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assessment of Self-report, 
Palpation, and Surface 
Electromyography Dataset During 
Isometric Muscle Contraction
Jihoon Lim  1, Lei Lu2,3, Kusal Goonewardena4, Jefferson Zhe Liu  1 & Ying tan1 ✉

Measuring muscle fatigue involves assessing various components within the motor system. While 
subjective and sensor-based measures have been proposed, a comprehensive comparison of these 
assessment measures is currently lacking. this study aims to bridge this gap by utilizing three 
commonly used measures: participant self-reported perceived muscle fatigue scores, a sports 
physiotherapist’s manual palpation-based muscle tightness scores, and surface electromyography 
sensors. Compensatory muscle fatigue occurs when one muscle group becomes fatigued, leading to 
the involvement and subsequent fatigue of other muscles as they compensate for the workload. the 
evaluation of compensatory muscle fatigue focuses on nine different upper body muscles selected by 
the sports physiotherapist. With a cohort of 30 male subjects, this study provides a valuable dataset 
for researchers and healthcare practitioners in sports science, rehabilitation, and human performance. 
It enables the exploration and comparison of diverse methods for evaluating different muscles in 
isometric contraction.

Background & Summary
Muscle fatigue, characterized by a decline in muscle performance and accompanied by feelings of weakness, 
tiredness, or exhaustion in the affected muscles, is a prevalent and non-specific symptom experienced by many 
individuals1,2. It can be associated with a range of health conditions, including muscle strain, chronic fatigue syn-
drome (CFS), and overtraining syndrome, which can result from the accumulation of untreated muscle fatigue 
over time2,3. Therefore, monitoring muscle fatigue plays a crucial role in providing timely intervention for these 
conditions. However, detecting and measuring muscle fatigue poses significant challenges due to its complex 
nature. It involves multiple components of the motor system, including mechanisms within the brain and spi-
nal cord, peripheral nerves, neuromuscular junction, excitation-contraction coupling, and force generation4.  
The intricate interplay of these components makes it difficult to isolate and quantify specific parameters related 
to muscle fatigue.

Despite these challenges, researchers and clinicians have proposed various measures to assess muscle fatigue, 
which can be categorized into two classes. The first class comprises subjective measures that rely on self-reported 
data from participants or subjective assessments conducted by clinicians or physiologists. Examples of subjec-
tive measures include self-administered questionnaires5, the Borg CR-10 scale6, and a palpation-based muscle 
tightness scale often used in clinical or research settings7,8; where the palpation-based scale involves the physi-
otherapist manually assessing the muscle and providing a subjective rating based on the level of muscle tension 
and tightness. These measures provide valuable insights into the subjective experience of muscle fatigue and its 
impact on individuals. However, it is important to note that these subjective measures generally have limitations 
in terms of reliability. For instance, the Borg CR-10 scale may provide unstable estimations due to its subjective 
nature9.

The second class consists of objective measures that utilize various sensors and quantitative methods to assess 
muscle fatigue. These objective measures provide more quantitative and precise insights into muscle fatigue. 
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They include blood tests, electromyography (EMG), or surface EMG (sEMG) to measure electrical activities 
of muscles, force measurements using dynamometers or force plates, and other sensor-based technologies like 
accelerometers or wearable devices. For example, motion sensors have been employed to assess the perceived 
muscle fatigue on coordination during endurance running10, and accelerators were found efficient to moni-
tor fatigue during intermittent exercise11. These objective measures contribute to a more comprehensive and 
objective evaluation of muscle fatigue. Among these sensors, sEMG sensors have been widely used due to their 
simplicity of use. The sEMG signal can provide valuable information by decomposing sEMG signals to extract 
information and neural activation12,13 and characterize muscle fatigue through changes in signal indicators14–18. 
Some commonly used sEMG measures include the mean absolute value (MAV), root mean square (RMS), mean 
frequency (MNF), and median frequency (MDF), nonlinear variables such as percentage of recurrence and 
determinism by recurrence quantification analysis (RQA)19,20 among others. For instance, sEMG signal was 
utilized to assess muscle fatigue during a forward head and rounded shoulder sitting posture21; it has been used 
to evaluate the effects of fatigue on muscle synergies for baseball players22; another study also used sEMG signal 
to detect localized muscle fatigue for track and field athletes23.

Understanding muscle fatigue is a challenging task since it is influenced by various factors such as psycholog-
ical, physiological, and sociological factors24,25. A combination of subjective and objective measures can provide 
more robust insights into muscle fatigue analysis and studies are comparing the subjective and objective meas-
ures of muscle fatigue26–32. However, these studies have several shortcomings: (i) a limited number of sensors 
attached to a restricted area of muscle parts, for example, only one sEMG sensor on the right trapezius muscle is 
used30. (ii) a small sample size, and (iii) a lack of sEMG signals, which play an important role in understanding 
muscle activities. For example, pressure andoxygenated hemoglobin levels were measured using a pressure sen-
sor28, as well as vertical jump levels without employing the sEMG sensor29. Therefore, the goal of this paper is to 
enable a comprehensive understanding of muscle fatigue by presenting data collected through three measures: 
(1) participant’s self-reported perceived muscle fatigue rank, (2) muscle tightness evaluations conducted by 
an experienced sports physiotherapist employing manual palpation-based techniques, and (3) extracted fea-
ture from sEMG signal measurements. These measures have been selected for their widespread usage and abil-
ity to offer valuable insights into the assessment of muscle fatigue. It is highlighted that the experiments were 
instructed by an experienced physiotherapist with over thirty years of physiotherapy services in sports, provid-
ing a high level of expertise in the clinical field. To assess and measure compensatory muscle fatigue, the sports 
physiotherapist selected nine distinct upper body muscles for evaluation. These specific muscles were chosen 
based on their involvement in the task and their potential to contribute to muscle fatigue.

