and gage height 
(Table 2), as well as downloading infrequently collected channel field measurements (Table 3). Barometric pres-
sure was obtained separately through a request to NOAA30 using site latitude and longitude to select the closest 
nearby measurement location for each river site. All of the dissolved oxygen (DO) data used in this study were 
quality assured and approved by the USGS. The DO data are expected to be of high quality because they were 
collected after 2010, after the use of optical DO sensors had become standard practice. Although it did not apply 
to our IRB data, recently collected USGS data that is available for download is sometimes provisional and not 
yet quality assured.

To model metabolism we took advantage of recent advancements with state-space models that simultane-
ously estimate three unknown metabolism variables, GPP, ER, and K600

31–33. Generally, models converge bet-
ter and produce physically realistic estimates when GPP > rate of air-water oxygen exchange, a condition that 
accentuates diel variation in dissolved oxygen concentration and increases the signal-to-noise ratio that aids 
model identification of the competing influences of GPP, ER, and K600. Nevertheless, metabolism estimation 
remains a challenge because of the potential difficulties in estimating three co-related parameters from a single 
oxygen time series.

To model metabolism in IRB rivers we used the streamMetabolizer R package (https://github.com/USGS-R/
streamMetabolizer), a widely tested and well documented state-space metabolism model33. This model uses the 
one-station modeling approach that assumes that sensor data collected at a single point in a river is representa-
tive of a well-mixed water column. The accuracy of DO measurements is also important; however, the measure-
ment accuracy has improved substantially since high-quality optical dissolved oxygen sensors began being used 
routinely (approximately 2005). Furthermore, the model does not quantify anaerobic respiration that is some-
times significant in low-oxygen rivers. In addition to assuming well-mixed conditions, the one-station modeling 
approach assumes homogenous upstream conditions affecting metabolism for a distance that is assumed to be 
proportional to v/K where v is stream velocity and K is the gas exchange coefficient.

The governing mass balance equations equate the instantaneous rate of change in DO [O2] in the river with 
the sum of the rates of DO inputs and outputs by metabolism and gas exchange32. Expressed as volumetric rates, 
the mass balance for DO is:

= + +
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where d[O2]/dt is the rate of change in water column O2 [mg O2 L−1 d−1]; Pt is the instantaneous volumetric 
rate of oxygen addition by gross primary production [mg O2 L−1 d−1]; Rt is the instantaneous volumetric rate of 
oxygen removal by respiration [mg O2 L−1 d−1]; and Dt is the instantaneous volumetric rate of air-water oxygen 
exchange [mg O2 L−1 d−1]. By the definition, Pt should be greater than or equal to zero, Rt should be less than or 
equal to zero, and gas exchange, Dt, can take either sign. The streamMetabolizer model33 restructured the oxygen 
balance expressions by using long-term oxygen times series to estimate daily metabolism variables through the 
solution of the following equations:
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Fig. 2 Average gross primary productivity (GPP) versus ecosystem respiration (ER) in regulated rivers and 
various tributaries of the Illinois River Basin (IRB), USA. IRB study rivers are distinguished by symbol color 
with symbol size scaled by mean river discharge. Dashed line denotes where net ecosystem productivity (NEP) 
equals zero and separates heterotrophic from autotrophic conditions. The orange cross shows the approximate 
inter-quartile range of average GPP and ER for 18 “unshaded and stable flow” rivers in the United States2.
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where GPP is the daily areal average rate of primary production (g O2 m−2 d−1), ER is the daily areal average rate 
of respiration [g O2 m−2 d−1], and K600 is the daily average gas exchange rate constant normalized for molecular 
properties and temperature to a Schmidt number of 600 [day−1]. Variables with subscript t are instantaneous val-
ues that are typically estimated from 15-minute interval measurements. The rate of gas exchange, Dt, is the prod-
uct of the rate constant and the deficit between actual and saturated concentrations of dissolved O2. Rather than 
fit actual gas exchange, i.e., the K2,t value, the model fits K600, so that only one standardized gas-exchange-related 
parameter per day need be reported that still captures and reflects the within-day variation in gas exchange rates 
caused by diel variation in temperature. Additional variables are h, mean river depth representing the width and 
upstream length of the reach affecting the oxygen balance [m]; PPFD, photosynthetic photon flux density [μmol 
photons m−2 d−1]; Osat,t, saturated O2 concentration [mg O2 L−1]; Omod,t, model estimated O2 concentration 
[mg O2 L−1]; K2,t, O2-specific and temperature specific gas exchange coefficient [day−1]; Tt, water temperature 

Parameter Source USGS Parameter Code Definition
Use in stream metabolism 
modeling

Dissolved Oxygen USGS NWIS 00300 Dissolved oxygen, water, unfiltered, 
milligrams per liter • Estimate GPP and ER

Specific Conductance USGS NWIS 00095
Specific conductance, water, 
unfiltered, microsiemens per 
centimeter at 25 degrees Celsius