The study comprises three datasets aimed at understanding the occurrence and consequences of compen-
satory muscle fatigue. Firstly, participants were asked to report the top three most fatigued muscles at the con-
clusion of the experiments which is perceived muscle fatigue, providing valuable subjective insights into their 
individual experiences. It is known in clinical practice that tight muscles are often associated with inefficient 
function and a higher susceptibility to fatigue33,34. Thus, in the second step of the experiment, a sports physio-
therapist proficiently assigned a continuous muscle tightness score to each of the nine selected muscles. Manual 
palpation by sports physiotherapists, as conducted in this study, presents a potential measure for assessing mus-
cle fatigue. Additionally, at the conclusion of the experiments, the physiotherapist identified and scored the top 
three muscles exhibiting the highest tightness, utilizing his expertise and manual palpation-based techniques. 
Lastly, sEMG sensors were used to record muscle activity from the nine selected muscles, under the guidance of 
the experienced sports physiotherapist.

To the best of our knowledge, this work represents the first comprehensive set of data, shedding light on 
the occurrence and dynamics of compensatory muscle fatigue during specific movements. This dataset offers 
several advantages for further research and analysis. Firstly, it serves as a valuable resource for exploring and 
comparing diverse methods used to assess muscle fatigue. Researchers can utilize this dataset to gain insights 
into the strengths and limitations of different approaches, advancing the field of muscle fatigue assessment. 
Secondly, the dataset provides a unique opportunity to investigate compensatory muscle fatigue in a controlled 
and standardized manner. By analyzing the data, researchers can gain valuable insights into the mechanisms and 
dynamics of this phenomenon, deepening our understanding of how muscles interact and adapt during physical 
tasks. Thirdly, this dataset can serve as a benchmark for future studies in the field. It provides a reference point 
for replicating and validating findings, ensuring the reliability and reproducibility of research in the area of 
compensatory muscle fatigue. Furthermore, the dataset can inspire the development of new methodologies and 
approaches for studying and quantifying muscle fatigue.

Overall, this dataset holds immense potential for advancing our knowledge of muscle fatigue and its implica-
tions in various fields, including sports science, biomechanics, rehabilitation, and human performance.

Methods
Participants. In this study, we recruited thirty healthy male participants without any history of neurological 
or muscular pathology from Australia. The experiments were performed between August 2022 and December 
2022. Among the participants, 28 had a dominant right hand, and 2 had a dominant left hand. Each participant 
held the dumbbell using their dominant hand. Out of the thirty participants, 29 completed the entire experimen-
tal protocol, while one individual was suspended in the middle of the process due to muscle fatigue.

Prior to the experiment, all subjects were instructed to disclose any medical conditions or medications to 
the sports physiotherapist. To minimize the impact of prior physical activities, participants were advised not to 
exercise or engage in heavy lifting for at least three hours before the start of the session. It was also emphasized 
that participants perform proper warm-up exercises to reduce the risk of injury.

Before commencing the experiment, each participant provided information regarding their dominant hand, 
height, weight, and age35 (see Table 1). Detailed information about the experimental protocol was provided to 
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all participants, and they were required to sign a consent form prior to their involvement in the study. The study 
protocol was approved by the Human Research Ethics Committee of the University of Melbourne (ID: 1954575).

Experimental setup. In this study, commercially available Delsys Trigno Avanti sEMG sensors (Delsys 
Incorporations, USA) were used as shown in Fig. 1a. These sensors were attached to the skin using a custom-
ized double-sided adhesive interface without conductive paste or gels, and compressive pressure was applied 
to enhance the adhesive strength as shown in Fig. 1b,c. The adhesive tape is single-use only and medical-grade 
approved for dermatological applications. The use of the adhesive interface ensured an electrical connection 
between the sensor and the skin, minimizing noise from line interference.

However, it is important to note that the planar, flat, and rigid surface of commercial sEMG sensors makes 
them vulnerable to motion artifacts caused by relative motions36. These motion artifacts can contaminate the 
sEMG signals37. Additionally, the sensors may fall off from the curvilinear parts of the human skin, even with 
the tailor-made adhesive interface, during dynamic movements38 To address these limitations, sEMG signal 
recording in this study was conducted with participants in a static posture with isometric muscle contraction. 
This approach minimized the influence of motion artifacts and ensured the stability of the sensor placement 
throughout the experiment.

Based on the selected static posture with isometric muscle contraction, the experienced sports physiother-
apist identified nine different locations of muscle groups on the upper limb and body. These specific muscle 
locations were carefully chosen, considering the potential sequential fatigue that might be triggered by this 
particular movement, in order to analyze compensatory muscle fatigue.

When using sEMG sensors, the placement of sensors on the skin plays a critical role in ensuring high-quality 
signals and reliable measurements. The electrode orientation refers to aligning the line connecting the two bipo-
lar electrodes with the direction of the muscle fibers39.

Aligning the electrodes in the direction of the muscle fiber is important as muscle activity signals depend on 
this orientation. In addition, the sensor locations were carefully selected to avoid innervation zones, origin or 
insertion locations, and the edge of the muscle belly. Therefore, the sensors were positioned following the recom-
mended location and orientation of the muscle fibers to enable accurate estimation of spectral parameters39–41.

Age Dominant Hand Height [m] Weight [kg] BMI [kg/m2]

Subject 01 29 Right 1.76 82 26.5

Subject 02 27 Right 1.72 80 27.0

Subject 03 27 Right 1.80 71 21.9

Subject 04 27 Right 1.76 75 24.2

Subject 05 25 Right 1.75 73 23.8

Subject 06 31 Right 1.85 105 30.7

Subject 07 30 Right 1.84 72 21.3

Subject 08 30 Right 1.80 105 32.4

Subject 09 33 Right 1.82 76 22.9

Subject 10 25 Right 1.71 78 26.7

Subject 11 24 Right 1.77 100 31.9

Subject 12 24 Right 1.75 74 24.2

Subject 13 27 Right 1.75 75 24.5

Subject 14 25 Right 1.72 74 24.0

Subject 15 26 Right 1.78 88 27.8

Subject 16 25 Left 1.75 72 23.5

Subject 17 39 Right 1.81 70 21.4

Subject 18 28 Right 1.80 96 29.6

Subject 19 30 Right 1.77 73 23.3

Subject 20 25 Right 1.75 72 23.5

Subject 21 36 Right 1.79 83 25.9

Subject 22 27 Right 1.66 60 21.8

Subject 23 32 Right 1.72 85 28.7

Subject 24 33 Right 1.82 78 23.5

Subject 25 28 Right 1.65 77 28.3

Subject 26 31 Right 1.81 84 25.6

Subject 27 29 Right 1.68 75 26.6

Subject 28 27 Right 1.72 64 21.6

Subject 29 29 Left 1.70 70 24.2

Subject 30 31 Right 1.72 63 21.3

Table 1. Anthropometric characteristics of thirty male study participants. Body Mass Index (BMI) is calculated 
by dividing the weight in kilograms by the height in meters squared.
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Moreover, each sensor placement was isolated strategically from other muscles to minimize muscle crosstalk 
and interference. Even small displacements of the electrodes within a centimeter range had a huge impact on the 
signal, not ensuring reliable readings. Additionally, the selected sensor locations were chosen to have minimal 
hair, reducing the muscle crosstalk from surrounding muscles.