• Convert to salinity, then 
used in calculation of 
dissolved oxygen saturation

Water Temperature USGS NWIS 00010 Temperature, water, degrees Celsius • Used in calculation of 
dissolved oxygen saturation

Discharge USGS NWIS 00060 Discharge, cubic feet per second • Constraining K600 estimates

Gage Height USGS NWIS 00065 Gage height, feet • Estimating river depth

Barometric Pressure NOAA Not applicable Air pressure, millibar
• Used in addition to specific 
conductance and temperature 
to calculate dissolved oxygen 
saturation

Table 2. List of data sources for metabolism modeling including USGS data obtained using USGS data retrieval 
software29 and NOAA National Centers for Environmental Information, U.S. Local Climatological Data (LCD)30.

Parameter Units
Calculation description and package::function(s) 
used Required Inputs

Oxygen Saturation percent (%) streamMetabolizer::calc_DO_sat() water temperature, air pressure (from 
NOAA), salinity

Light Intensity photon density 
(μmol m−2 s−1) streamMetabolizer::calc_light() solar time, latitude, longitude

Solar Time
Mean solar 
(exactly 24 hours 
between solar 
noons)

streamMetabolizer::convert_UTC_to solartime() time in Coordinated Universal Time 
(UTC), longitude

River Depth meters

Develop linear rating curves to estimate river depth 
and velocity from channel field measurements obtained 
using dataRetrieval::readNWISmeas())

Required to use 
dataRetrieval::readNWISmeas():

 1. USGS site number

 2. start date

 3. end date

or

Use the equation (hhgc = c*(Q)f) where hhgc is the river 
depth estimated by hydraulic geometry, c and f are 
hydraulic geometry coefficients, and Q is continuous 
discharge

Use dataRetrieval::readNWISmeas() to 
download field measurements

 1. channel width

 2. channel cross sectional area

 3. discharge

 4. gage height

Table 3. Parameters calculated from source data for metabolism modeling.
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[°C]; and S, Schmidt number coefficients: SA = 1568, SB = −86.04, SC = 2.142, and SD = −0.0216. The solution 
approach is described in detail in Appling et al.33.

River depth estimation. River depth is necessary for metabolism estimation and the accuracy of depth 
estimation has a directly proportional effect on the estimation accuracy of GPP and ER. An approach previously 
underutilized for depth estimation in multi-river metabolism studies is using channel field measurements by the 
U.S. Geological Survey. We used a linear rating curve approach for estimating river depth that was based on USGS 
field measurements of channel width, channel area, gage height, channel discharge and channel cross-section 
average velocity. We obtained those field measurements from USGS NWIS25 using the dataRetrieval29 function 
“readNWISmeas()” that referenced USGS NWIS site number and start and end date, which often returned tens 
of field measurements for each site during the period of interest.

To use the linear rating curve approach to estimate river depth, the cross-section averaged depth was deter-
mined for days with field measurements by dividing the measured flow cross section by the wetted channel 
width:

h A w/ (6)fm fm fm=

where hfm is the field measured river depth, Afm is the field measured channel cross-sectional area, and wfm is the 
field measured wetted width of the river.

River depth for all model days was estimated from a linear estimation equation:

h m GH b (7)= ⋅ +

where h and GH are river depth and measured gage height, respectively, and model coefficients m and b for this 
equation were determined from a linear regression of the field measured river depth against measured gage 
height on the days of the field measurements.

Usually, we excluded USGS field measurements rated as “poor” from the regression of field measured river 
depth on gage height. At some sites, however, most of the field measurements, and sometimes all of them, were 
rated as poor. Nevertheless, if the gaging cross section was representative of upstream conditions, we usually 
judged that using field measurements to estimate river depth was superior to hydraulic geometry estimation of 
river depth no matter what the quality rating of the field measurements. The preferred water depth estimation 
method for each site is noted in Table 7.

We used the linear rating curve estimation approach for estimating river depth at thirteen of the seventeen 
IRB river sites where the river width at the sensor location was representative of upstream conditions (see details 
in next section). However, four of the seventeen river sites were located at relatively narrow control sections for 
which river depth estimates at the sensor location were not representative of upstream conditions. For those 
sites we used a hydraulic geometry approach34 to estimate cross-section average river depth, h, estimated from 
hydraulic geometry as:

h c Q (8)hgc
f= ⋅

where c and f are hydraulic geometry coefficients35 for each of the river reach codes (comID26) associated with 
our IRB river sites, and Q is continuous discharge at the IRB river site.

assessing site representativeness of river conditions. The one station method for estimating metab-
olism depends on the measurement site representing both local and upstream conditions that affect metabolism 
estimates. A well-mixed water column, both vertically and laterally, is assumed with longitudinal consistency 
in river physical and biological conditions34. Those assumptions have been examined theoretically36 but are not 
often tested at field sites. For the present study we assessed the consistency of river width at the oxygen sensor 
site with river width upstream to evaluate whether the local measured river depth was representative of upstream 
conditions.