The placement of the nine wireless Delsys Trigno Avanti sEMG sensors on the upper body followed spe-
cific guidelines from the literature39,40,42,43, and was examined by a physiotherapist at our local sports center. 
Firstly, the six sensor placement locations (# 2 (BB), # 3 (TB), # 5 (UT), # 7 (MT), # 8 (LT), and # 9 (AD)) were 
marked with erasable markers based on the guidelines (SENIAM; Surface Electromyography for the Non-Invasive 
Assessment of Muscles) for the sEMG sensors. Additionally, three additional locations (# 1 (BR), # 4 (IS), and 
# 6 (PCS)) were selected based on recommendations from the sports physiotherapist. The muscle and sensor 
locations are described in Fig. 2 and detailed information about each sensor placement and orientation can be 
found in Table 2. In Fig. 2, muscle locations are indicated for right-handed participants.

The entire experimental procedure was conducted under the supervision of an experienced sports physiol-
ogist, ensuring the precise positioning of sensors and accurate measurement of muscle activities. The presence 
of the experienced physiotherapist guaranteed consistent sensor placement for each participant, mitigating the 
potential effects of crosstalk and other sources of interference.

Experimental protocol. Prior to commencing the experiments, several precautions were taken to ensure 
optimal sEMG signal quality. The sports physiotherapist provided a detailed explanation of the experimental 
protocol and addressed any questions or concerns from the participants, ensuring their understanding and coop-
eration throughout the process. To prepare for the attachment of sensors, participants were instructed to remove 
their upper garments, allowing for direct contact between the sensors and the skin. Then, in order to maintain 
hygiene and minimize contact impedance between the electrodes and the skin, the designated skin areas for 

Fig. 1 Delsys Trigno Avanti surface EMG sensor system.

Fig. 2 Sensor locations on nine different muscles: Brachioradialis (# 1 (BR)), Biceps Brachii (# 2 (BB)), Triceps 
Brachii (# 3 (TB)), Infraspinatus (# 4 (IS)), Upper Trapezius (# 5 (UT)), Paraspinal Cervical Spine (# 6 (PCS)), 
Middle Trapezius (# 7 (MT)), Lower Trapezius (# 8 (LT)), Anterior Deltoid (# 9 (AD)).
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sensor placement were thoroughly cleansed using antiseptic skin wash, effectively removing any surface residues. 
Subsequently, the skin was completely dried to ensure firm electrode-skin contact. Any electronic devices or 
accessories that had the potential to interfere with the signal quality were removed to ensure accurate and reliable 
measurements.

During the experiment, participants remained bare-bodied from the waist up, adopting an upright posture 
with their torso in a relaxed position. The attachment of sensors began by placing each sensor on the target 
muscles of the dominant upper limb and body, following the predetermined locations identified by the sports 
physiotherapist.

In this study, the participants underwent a single movement test, which consisted of two separate sessions:  
a preparatory session (Ses1) and a data collection session (Ses2) as shown in Table 3.

Preparatory session (Ses1). During the trial session of the dumbbell frontal raise, each lasting 10 seconds, the 
sEMG signals of each muscle were assessed. The recording session immediately followed, with the consecutive 
performance of the exercise. Commercial sEMG sensors recorded the electrophysiological signals from nine 
different muscles, which were displayed in real-time on a computer screen. Participants were instructed to avoid 
any movement in elbow and wrist flexion/extension during the exercise. After the trial session, participants 
had a 30-second rest period to ensure muscle readiness and minimize potential muscle fatigue before the data 
collection session.

For the calibration of sensors, we checked the display if the signal reading from all nine sensors was correct 
or wrong. The real-time Signal Quality Monitor panel was used to check whether noise interference or not good 
adhesion of the sensor on the skin was found. If the signal quality is not good which is outside of the green area 
on the gauge panel or the Bluetooth connection is not stable, reattachment was conducted.

In the experiments, when all factors were pointing to green status, we initiated the data collection process 
which confirmed the acquisition of a high-quality sEMG signal. If any of these factors fell within the yellow or 
red areas on the scale, for example, shown in Fig. 3, calibration procedures such as checking for baseline noise 
on the display panel, adjusting the sensor’s position, and skin preparation were done again. These actions were 
taken to address any signal quality issues and ensure the reliability of the recorded data.

Data collection session (Ses2). In the data collection session, the nine sensors were attached to designated mus-
cle locations on the subject’s upper body according to the experimental protocol. The subject assumed a com-
fortable and stable standing position with feet shoulder-width apart. As a starting position, the subject held a 
1 kg dumbbell in their dominant hand, allowing the arm to hang straight down by their side with a pronated grip 
which means that the palm facing down. Slowly, the dominant arm was raised forward until it reached a peak 
position which is a parallel position to the ground while maintaining a straight arm and neutral wrist. The sports 
physiotherapist visually monitored the arm position and at the top of the lift, the dominant arm should be at or 
slightly below shoulder level, which is 90 to 180 degrees of shoulder flexion, with 180 degrees indicating a fully 
extended arm. Participants were instructed to maintain a stationary posture throughout the experiment while 
holding the 1 kg dumbbell in their dominant hand as shown in Fig. 4.