It is not unusual for USGS gaging and sensor measurement cross sections to be located at “control sections” 
that are narrower than average for the river reach, in which case the field measurements from the cross section 
may differ from the reach average. Both the average river depth and average velocity could be overestimated in 
a narrower than average measurement cross section. We consulted the USGS “water-year summary” for each 
site25 and we visually examined the gaging cross section and upstream conditions using publicly available aerial 
imagery (https://www.google.com/maps). The sensor location and gaging cross section where depth was meas-
ured by USGS field crews was determined from the description provided in the water-year summary25. Using the 
imagery, we examined the consistency of river width at the measurement site for approximately 10 kilometers 
upstream of the oxygen measurement site. Because the regulated rivers of the IRB were relatively consistent in 
width, we could estimate the river depth at most sites using the linear rating curve approach as described in the 
previous section.

To accurately estimate river metabolism, we also had to be concerned how close the site was to upstream 
flow regulation structures, e.g., locks and dams, or lakes. If close enough, those features affect dissolved oxygen 
concentrations in ways that disrupt the river metabolic signals being modeled at the sensor site. Proximity is 
usually judged by estimating the “metabolism reach length”, i.e., the distance required for substantial turnover 
of the dissolved oxygen in the water column by gas exchange with the atmosphere. Metabolism reach length was 
estimated as the river distance required for 80% turnover in river dissolved oxygen by gas exchange34, i.e., the 
distance where upstream river conditions are likely to influence metabolism calculations. For each day in each 
river, we estimated the metabolism reach length as:

https://doi.org/10.1038/s41597-024-03037-1
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v
K

metabolism reach length ln(1 0 8)
(9)O2

= − − .

where v is the cross-section averaged river velocity in m d−1, and KO2
 is the air-water exchange coefficient for 

oxygen that was calculated from the K600 using the measured water temperature and published analysis equa-
tions and coefficients33. Cross-section averaged river velocity was estimated by dividing daily average discharge 
by the estimated cross-sectional channel area for that day:

v Q A/ (10)fm=

where Afm is the field measured channel cross-sectional area. A for each modeled day was estimated using a 
linear estimation equation:

A m GH b (11)= ⋅ +

where GH is gage height and m and b for this equation are model coefficients determined from a linear regres-
sion of the field measured cross-sectional channel area against measured gage height for the days of the field 
measurements.

To compare the estimated metabolism reach length with field conditions, we measured the distance from the 
metabolism sensor site to the nearest upstream flow regulation structures, e.g., lock and dam, or lake, by visual 
inspection of publicly available aerial imagery (https://www.google.com/maps) where we used that product’s 
measurement tool to estimate the distance from the metabolism sensor site.

Workflow for modeling IRB river metabolism. We used R Statistical Software37 to process existing 
data to create model inputs, verify model inputs, run the streamMetabolizer model, and post-process and quality 
assure the results (Fig. 3).

The broad outlines of the workflow are documented in Fig. 3 and Table 4 and briefly summarized here. 
Running the first script time-matched the downloaded data, converted units, and filled time gaps less than 
3 hours by linear interpolation. Running script 2 calculated model input variables such as solar time, saturated 
dissolved oxygen concentration, river depth, and estimated a proxy for light intensity at the river surface, and 
produced an output file compatible with the requirements of streamMetabolizer. The script 2 calculations were 
based on published functions34, except for the new method of estimating river depth discussed in the “River 
depth estimation” section.

Running script 3 provided a consistency check with script 1 outputs before running script 4 to run the 
streamMetabolizer model. Script 5 post processes the model outputs to produce results and model diagnostics 
where daily metabolism results are flagged based on established criteria34. Also provided are plots for visual 
evaluation of the results as well as censored versions of metabolism output files that remove results for all days 
that were flagged. Details are provided in the “Quality assurance” section. Table 4 summarizes script operation in 

Fig. 3 Workflow overview showing data processing and preparation of input files, model execution, post 
processing and quality assurance of model results.

https://doi.org/10.1038/s41597-024-03037-1
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data acquisition, preparation of inputs, running the model, and post-processing outputs to evaluate and quality 
assure the model results.

Running the metabolism model. We ran streamMetabolizer version 0.12.0 on a laptop using R version 
4.1.137. Computational times varied between 1 and 12 hours per site, with the two IRB sites with more than 5 years 
of record (Kankakee River at Davis and Illinois River at Florence) needing to be split into approximately 3-year 
segments to facilitate run completion. We used the streamMetabolizer option for Bayesian partial pooling in our 
models, which conditions estimates of K600 based on the expectation that K600 varies as a function of discharge. 
Appling et al.33 showed that partial pooling helps improve model performance because, although partial pooling 
does not impose a strict relationship between K600 and discharge, it establishes an across-day, piecewise linear 
relationship between ln(K600) and ln(Q) that helps improve the estimation of GPP, ER, and K600. Models were run 
with the recommended setup using four Monte Carlo Markov Chains and 1000 warmup steps. The streamMetab-
olizer model calculates values of the Gelman-Rubin statistic for observational error, R

obs
�

σ , process error, �R
procσ , and 

K600 estimation error, R
K600

�
σ , with values ≤ 1.1 used as an initial screening criteria to indicate that model converged 

adequately38,39. Many of the IRB models converged on first run, but if unsuccessful, we ran the models again after 
increasing the number of burn-in steps to 1500. After the model runs were completed, we compiled the results 
and used the final diagnostic values reported by streamMetabolizer in our quality assurance steps. Also, at several 
river sites we tested the influence of using the default initial values for GPP, ER, and K600 provided in streamMe-
tabolizer by varying initial values by approximately a factor of two and finding that model outcomes were robust.

Quality assurance. Daily model outputs were flagged based on indicators of poor signal to noise strength of 
the modeled timeseries, and indicators of biologically and physically unrealistic outcomes for GPP, ER, and K600. 
For Flag 1, we compared each day’s coefficient of determination of modeled oxygen, R2

det against a threshold to 
assess signal to noise strength. For Flag 2 and 3, we assessed biologically unrealistic values of GPP and ER, respec-
tively, following a previous example34 that allowed for slightly negative GPP and slightly positive ER outcomes to 
reflect error variation. Lastly, for Flag 4 we assessed physically unrealistic values of K600 (Table 5).

Our overall confidence assessments in metabolism outcomes followed Appling et al.34 (Table 5). We assessed 
the percentage of days that estimated GPP, ER, and K600 fell outside biologically or physically realistic thresholds 
as well as assessing model convergence statistics (R�) that could indicate inadequate convergence of parameter 

Script Name and Task When and Why Details

1_Process-Data.R
Data processing & general 
formatting

First script in the workflow
Processes raw data into input 
parameter time series

• Raw data from NWIS (DO, water temperature, specific 
conductance, discharge, and gage height) and from NOAA (air 
pressure) are operated on
• Daily (dv) gage height is joined to gage dataframe for sites where 
it is the only gage data available for a site
• Air pressure data from NOAA is joined and formatted
• Salinity is calculated from specific conductance
• Converts data to metric units when applicable
• Time matches all series to 15-minute timesteps
• Fills gaps that are < 3 hours by linear approximation

2_Prepare-Model-InputFiles.R
Model-specific formatting & 
calculations

Second script in workflow
Combines the processed source data 
into required streamMetabolizer 
model input format

• Merges DO, water temperature, salinity, discharge, gage height, 
and barometric pressure data into one data frame
• Calculates river depth using 1) USGS field measurements, and/or 
2) using published hydraulic geometric coefficients
• Converts Coordinated Universal Time (UTC) to solar time
• Calculates saturated concentration of dissolved oxygen and light 
intensity using streamMetabolizer functions
• Exports model input files prepared for streamMetabolizer

3_Verify-Model-InputFiles.R 
(optional)
Plot formatted data and 
compare with processed source 
data for consistency

Third script in workflow; skipped 
after user gains confidence
Visual check confirms integrity of 
model input from script-2

• Reads the initially processed data for DO, temperature, and 
discharge (do.csv. temp.csv, disch_gage.csv)
• Reads prepared model input file
• Plots processed data versus input data as a consistency check for 
DO, temperature, and discharge that verifies integrity of model 
input file

4_Run-streamMetabolizer.R
Run streamMetabolizer model

Fourth script in workflow
Provides input file and runs 
streamMetabolizer; guides re-run 
to improve model convergence if 
needed

• Reads the model input file
• Reads lnQ min and max needed for partial pooling
• Runs streamMetabolizer model
• Model re-runs with more burn-in steps if R2 of ER-K600 > 0.5 
(high ER-K600 correlation) or if R obs

�
σ , R procσ

� , or σR K600
�  >1.1 (exceeds 

model convergence threshold)
• Export input data, modeled DO, final model daily outputs, and 
model_performance_summary.csv with performance diagnostic 
metrics

5_PostProcess-
ModelOutputs.R
Flag/censor modeled outputs 
based on criteria and create 
plots for analysis

Fifth script to be run in workflow
Provides versions of flagged and 
censored model outputs using 
diagnostics delivered by model, 
creates plots for analysis

• Reads in model input and output file
• Flags daily output using four criteria to help identify potentially 
unreliable model estimates
• Exports complete model output .csv with flags as well as a 
censored .csv that removes output for days with any flag
• Exports pdf of plots that include GPP, ER, NEP, K600, discharge, 
and depth; DO daily range, DO fraction saturation range, and 
temperature for analysis
• Additional plots can be enabled

Table 4. Summary documentation of scripts.
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estimates. Lastly, we assessed potential interference in metabolism estimation depending on proximity of nearest 
upstream dam or lake (Table 5).