The figures presented in this study show muscle placements and locations as indicated for a right-handed 
participant. For left-handed individuals, the sensors were attached in the opposite orientation to prevent any 

Muscle EMG Sensor Location EMG Sensor Orientation

# 1 Brachioradialis (BR)
Electrode needs to be placed approximately 1/3 of 
the distance between the lateral epicondyle of the 
humerus and the styloid process of the radius

In the direction of the muscle fibers, which run 
longitudinally along the forearm

# 2 Biceps brachii (BB)
Electrodes need to be placed on the line between 
the medial acromion and the fossa cubit at 1/3 from 
the fossa cubit

In the direction of the line between the 
acromion and the fossa cubit

# 3 Triceps brachii (TB)
Electrodes need to be placed at 50% on the line 
between the posterior crista of the acromion and 
the olecranon at 2 finger widths medial to the line

In the direction of the line between the 
posterior crista of the acromion and the 
olecranon

# 4 Infraspinatus (IS)
Electrodes need to be placed approximately two 
fingerbreadths below the spine of the scapula, 
which is the bony ridge that runs along the 
posterior surface of the scapula

In a horizontal orientation, with the long axis 
of the sensor aligned with the direction of the 
muscle fibers, which run diagonally across the 
posterior aspect of the scapula

# 5 Upper Trapezius (UT) Electrodes need to be placed at 50% on the line 
from the acromion to the spine on vertebra C7

In the direction of the line between the 
acromion and the spine on vertebra C7

# 6 Paraspinal Cervical Spine (PCS)
Electrodes need to be placed at the level of the 
muscle belly, which is typically located 2–3 cm 
lateral to the midline of the spine

In a vertical orientation, with the long axis of 
the sensor aligned with the direction of the 
muscle fibers, which run parallel to the spine

# 7 Middle Trapezius (MT)
Electrodes need to be placed at 50% between the 
medial border of the scapula and the spine, at the 
level of T3

In the direction of the line between T5 and the 
acromion

# 8 Lower Trapezius (LT) Electrodes need to be placed at 2/3 on the line from 
the trigonum spinea to the 8th thoracic vertebra

In the direction of the line between T8 and the 
acromion

# 9 Anterior Deltoid (AD) Electrodes need to be placed at one finger width 
distal and anterior to the acromion

The direction of the line between the acromion 
and the thumb

Table 2. Muscle, EMG sensor location, and EMG sensor orientation40,42,43.
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potential confusion in the interpretation of the results. This approach was taken to ensure consistency in the 
sensor placement and to cater to both right-handed and left-handed participants.

During the exercise, a sports physiotherapist conducted regular assessments of muscle tightness using a 
palpation-based approach. At intervals of every 30 seconds, the sports physiotherapist evaluated the participant’s 
muscle tightness using a muscle tightness 4-point ordinal scale ranging from 0 to 344. This continuous assess-
ment of muscle tightness was carried out throughout the entire exercise duration of 210 seconds, allowing for 
the observation of muscle tightness progression over time. The chosen exercise duration aimed to replicate sus-
tained effort and enable the monitoring of muscle fatigue development45. At the end of the exercise, the partici-
pant slowly lowered their arm back to the starting position and rested for 60 seconds. Participants were advised 
to discontinue the exercise if they experienced muscle fatigue to the extent that they could no longer maintain 
the required posture. Following the experiment, all sensors were detached, and both the skin and sensors were 
gently cleansed using an antiseptic skin wash to ensure hygiene and prepare for subsequent sessions or analyses.

Following the completion of the exercise, each participant was requested to rank the top three locations 
among the nine monitored muscles that they subjectively perceived as the most fatigued. In the case of muscles 
located on the backside, namely # 4 (IS), # 5 (UT), # 6 (PCS), # 7 (MT), and # 8 (LT), which were challeng-
ing to distinguish individually for muscle fatigue. Therefore, a sports physiotherapist assisted by pointing to 
each muscle to help participants identify and rank the muscle that was causing perceived muscle fatigue. This 
self-reported ranking provided participants with the opportunity to express their personal assessment of the 
muscles that they felt experienced the highest degree of fatigue during the exercise and aimed to collect subjec-
tive feedback on perceived muscle fatigue. Concurrently, the sports physiotherapist also ranked the top three 
muscles that exhibited the most significant signs of tightness. In this study, the palpation-based muscle tightness 
score data included the continuous assessment conducted by the sports physiotherapist as well as the ranking of 
the muscles at the end of the experiment based on his assessment.

The total duration of the experiment, including both preparation and data collection, was estimated to be 
approximately 20 minutes. The preparation phase accounted for approximately 10 minutes. The remaining time 
was dedicated to the actual data collection session, during which the participants performed the designated 
exercise while their muscle activity was recorded.

Data Collection and Processing
In the data collection and processing phase of the study, three categories of data were recorded: (1) self-reported 
perceived muscle fatigue data, (2) palpation-based muscle tightness score data, and (3) sEMG signal data.

All collected data underwent comprehensive processing and analysis. Custom-written scripts in Matlab (The 
MathWorks Inc., US) were created and employed for the data processing tasks. They provided essential tools to 
process the data in a systematic manner, allowing for the extraction of meaningful insights and outcomes.

Self-reported perceived muscle fatigue data. As part of the experimental protocol, participants were 
instructed to provide self-reports on the top three muscle sites among a predefined selection of nine muscles 
where they perceived muscle fatigue. This self-report assessment relied on participants’ subjective feelings and 
perceptions of muscle fatigue in these specific muscle sites. By capturing participants’ personal experiences and 
sensations, this self-reporting approach added a valuable subjective dimension to the evaluation of perceived 
muscle fatigue during the experiment. Table 4 presents two examples of self-reported data, demonstrating the 
format of the data. In this table, sf1, sf2, and sf3 represent the top three muscles that showed the most perceived 
fatigue for each subject, respectively.

Physiotherapist’s palpation-based muscle tightness score data. In addition, an experienced sports 
physiotherapist with expertise in palpation conducted a categorical scoring system by subjective examination of 
soft tissue tightness during the experiment. This examination yielded two sets of data. The first set, referred to as 
Data 1, consists of continuous assessments made by the sports physiotherapist throughout the experiment. The 
second set, referred to as Data 2, represents the physiotherapist’s ranking of muscle tightness at the end of the 
experiment for each participant.