To evaluate overall confidence in metabolism results for IRB rivers, we ranked each river based on combining 
the individual rankings for the five criteria [(Table 5)]. A river site’s individual ratings needed to be high for all 
five metrics for that site’s metabolism overall output to rank as “High” in confidence. A single low rating for any 
criterion earned a “Low” overall confidence assessment. All other combinations of individual ratings earned a 
“Medium” overall confidence assessment for a river site’s estimated metabolism (Table 5).

Data Records
Our U.S. Geological Survey data release8 (https://doi.org/10.5066/P9TEBOUR) presents long-term aquatic 
metabolism estimation at 17 river sites in the IRB. The principal outcomes are 15,176 daily estimates of GPP, 
ER, and K600 accompanied by sub-daily input timeseries of dissolved oxygen, temperature, barometric pressure, 
and river depth and discharge, as well as diagnostic metrics and statistics which we used to assess the quality of 
model outcomes. Our source data for the IRB (Table 1) had only minimal overlap encompassing a partial record 
for one site, DES PLAINES RIVER AT JOLIET, IL, with a previous multi-river modeling study40.

Metabolism estimates for the Illinois River and Fox River indicate that autotrophic conditions occur between 
14 and 56% of days compared to the Kankakee and Des Plaines Rivers, which experienced autotrophy on just a 
few percent of days (Table 6). Metabolism in the regulated rivers of the IRB can be informative about hydrologic, 
biogeochemical, and ecosystem health issues in larger rivers managed for navigation. We particularly encourage 
use of the IRB river metabolism data8 by joining with other IRB data sets24 to identify and isolate drivers and 
develop early warning indicators of planktonic algal blooms in rivers.

Data release file structure. Our data release8 provides files documenting metabolism estimation for 17 
IRB rivers and the associated workflow. The main landing page of the USGS data release includes the metadata, 
readme file, and scripts (R code), and from there two child items that can be accessed leading to “Input data” and 
“Output data” pages, each with additional metadata and downloadable files. The data release can be accessed at 
https://doi.org/10.5066/P9TEBOUR. The structure of the data release and locations of downloadable files are 
summarized below:

MAIN PAGE: Metadata File, Readme File, and Scripts

•	 RiverMET_workflow_and_scripts_metadata.xml: Metadata file describing overview of workflow and 
scripts

•	 RiverMET_readMe.txt: Readme file providing overview of file contents and guidance for running the scripts

Flags and Metrics Criteria Description Quality Assurance Assessment

Daily flags

Flag 1 low signal to noise ratio flag the daily values of GPP, ER, and K600 when R2
det for that day < 15th percentile of 

the daily R2
det values and if 15th percentile of R2

det values < 0

Flag 2 biologically unrealistic 
GPP flag the daily value of GPP, if GPP < −0.5

Flag 3 biologically unrealistic ER flag the daily value of ER, if ER >  + 0.5

Flag 4 unrealistically high K600 flag the daily value of K600, if K600  > 20

By-site confidence metrics

Confidence criterion 1 % of days with biologically 
unrealistic GPP < −0.5

HIGH if % days with biologically unrealistic GPP < 25%

MEDIUM if % days with biologically unrealistic GPP ≥ 25% but < 50%

LOW if % days with biologically unrealistic GPP ≥ 50%

Confidence criterion 2 % of days with biologically 
unrealistic ER > 0.5

HIGH if % days with biologically unrealistic ER < 25%

MEDIUM if % days with biologically unrealistic ER ≥ 25% but < 50%

LOW if % days with biologically unrealistic ER ≥ 50%

Confidence criterion 3
range of K600 values 
for model period 
unrealistically large

HIGH if 90th – 10th percentile K600 < 15

MEDIUM if 90th – 10th percentile K600 -between 15 and 50

LOW if 90th – 10th percentile K600 > 50

Confidence criterion 4
model convergence 
statistics (�R) exceed 
criteria

HIGH if both �σR proc
, and R K600

�
σ  <1.2

LOW if one or both convergence statistics ≥ 1.2

Confidence criterion 5
% of days that nearest 
upstream flow regulation 
was within the 
“metabolism reach length”

HIGH if distance to upstream flow regulation > metabolism reach length for more 
than 80% of days

MEDIUM if distance to upstream flow regulation > metabolism reach length for 
more than 50% but less than 80% of days

LOW if distance to upstream flow regulation < metabolism reach length for more 
than 50% of days

Table 5. Flagging of daily estimates of GPP, ER, and K600 and confidence criteria for overall metabolism 
outcomes at IRB river sites.
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•	 RiverMET_Scripts.zip: R code scripts 1 through 5 are provided and can be downloaded with this zip file. For 
convenience, we list the Script names and note behind each Script the input and output files that are down-
loadable under Child Item 1 (Inputs) and Child Item 2 (Outputs) as described further below:

1_Process-Data.R (note: Script-1 input files not included but output from Script-1 is provided in the form 
of Script-2 input files)
 2_Prepare-Model-InputFiles.R (note: Script 2 input files included, see Child Item 1; Script-2 output files 
also included and are equivalent to Script-3 and Script-4 input files, see Child Item 2)
 3_Verify-Model-InputFiles.R (note: Script-3 output files not included because this is an optional step for 
cross checking files)
 4_Run-streamMetabolizer.R (note: Script-4 output files are not included because they are not useful with-
out first being processed by Script-5)
5_PostProcess-ModelOutputs.R (note: Script-5 output files are included, see Child Item 2)

 CHILD ITEM 1: Input Files

•	 RiverMET_Input_Files_metadata.xml: Metadata file describing all input data including column headers 
and data units.

•	 RiverMET_Inputs.zip: Downloadable Script 2 input files with filenames and contents summarized below.

•	 barop.csv – barometric pressure in millibar (mb); 15-minute time series
•	 disch_gage.csv – discharge in m3 s−1, gage height in m; 15 – minute time series
•	 do.csv – dissolved oxygen in mg/L; 15-minute time series
•	 sal.csv – salinity in Practical Salinity Units (PSU); 15-minute time series
•	 temp.csv – water temperature in degrees Celsius (°C); 15-minute time series
•	 hydraulic_coeffs.txt – hydraulic geometry coefficients a, b, c, and f as used in estimation equations for river 

width, B = aQb and river depth, h = cQf where Q is river discharge, B is river width, and h is river depth.

CHILD ITEM 2: Output Files

•	 RiverMET_Output_Files_metadata.xml: Metadata file describing all output data including column headers 
and data units.

•	 RiverMET_Outputs.zip: Downloadable output files in two folders, “outputs_from_script-2” and “outputs_
from_script-5”. Script-2 output files are ready for modeling using streamMetabolizer. Script-5 output files are 
the final metabolism outputs from our study. Output files details are described below:

Site Name
NWIS 
Number

Number days 
w/o flags (%) Mean River Discharge ± s.d. (m3 s−1)

Mean Metabolism Value ± s.d. % days auto-
trophicGPP ER (g O2 m−2 d−1) NEP

ILLINOIS RIVER AT FLORENCE, IL 05586300 1888 (73%) 892.1 ± 670.4 2.22 ± 2.28 −6.14 ± 4.37 −3.92 14

ILLINOIS RIVER AT HENRY, IL 05558300 444 (68%) 532.0 ± 423.3 2.41 ± 2.29 −7.44 ± 4.55 −4.98 22

ILLINOIS RIVER AT STARVED 
ROCK, IL 05553700 398 (59%) 348.4 ± 327.3 4.87 ± 4.33 −5.17 ± 4.82 −0.30 56

ILLINOIS RIVER AT SENECA, IL 05543010 337 (32%) 353.2 ± 293.4 4.14 ± 3.49 −8.01 ± 6.06 −3.87 39

FOX RIVER NEAR MCHENRY, IL 05549500 351 (95%) 123.6 ± 12.8 8.64 ± 5.04 −7.79 ± 4.22 0.85 47

FOX RIVER AT ALGONQUIN, IL 05550001 351 (84%) 47.1 ± 42.1 5.62 ± 3.01 −6.83 ± 4.19 −1.21 38

DES PLAINES RIVER AT ROUTE 53 
AT JOLIET, IL 05537980 767 (75%) 135.7 ± 92.6 3.76 ± 2.07 −8.78 ± 2.21 −5.02 5

DES PLAINES RIVER AT 
ROCKDALE, IL 05538010 174 (42%) 118.4 ± 67.4 0.70 ± 1.15 −7.57 ± 3.76 −6.87 1

DES PLAINES RIVER IN LOCK 
CHANNEL AT ROCKDALE, IL 05538020 266 (44%) 24.9 ± 66.8 1.09 ± 0.99 −4.41 ± 3.39 −3.32 10

KANKAKEE RIVER AT SHELBY, IN 05518000 1325 (89%) 61.2 ± 29.4 0.45 ± 0.69 −3.78 ± 2.28 −3.35 1

KANKAKEE RIVER AT DUNNS 
BRIDGE, IN 05517500 556 (96%) 47.2 ± 25.7 0.59 ± 0.51 −4.23 ± 1.90 −3.65 2

KANKAKEE RIVER AT DAVIS, IN 05515500 1630 (88%) 19.6 ± 8.2 1.01 ± 0.85 −5.42 ± 2.11 −4.41 0

IROQUOIS RIVER NEAR 
FORESMAN, IN 05524500 439 (83%) 12.4 ± 13.8 2.47 ± 3.56 −5.79 ± 3.84 −3.32 16

GRAND CALUMET RIVER AT 
COLUMBIA AV AT HAMMOND, IN 05536356 167 (94%) 4.2 ± 0.7 1.64 ± 0.79 −2.56 ± 0.96 −0.92 16

LICK CREEK NEAR WOODSIDE, IL 05576100 453 (67%) 1.3 ± 2.5 2.67 ± 3.03 −7.84 ± 3.39 −5.17 12

SUGAR CREEK NEAR CHATHAM, 
IL 05576195 234 (28%) 1.7 ± 6.1 2.39 ± 2.29 −7.46 ± 4.54 −5.06 18

KICKAPOO CREEK NEAR 
BLOOMINGTON, IL 05579630 1158 (92%) 0.4 ± 1.8 2.32 ± 2.35 −3.61 ± 2.85 −1.29 23

Table 6. Time-averaged IRB river discharge, metabolism, and percent of days at each site with autotrophic 
metabolism, i.e. NEP > 0.
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•	 RiverMET_Outputs.zip/outputs/outputs_from script-2/: (note: 34 csv files with 17 using hydraulic 
geometry estimation of river depth and 17 using gage height estimation of river depth; example filename: 
bayesInput_[date]_depth-hgc_[site_no].csv

•	 RiverMET_Outputs.zip/outputs/outputs_from_script-5/: (note: “outputs_from_script-5” has two 
folders, “outputs-A” and “outputs-B”. Each folder has 21 files including 15 site files plus 3 files each for 2 
long-record sites. The “outputs-A” filenames follow this example: flagged_GPP_ER_K600_[date]_depth-
hgc_[site_no].csv. The “outputs-B” filenames follow this example: censored_ GPP_ER_K600 _[date]_
depth-hgc_[site_no].csv.

technical Validation
There is no universally accepted way to quality assure modeling results. In the IRB we assessed daily metabolism 
results by flagging values that exceeded thresholds based on biologically or physically unrealistic values or on 
daily model-fit diagnostics from the streamMetabolizer model (Table 5). Overall confidence in each river site’s 
model outcomes was assessed using aggregated metrics and statistical diagnostics, e.g., percentages of daily 
values that were flagged and model convergence statistics (Table 5).

In the IRB an average of 29% of the modeled days had one or more flags. As described in the section on “Data 
release file structure”, two output versions were produced that can serve various needs. The first output version 
provides only censored GPP, ER, and K600 model estimates of the highest apparent quality after removing all days 
with flags. However, it is possible that some “useful” data may have been removed in the censoring process. The 
second output version provides complete results, including results for days with flags, which allows the user to 
judge each day’s data and allows users to perform custom assessments of the quality of model outcome to meet 
specific needs.

In terms of overall confidence in model outcomes, thirteen of the seventeen IRB river metabolism timeseries 
earned an overall high or medium confidence ranking (Table 7). The most frequent criterion causing a low 

NWIS Site Name
NWIS Site 
Number

Preferred water depth 
estimation method Discharge estimation notes Results of Confidence Assessment

ILLINOIS RIVER AT FLORENCE, IL 05586300 Field measurements
No continuous or daily discharge available: 
daily discharge estimated based on field 
measurements

Low confidence: low rating based on 
R K600σ
�  threshold exceedance criterion

ILLINOIS RIVER AT HENRY, IL 05558300 Hydraulic geometry 
coefficients

High confidence: metrics good but 
potential for channel exchange with large 
upstream ponds noted

ILLINOIS RIVER AT STARVED 
ROCK, IL 05553700 Hydraulic geometry 

coefficients
Replacement discharge site used 
(05543500)

Medium confidence: medium rating for 
percentages of days with positive ER

ILLINOIS RIVER AT SENECA, IL 05543010
Field measurements 
from replacement site 
(05543500)

Replacement discharge used (05543500)
Medium confidence: medium ratings for 
percentages of days with positive ER and 
unrealistically high gas exchange

FOX RIVER NEAR MCHENRY, IL 05549500 Field measurements
No continuous or daily discharge available: 
daily discharge estimated based on field 
measurements

Low confidence: low rating based on 
R K600
�

σ  threshold exceedance criterion

FOX RIVER (TAILWATER) AT 
ALGONQUIN, IL 05550001 Field measurements

Medium confidence: at times the 
upstream dam was within the metabolism 
reach length

DES PLAINES RIVER AT ROUTE 53 
AT JOLIET, IL 05537980 Field measurements

Medium confidence: at times the 
upstream dam was within the metabolism 
reach length

DES PLAINES RIVER AT 
ROCKDALE, IL 05538010 Hydraulic geometry 

coefficients Replacement discharge used (05537980) Medium confidence: medium rating for 
% of days with positive ER

DES PLAINES RIVER IN LOCK 
CHANNEL AT ROCKDALE, IL 05538020 Hydraulic geometry 

coefficients
No discharge available: instead it was 
estimated from field measurements

Medium confidence: metabolism reach 
length often shorter than lock, but may 
disqualify site unless user is interested in 
lock water quality