The physiotherapist’s palpation aimed to assess muscle tightness rather than directly evaluating ‘fatigue’. It 
is a clinical understanding that tight muscles tend to function inefficiently and are more prone to experiencing 
fatigue33,34. Therefore, the assessment aimed to identify the top three muscles with the highest levels of tightness, 
as determined by the sports physiotherapist. This approach was used to indirectly gauge the potential impact of 
muscle tightness on muscle fatigue.

To illustrate the format of the collected data, Table 5 provides two examples of Data 1, showcasing the sports 
physiotherapist’s palpation-based scores of muscle tightness for the nine monitored muscles.

Experiment Procedure Repetition Duration [s]

Ses1: Preparatory session Calibration of sensors 1 10

Recovery Relax 1 30

Ses2: Data collection session
1) Muscle tightness measurements for 210 seconds with 30-second intervals

1 210
2) sEMG data collection

Rank assessment Self-reported and palpation-based method 1 60

Table 3. Experimental Protocol.
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7Scientific Data |          (2024) 11:208  | https://doi.org/10.1038/s41597-024-03030-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

Table 6 provides two examples of Data 2, demonstrating the final assessment of the sports physiotherapist. 
In this table, pf1, pf2, and pf3 represent the top three muscles with the highest level of muscle tightness from the 
sports physiotherapist, respectively.

sEMG data. A commercially available Delsys Trigno Avanti sensor system was utilized for the detection and 
measurement of muscle activities in nine specific upper body muscles of each subject. An example of sEMG 
data is shown in Fig. 5. All nine sEMG sensors were synchronized on time. During data collection, the sEMG 
signals were acquired using the EMGworks Acquisition 4.8.0 software and recorded at a sampling rate of 2148 Hz. 
The sEMG sensor transmitted the data in real-time to the Lenovo Thinkbook laptop (Intel(R) Core i7–1165G7 @ 
2.80 GHz, 16GB RAM) wirelessly which was connected to the base station via a USB cable. All the data collected 
from the software is exported to an Excel spreadsheet for further analysis. The demonstration of sEMG signals 
from Subject 19 for 9 different muscle locations on the screen of the EMGworks Acquisition system is shown in 
Figure 5.

The sEMG signal from the commercial sensor refers to the sEMG signal acquired after it has been amplified 
and subjected to bandpass filtering. This filtering process involves the use of analog components equipped with 
filters. Specifically, the Butterworth 2nd-order high-pass filter and a 4th-order low-pass filter were used to ensure 
the entire frequency spectrum within the specified range is captured46. Additionally, a 20 Hz high-pass filter is 
integrated to reduce the motion artifact which distorts the underlying physiological signal47. These integrated 
design features demonstrate the good signal quality of sEMG signals in this study.

Data records
The dataset accompanying this paper is available for download on figshare48. It is provided under an open 
license, allowing users to freely utilize the data for any purpose. In Fig. 6, the schematic representation of the 
dataset organization illustrates how the files in the dataset are structured and organized. The figure shows the 
hierarchical arrangement of files and variables and parameters for each file.

The raw data from the subjective measurements (self-reported perceived muscle fatigue scores and physio-
therapist’s palpation-based muscle tightness measurement scores) are stored in individual files encoded in .xlsx 

Fig. 3 Delsys sensor signal quality check.

Fig. 4 Nine sensors attached on the upper body (Front-view, Back-view, side-view).

sf1 sf2 sf3

Subject 09 # 9 (AD) # 8 (LT) # 1 (BR)

Subject 15 # 9 (AD) # 2 (BB) # 1 (BR)

Table 4. Two examples (Subject 09 and Subject 15) demonstrating the ranking of the top three muscles that 
showed the most perceived fatigue based on participants’ self-reported data.
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format. Each file corresponds to a specific measurement and contains the relevant data collected during the 
experiment. These files serve as a comprehensive record of the subjective assessments performed by the partic-
ipants and the sports physiotherapist. Furthermore, the sEMG data using 9 different sensors on corresponding 
muscles recorded from each participant are stored in separate files encoded in .xlsx format. These files contain a 
set of sEMG sensor variables that collectively constitute the participant’s data. Each variable represents a specific 
aspect of the recorded data and contributes to a comprehensive understanding of the participant’s measurements.

Self-reported perceived muscle fatigue rank data. Subjective measurement data of participants’ 
self-reported perceived muscle fatigue rank were summarized in Excel spreadsheet format (e.g., SelfReported_
Subject01.xlsx).

•	 Subject: Each data file is named according to the participant number, which is an integer ranging from 1 to 30.
•	 Sensor: Sensor 01 - Sensor 09 corresponds to the muscle part described in Fig. 2.
•	 Self-reported perceived muscle fatigue Rank 1, Rank 2, Rank 3: The data records for self-reported perceived 

muscle fatigue rank 1, 2, and 3 include information on the participants’ subjective assessment of their muscle 
fatigue levels. Each record specifies the participant number, the rank of perceived muscle fatigue (1, 2, or 
3), and the corresponding muscle site. These records provide insights into the participants’ individual per-
ceptions of muscle fatigue and contribute to understanding the subjective experience of fatigue during the 
experimental sessions.

Physiotherapist’s palpation-based muscle tightness rank data. Sports physiotherapist’s 
palpation-based assessment of muscle tightness during the 210-second experiment with 30-second intervals 
and final assessment of muscle tightness was summarized in Excel spreadsheet format (e.g., PhysioPalpation_
Subject01.xlsx).

(a) Subject 09

Subject 09 0 s 30 s 60 s 90 s 120 s 150 s 180 s 210 s

# 1 (BR) 1 3 3 3 3 3 3 3

# 2 (BB) 2 2 2 3 3 3 3 3

# 3 (TB) 0 1 1 1 1 1 2 2

# 4 (IS) 2 2 3 3 3 3 3 3

# 5 (UT) 2 3 3 3 3 3 3 3

# 6 (PCS) 1 2 2 2 2 2 2 2

# 7 (MT) 2 2 3 3 3 3 3 3

# 8 (LT) 1 2 2 2 3 3 3 3

# 9 (AD) 2 3 3 3 3 3 3 3

(b) Subject 15

Subject 15 0 s 30 s 60 s 90 s 120 s 150 s 180 s 210 s

# 1 (BR) 1 3 3 3 3 3 3 3

# 2 (BB) 2 2 2 3 3 3 3 3

# 3 (TB) 0 1 1 1 1 1 2 2

# 4 (IS) 2 2 3 3 3 3 3 3

# 5 (UT) 2 3 3 3 3 3 3 3

# 6 (PCS) 1 2 2 2 2 2 2 2

# 7 (MT) 2 2 3 3 3 3 3 3

# 8 (LT) 1 2 2 2 3 3 3 3

# 9 (AD) 2 3 3 3 3 3 3 3

Table 5. Two examples (Subject 09 and Subject 15) of Data 1 for sports physiotherapist’s palpation-based 
assessment of muscle tightness during the 210-second experiment with 30-second intervals. Numbers in 
the table are manual palpation-based muscle tightness scores ranging from 0 to 3 measured by a sports 
physiotherapist.

pf1 pf2 pf3

Subject 09 # 9 (AD) # 5 (UT) # 7 (MT)

Subject 15 # 5 (UT) # 9 (AD) # 7 (MT)

Table 6. Two examples (Subject 09 and Subject 15) demonstrating the ranking of the top three muscles with the 
highest level of muscle tightness from the sports physiotherapist (Data 2).
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•	 Subject: Each data file is named according to the participant number, which is an integer ranging from 1 to 30.
•	 Sensor: Sensor 01 - Sensor 09 corresponds to the muscle parts described in Fig. 2.
•	 Muscle tightness measurements for 210 seconds with 30-second intervals: The subjective data records for each 

participant include the physiotherapist’s palpation-based measurements taken at 0 which is the starting point 
and 30-second intervals for a total of 8 times across nine muscle locations.

•	 Sports physiotherapist’s palpation-based muscle tightness Rank 1, Rank 2, Rank 3: Followed by the muscle 
tightness measurement with 30-second intervals, the data records for sports physiotherapist-assessed muscle 
tightness rank 1, 2, and 3 contain the evaluations conducted by the physiotherapist. Each record includes 
the participant number, the rank of muscle tightness assigned by the physiotherapist (1, 2, or 3), and the 
associated muscle location. These records reflect the expert judgment of the physiotherapist regarding the 
severity and localization of muscle tightness, providing valuable assessments of muscle condition during the 
experimental sessions.

Fig. 5 sEMG signals acquisition using EMGworks Acquisition 4.8.0 software for nine different muscles on 
upper body (brachioradialis (# 1 (BR)), biceps brachii (# 2 (BB)), triceps brachii (# 3 (TB)), infraspinatus  
(# 4 (IS)), upper trapezius (# 5 (UT)), paraspinal cervical spine (# 6 (PCS)), mid trapezius (# 7 (MT)), lower 
trapezius (# 8 (LT)), anterior deltoid (# 9 (AD))).

Fig. 6 Schematic representation of the provided dataset. The SciData dataset is organized into two types 
of files: .xlsx and .mat files. The combination of .xlsx files in the SciData dataset allows for a comprehensive 
representation of the data.
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sEMG data. Raw data contains sEMG data for all subjects with nine muscles. The sEMG time and signal data 
were collected via a Bluetooth module and an in-house data acquisition (DAQ) system. The recorded data was 
stored in Excel Spreadsheets in .xlsx format, with each participant’s data saved in a separate file (e.g., Subject01.xlsx).

•	 Time: The sEMG raw time data consists of the time series measurements recorded from the sEMG sensors. 
These sensors captured the electrical activity generated by the muscles during the experimental sessions. 
Each data entry in the time series corresponds to a specific time point. The sEMG raw time data is stored in 
an Excel spreadsheet (.xlsx) using Time [s] format.

•	 sEMG signal: The sEMG signal data contains the amplitude of the electrical signals recorded by the sEMG 
sensors. These signals represent the muscular electrical activity and provide insights into the muscle’s activa-
tion levels during the experimental sessions. Each entry in the signal data corresponds to a specific time point, 
reflecting the magnitude of the electrical activity at that particular moment. The sEMG signal data is stored in 
an Excel spreadsheet (.xlsx) using Avanti sensor 5: EMG.A 5 [V] format.

In the sensor configuration, each sensor consists of four electrodes. The upper two electrodes are differential 
sEMG pairs, and the lower two electrodes are stabilizing references. It allows the sensor to quickly respond to 
disturbances detected on the skin surface which reduces the impact of potential noise sources49. Additionally, 
bar electrodes composed of 99.9% silver with a 10 mm inter-electrode distance (IED) were positioned to mini-
mize the crosstalk from surrounding muscles effectively and ensure the good signal quality50.

technical Validation
This section contains the sEMG sensor configuration and acquisition. In the context of sEMG sensor placement 
for signal assessments, the guideline in the appendix “Interpretation of Muscle and Signal Quality Assessments” 
was used39. This guideline specifically offers criteria for assessing the quality of signals for sensor placements on 
the most superficial muscles during isometric contractions. To ensure the reliability of the recorded sEMG sig-
nals, the assessment considered four criteria with scores for each muscle. These criteria included the assessment 
of the signal quality based on its amplitude above the background noise level, the electrode placement to avoid 
innervation zones, the fidelity of the recorded signal to the natural propagation of muscle activity, and the feasi-
bility of motor unit identification. Each muscle was scored based on how well these criteria were met. Following 
the guideline, seven muscles (# 1 (BR), # 2 (BB), # 3 (TB), # 5 (UT), # 7 (MT), # 8 (LT), # 9 (AD)) achieved the 
full score of 6 points, while one muscle (# 4 (IS)) received 5 points. Since the assessment guideline focused on 
only 43 muscles in the trunk, upper limb, and lower limb, the paraspinal muscle located on the cervical spine  
(# 6 (PCS)), situated in the neck region, was not included in the scoring system. Therefore, in our study, this 
metric system with scores validated the setup of the experiment, particularly regarding the careful selection of 
muscle locations and resulting high-quality sEMG recordings. Additionally, muscle tissue exhibits anisotropic 
properties, which emphasize the importance of aligning the detection surfaces of the electrodes with the orienta-
tion of the muscle fibers. To ensure accurate electrode placement, we collaborated with a sports physiotherapist, 
informed by relevant literature39

To guarantee the functionality of the integrated sEMG sensor and to confirm the high quality of the sEMG 
data collected, various metrics describing the sEMG acquisition process were taken into account. These metrics 
and their detailed descriptions can be found in the guideline46.