GRAND CALUMET RIVER AT 
COLUMBIA AV AT HAMMOND, IN 05536356 Hydraulic geometry 

coefficients
No discharge available: instead it was 
estimated from field measurements High confidence in results

KANKAKEE RIVER AT SHELBY, IN 05518000 Field measurements High confidence in results

KANKAKEE RIVER AT DUNNS 
BRIDGE, IN 05517500 Field measurements High confidence in results

KANKAKEE RIVER AT DAVIS, IN 05515500 Field measurements High confidence

IROQUOIS RIVER NEAR 
FORESMAN, IN 05524500 Field measurements High confidence in results

LICK CREEK NEAR WOODSIDE, IL 05576100 Field measurements Low confidence: low rating based on 
�R K600σ  threshold exceedance criterion

SUGAR CREEK NEAR CHATHAM, 
IL 05576195 Field measurements Low confidence: low rating based on 

σ
�R K600 threshold exceedance criterion

KICKAPOO CREEK NEAR 
BLOOMINGTON, IL 05579630 Field measurements High confidence

Table 7. Summary of metabolism model confidence assessment for the 17 river sites in IRB. The confidence 
assessment was based in a combined evaluation of 5 criteria described in Table 5.
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confidence ranking was exceedance of the �R
K600σ  statistic threshold of 1.2 indicating problems with model con-

vergence. The four river sites earning a low confidence ranking were FOX RIVER NEAR MCHENRY, IL; 
ILLINOIS RIVER AT FLORENCE, IL; SUGAR CREEK NEAR CHATHAM, IL; and LICK CREEK NEAR 
WOODSIDE, IL.

Having approximately three quarters of the IRB river sites (76%) earn a high or medium confidence ranking 
is only slightly lower performance than a similarly assessed set of rivers modeled by Appling et al. 34, where 84% 
ranked high or medium confidence. The IRB river metabolism results8 are therefore quality assured based on 
application of the best available diagnostic metrics and statistical criteria for models of this type. Nonetheless, it 
is important to consider that model confidence assessments are only guidance and do not override future inves-
tigations of model quality that may be more detailed or judged “fit for purpose”.

Usage Notes
Our data release8 provides metabolism outcomes and documents our workflow for modeling metabolism at 17 
ILB river sites. Here we summarize descriptive information about the dataset and guidance for its use, including 
geographic coordinates and period of data availability for each site (Table 1), summary of USGS parameter codes 
used for downloading (Table 2), information about calculating parameters needed as model inputs (Table 3), an 
overview of script workflows (Table 4), quality assurance criteria (Table 5), and metabolism outcomes (Table 6) 
including a model performance assessment (Table 7). In addition, our data release8 provides guidance for poten-
tial reuse of codes in the file RiverMET_readMe.txt, including suggestions for changes that may be needed to 
run on a different system, re-run IRB sites with different options, or adapt scripts to model metabolism in other 
rivers. Users who wish to adapt parts of our workflow will need to acquire publicly available data from USGS and 
NOAA. They can use existing software (dataRetrieval29) to download the needed USGS data from their sites of 
interest, including dissolved oxygen, water temperature, specific conductance, discharge, gage height, and field 
measurements of channel parameters from the USGS NWIS site, and they can obtain barometric pressure data 
from NOAA. After downloading their own data, users can adapt parts of 1_Process-Data.R to perform the data 
time matching, gap filling, and unit conversion (Table 4). As long as their code produces output files that match 
the input files for 2_Prepare-Model-InputFiles.R that we provide in our data release, they can likely make minor 
adaptations to run scripts 2, 3, 4 and 5 (as described in Table 4) to prepare final model inputs, run streamMetab-
olizer, and organize and quality assure their metabolism modeling results.

Our data release8 also suggests approaches that can help expand the capacity for modeling river metabolism. 
For example, several of the IRB sites could perhaps have been included in an earlier study40 , however, not all the 
needed input data were available at certain sites, resulting in those sites being passed over. To facilitate mode-
ling at those sites, where appropriate, we acquired the missing measurements from nearby “replacement” sites 
(Table 7). An example is several sites where dissolved oxygen was collected without collecting the river discharge 
needed to accomplish Bayesian partial pooling that estimates K600 based on a prior expectation that K600 varies 
as a function of discharge. In such cases we “replaced” the missing discharge with data from a nearby site, which 
allowed metabolism estimation at sites previously overlooked because of missing data8. Because of the large 
river size where replacement discharges were used, e.g., often over 350 m3 s−1, and given the proximity of the 
replacement site, usually within 10-km, we did not perform scaling by basin size when applying a replacement 
discharge.

Code availability
Our workflow includes scripts that were written and tested using R version 4.1.1. The scripts can be accessed from 
the data product8 which includes an appropriate licence (CC0 1.0 Universal) license permitting reuse without 
restrictions.
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