•	 Input source impedance: Input impedance refers to the resistance to current flow into each input terminal of 
an amplifier, and it varies with frequency. When dealing with dry skin, the input impedance at the interface 
between the skin and the detection surface can range from thousands to millions of ohms. Maximizing the 
input impedance of the differential amplifier is important to avoid signal loss or distortion due to input load-
ing. It allows the accurate capture of electrode voltages without disruption. Moreover, amplifiers with high 
input impedance help minimize contamination from unwanted power line interference. This consideration 
ensures reliable sEMG signal recording without causing issues in the differential amplifier.

•	 Differential amplifier gain: The primary function of an amplifier is to take a weak electric signal originating 
from the body and amplify its amplitude to make it suitable for recording and display on electronic devices. 
In this study, a commercial standalone sEMG sensor, Delsys Trigno, with a gain of 1000 which is a gain value 
well within the accepted range was used51. This high gain significantly improved the signal-to-noise ratio 
(SNR) of the sEMG signal and made it highly resilient to noise and interference.

•	 Common-mode rejection ratio (CMRR): The utilization of bipolar electrode arrangements is common with a 
differential amplifier, which effectively eliminates signals common to both electrodes. Typically, the common 
mode voltage, which is the signal common to both electrodes, is larger than the sEMG signal. The CMRR 

Fig. 7 Technical validation of sEMG sensor signal quality.
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quantifies the differential amplifier’s accuracy in subtracting these common signals. Therefore, a high CMRR 
is essential to distinguish the sEMG signals from the background noise effectively. The Delsys commercial 
sensor utilized in this study shows a CMRR value exceeding 80 dB, which assures excellent signal quality52.

•	 sEMG Bandwidth: Frequency band of sEMG between 20 and 450 Hz. A 4th-order Butterworth band-pass 
filter was used to achieve an effective frequency range of sEMG signals between 20 Hz and 450 Hz, and a 
2nd-order Butterworth band-stop filter with cut-off frequencies 49 Hz and 51 Hz was used to remove power 
frequency noise47.

•	 Inter-electrode distance (IED): The size of electrodes and the space between them highly affect the sEMG 
signal. Larger detection areas and greater inter-electrode distances (IED) result in greater amplitude of the 
sEMG signal detection. However, these dimensions should not be too large to avoid picking up the crosstalk 
interference from neighboring muscles. Delsys sensors maintain a 10 mm IED, effectively reducing crosstalk 
while preserving sEMG signal amplitude49. This fixed IED ensures consistency and repeatability in experi-
ments that maintain data quality and the integrity of sEMG signal acquisition.

•	 Motion artifact: Motion artifact is typically induced by relative movement of the sEMG sensor in relation to 
the skin. It is an interference on the electrode-skin interfaces and contaminates the signal quality. It becomes 
especially challenging when dealing with dynamic muscle contractions or rapid body movements. To ensure 
accurate contact and stable recording in our experiment, we conducted isometric contractions without rapid 
body movements. This static posture approach allowed us to maintain reliable contact between the sensor and 
the skin, minimizing unwanted noise during data recording.

Moreover, the Delsys EMGworks Acquisition software incorporates a real-time Signal Quality Monitor tool 
which provides continuous feedback on the sensor’s signal quality as shown in Fig. 7. This tool continuously 
monitors the signal quality of each sensor and provides visual feedback during the experiment. It assesses the 
estimated SNR within the range of 0–40, baseline noise ranging from 0–40 uVrms, and line or clipping interfer-
ence ranging from 0–10, in real-time. Acceptable signal quality is indicated by an SNR greater than 1.2, base-
line noise below 15 uVrms, and minimal line interference below 2, which is indicated by a green area from the 
gauge panel. This real-time monitoring system offers a dynamic way to ensure the quality of the recorded data 
throughout the experiment. Various factors related to signal quality and noise have also been considered and 
verified, affirming that the experiment’s signal quality meets acceptable standards53.

•	 Signal-to-noise ratio (SNR): SNR is one of the most important quality measures of sEMG signal54. It quanti-
fies the ratio between the sEMG signal recorded during muscle contraction and the baseline noise when the 
muscle is at rest. A higher SNR value indicates a more robust ability to reliably discriminate and extract sEMG 
data from unwanted noise.

•	 sEMG baseline noise: To ensure the quality of an sEMG signal, it is important to establish the baseline noise of 
the system. According to the EMGWorks software, Delsys sEMG systems typically exhibit a baseline noise of 
less than 15 µV which is within an acceptable range of 10–20 µV peak-to-peak from the literature50. The qual-
ity of the skin-electrode interface significantly influences the level of baseline noise. Thus, before commencing 
data collection, we conducted a preparatory session to check the baseline noise within a range and ensured 
the contact between the electrodes and the skin.

•	 Line interference noise: Noise at frequencies of 50 or 60 Hz, originating from power lines, fluorescent lights, 
and various electrical devices, is a common source of interference in sEMG recordings. Advanced sensor 
technology with designed circuits for the Delsys sEMG sensor has effectively eliminated this issue.

•	 Clipping: Signal saturation is a type of distortion that occurs when a signal surpasses a certain threshold. This 
can happen due to sensor detachment or excessively high sEMG signal amplitudes. To maintain signal integ-
rity, it is crucial to monitor any signal clipping to ensure that the sEMG sensor and reference electrode are 
properly attached and connected. If required, adjustments can be made by reducing the gain or repositioning 
the sEMG sensor to lower the signal level, as recommended in the literature55. In our study, a gain of 1000 is 
used, which is an appropriate value for enhancing surface sEMG signals, and it is in an acceptable range while 
avoiding clipping.

Furthermore, three different performance metrics were calculated to check the signal quality. The drop in 
power density ratio (DPR) indicates whether the signal power spectrum is adequately peaked in the sEMG 
power spectrum’s frequency range. The power spectrum deformation (PSD) measures the effect of disturbances 
of the spectrum of a signal with a power spectrum larger than 20 Hz56. From Table 7, both DPR and PSD values 
showed that the Delsys surface EMG sensors have adequate peaking and are immune to high-frequency noise. 
Based on the signal quality analysis, these factors ensured that the signal quality maintained a high level of signal 
quality throughout the experiment.

Subsequently, this section validates the sEMG measurements. One fundamental mathematical technique 
for analyzing signals is the Fourier Transform, which can deconstruct any signal into a series of sine waves with 
varying frequencies. We first check the frequency range of sEMG signals. It is known that the frequency range 
of sEMG signals is in [20 Hz, 450 Hz]57,58. We have checked the frequency range of all sEMG signals by using a 
fast Fourier transform (FFT) on sEMG signals. It has been verified that all sEMG signals measured stayed in this 
range, validating the sEMG signals collected from commercial sEMG sensors in this work. A visualization of the 
power distribution provides a comprehensive measure of how different frequencies impact the sEMG signal and 
an example of the frequency spectrum of an sEMG signal is shown in Fig. 8.

Then, signal processing techniques were used to reduce the contaminated noises55 and extract the features 
of the sEMG sensors59. The signal processing of sEMG signals was performed using custom-written Matlab 
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scripts and the process included signal acquisition and pre-processing. The sEMG signal was sampled at a rate 
of 2148 Hz. The signal was then filtered by a digital bandpass filter with a passband between 20 Hz and 450 Hz 
based on the FFT analysis ensuring that no critical information is lost during signal acquisition54. The filtered 

# 1 (BR) # 2 (BB) # 3 (TB) # 4 (IS) # 5 (UT) # 6 (PCS) # 7 (MT) # 8 (LT) # 9 (AD)

SNR value 47.49 42.49 31.67 48.65 44.99 36.06 48.33 50.34 45.94

DPR value 40.36 42.82 28.77 45.60 38.03 37.84 45.29 46.12 42.47

PSD value 1.119 1.146 1.310 1.157 1.202 1.243 1.366 1.155 1.175

Table 7. Signal quality analysis (Subject 19).

Fig. 8 Frequency spectrum of the sEMG signal detected during an isometric contraction (Subject 19).

Fig. 9 sEMG signal (blue) and pre-processed sEMG signal (red) for nine different muscles on the upper body 
(Subject 19, Brachioradialis (# 1 (BR)), Biceps Brachii (# 2 (BB)), Triceps Brachii (# 3 (TB)), Infraspinatus (# 4 
(IS)), Upper Trapezius (# 5 (UT)), Paraspinal Cervical Spine (# 6 (PCS)), Middle Trapezius (# 7 (MT)), Lower 
Trapezius (# 8 (LT)), Anterior Deltoid (# 9 (AD))).
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signal was then rectified with full wave rectification and used for envelope analysis. The filtered signal is shown 
in Fig. 9.

Fatigue is a complex and widespread phenomenon that comes in various forms. It can be categorized as 
pathological or non-pathological, physical or mental, and can be evaluated subjectively or objectively. Various 
techniques have been employed to measure fatigue and energy levels. Some methods aim to gauge the impact 
of fatigue, such as reduced performance, while others aim to pinpoint the origins of fatigue, like muscle 
dysfunction.

The definitions of muscle fatigue are diverse, and they haven’t been definitively linked to concrete objective 
measures. This doesn’t undermine the value of both subjective and objective measures of fatigue but highlights 
the complexity of this phenomenon. While subjective measures of perceived muscle fatigue and objective meas-
ures using sEMG sensors are widely employed, the complexity of muscle fatigue persists. In addition to these 
conventional approaches, the palpation-based technique can be a possible measure that is linked to muscle 
fatigue. This technique introduces a tactile dimension, providing an alternative means to assess and understand 
muscle fatigue beyond the established subjective and objective measures.

Even though the integration of these measures remains unclear, both subjective and objective measurements 
are taken into account in the context of muscle fatigue, as they hold significance in assessing health and quality 
of life. In future research, it is crucial to bridge the gap between subjective and objective measures by considering 
multiple factors and conducting calibration studies. Additionally, there is a need for further investigations using 
hand-held dynamometers, experiments with heavier weights, and longer durations to enhance our understand-
ing of compensatory muscle fatigue.

Usage Notes
To use the provided code, you need to have Matlab installed, preferably version R2021b or higher. You can load 
the Matlab script file SciDataEMG.m, which is available in the provided link, for data processing and analysis. 
The dataset is categorized into three sub-groups: SubGroup1.mat comprises data from Subject 01 to Subject 10, 
SubGroup2.mat contains data for Subject 11 to Subject 20, and SubGroup3.mat includes data for Subject 21 to 
Subject 30. Then, select the relevant sub-group mat file based on the subject and muscle of interest, and specify 
the desired subject_id and muscle_id. For instance, if you wish to analyze muscle # 9 (PCS) of Subject 09, load 
SubGroup1.mat, and assign subject_id = 9 and muscle_id = 9. Executing these selections will generate the follow-
ing plots: (1) sEMG signal plot and (2) sEMG signal and pre-processed sEMG signal plot.

Code availability
The custom-written code used for data acquisition and analysis in this paper can be downloaded from figshare60. 
The provided files contain the necessary scripts and functions for data acquisition and signal processing.

• readme.pdf with instructions about loading the dataset, running the code, and code execution.
• SciDataEMG contains:

- Code (SciDataEMG.m)
 - The .mat files in the SciData dataset (SubGroup1.mat, SubGroup2.mat, SubGroup3.mat) contain summa-
rized or processed data, which can be loaded into Matlab for further analysis and visualization. To facilitate 
data management and analysis, the data from all thirty participants were consolidated into a summarized 
format using Matlab. The raw sEMG time and signal data for each subgroup of participants were saved in a 
.mat file (e.g., SciData/RawEMGData/MatlabData/SubGroup1.mat) for computational efficiency since the 
dataset of 30 subjects is too large. These files are commonly used for efficient processing and analysis using 
Matlab functions and tools.
 - Results (P_9_M_9 sEMG signal.png, P_9_M_9 pre-processed sEMG signal.png which are plotted results for 
representative subject example from the code (Subject 09).
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