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a synthetic digital city dataset for 
robustness and generalisation of 
depth estimation models
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Existing monocular depth estimation driving datasets are limited in the number of images and the 
diversity of driving conditions. the images of datasets are commonly in a low resolution and the depth 
maps are sparse. To overcome these limitations, we produce a Synthetic Digital City Dataset (SDCD) 
which was collected under 6 different weather driving conditions, and 6 common adverse perturbations 
caused by the data transmission. SDCD provides a total of 930 K high-resolution RGB images and 
corresponding perfect observed depth maps. the evaluation shows that depth estimation models 
which are trained on SDCD provide a clearer, smoother, and more precise long-range depth estimation 
compared to those trained on one of the best-known driving datasets KITTI. Moreover, we provide a 
benchmark to investigate the performance of depth estimation models in different adverse driving 
conditions. Instead of collecting data from the real world, we generate the SDCD under severe driving 
conditions with perfect observed data in the digital world, enhancing depth estimation for autonomous 
driving.

Background & Summary
Depth estimation, a critical perception task in autonomous driving, aims to predict the distance and depth 
information of objects within a scene from images or videos1–5. Existing deep-learning-based depth estimation 
solutions have demonstrated impressive performance and potential applications6–9. To support the progression 
of these solutions, several datasets have been produced by relevant industries and research groups, which are 
collected from real traffic roads10–15. These datasets encompass traffic scenarios crucial for autonomous driving 
applications and generally incorporate a wealth of sensor information, including colour images from cameras 
and point cloud data derived from LiDAR. By interpolating sparse point clouds, the depth maps are generated, 
and it can provide the object-to-vehicle distance of driving scenarios to images captured by the camera, which 
supports deep-learning solutions for depth estimation. Several common datasets descriptions are indicated 
below:

KITTI. As the best-known driving dataset which involves perception tasks in the context of autonomous driv-
ing10, KITTI is collected by a vehicle equipped with two high-definition colour cameras, two monochromatic 
cameras, a sparse Velodyne VLP-64 LiDAR scanner, and a Global Positioning System (GPS). It provides a total 
of 93 K RGB images and their corresponding depth maps in 56 scenes and different light conditions (Day and 
Night). Although the ground-truth depth maps are obtained via LIDAR in high resolution (1224 × 368), they are 
semi-dense and are struggling to comprehensively depict the environmental information.

Make3D. Make3D dataset, as an early outdoor dataset that spurred the development of monocular depth 
estimation techniques12, covers 1000 outdoor scenes, including cityscapes and natural landscapes in the daytime, 
it consists of 400 training RGB images and 134 testing RGB images collected by the laser scanner. Although its 
RGB images are at high resolution (2272 × 1704), the corresponding ground-truth depth maps are provided at 
low resolution (305 × 55), and the different driving conditions, such as weather and light, are not comprised in.
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Scene Flow. Scene Flow dataset provides pixel-level depth and disparity information16, which is widely used 
in computer vision task research and has become one of the benchmark datasets for many vision tasks. The Scene 
Flow dataset comprises three distinct topics: FlyingThings3D, Driving, and Monkaa. The ‘Driving’ dataset consists 
of 8800 images in total, which is divided into two classes data based on different focal lengths (15 mm and 35 mm), 
providing valuable training data for many vision tasks (Segmentation, Optical flow, Disparity) to the driving field.

Nonetheless, the rendering quality of the driving scenes within the “Driving” dataset falls short of achieving a 
high level of realism. Moreover, the image content lacks the presence of pedestrians and key traffic elements such 
as traffic signals (including traffic lights and signal boards) that are typically found in real-world road scenes. 
Additionally, the dataset does not encompass common driving conditions, such as diverse weather conditions, 
making it unable to accurately represent the complexities of real driving scenarios.

MegaDepth. Megadepth, as one of the largest datasets used for monocular depth estimation tasks13, provides 
a total of 130 K images. Different from other depth datasets images and depth maps captured by sensor devices, 
MegaDepth is composed of RGB images sourced from the internet and the corresponding ground-truth depth 
maps are generated via a modified algorithm based on COLMAP. Therefore, the images generated are always with 
noise and details missing, particularly under challenging conditions such as diverse lighting and weather conditions.

DIoDe. DIODE is the first public dataset that obtains RGBD images of indoor and outdoor scenes with one 
sensor suite11, it contains a total of 100 K diverse high-resolution (1204 × 768) RGB images with accurate, dense, 
far-range depth measurements. Although it covers outdoor and indoor scenes in different cities during day and 
night, the content of images captured consists of only static objects which unable to fully describe the information 
of the real world.

The existing monocular depth driving datasets play a pivotal role in the prosperity of perception algorithms 
but still have some key limitations. The small-scale training examples (Make3D) and low diversity of driving 
conditions (DIODE, Scene Flow) lead to the datasets cannot cover driving situations comprehensively in the real 
world, which makes it difficult to generalization to unforeseen driving conditions17. Moreover, the sparse and 
low-resolution ground-truth depth maps of datasets (KITTI, Make3D) potentially weaken the performance of 
depth estimation solutions, making the limited understanding of driving scenarios4,18.

A comprehensive dataset is thus needed to meet the requirements of driving scene diversity and the high 
quality of data. Therefore, to figure out the problems above, we introduce SDCD, a new synthetic dataset, which 
covers common driving conditions: Sunny, Rain, Snow, Sleet, Overcast and Dust. In addition, the robustness 
of depth estimation models is explored by considering the detrimental effects of data transmission, including 
Noise, Blur, Image Compression (JPEG), Colour Quantization, and Pixelation. These adverse perturbations 
are taken into account to assess the performance and resilience of the models. To highlight the strengths of the 
SDCD, a comprehensive comparison is presented in Table 1, showcasing its advantages over previous datasets.

Furthermore, the adverse perturbations caused by the data transmission, such as Noise, Blur, Image quality 
loss during image compression (JPEG), ColourQuant, and Pixelate, are also taken into consideration to inves-
tigate the robustness of the depth estimation models. A summarized comparison (See Table 1) between SDCD 
and previous datasets is provided to demonstrate the advantages of SDCD.

We summarize the main contributions of this work:

•	 SDCD gives a large-scale, high-resolution (1080 × 720) monocular depth data, which is used to boost the 
development of depth estimation solutions. SDCD contains 920 K RGB images and corresponding dense 
depth maps with a total of 427.5 kilometers of vehicle driving mileage.

•	 SDCD provides adequate data collected under 6 different weather driving conditions and 6 common per-
turbations from the data transmission. It covers common adverse conditions in the real world to investigate 
the robustness of the depth estimation models. Additionally, a benchmark of depth estimating in different 
perturbations is provided based on the technical validation to further study the influence of the adverse dis-
turbances on the depth estimation algorithm.

•	 SDCD enhances the depth observation capabilities of depth estimation models, making them more effec-
tive in real-world applications. This showcases the immense potential of synthetic datasets and the vision 
algorithms trained on them, particularly in autonomous driving. The validation results indicate that depth 
estimation models trained on the SDCD (Synthetic Driving Dataset) exhibit superior performance, with 
clearer, smoother, and more precise depth estimation in long-range compared to those trained on the KITTI 
(Real-world Driving Dataset).

KITTI DIODE Make3D MegaDepth Scene Flow SDCD

Size 93 K 100 K 400 100 K 8800 930 K

Dense Depth Map × √ × × × √

High Resolution (1080 × 720) √ √ × × × √

Multiple Weather × × × × × √

Multiple Perturbations × √ × × × √

Multiple Driving Scenes √ × × × × √

Table 1. Comparisons with other depth datasets. It is hard to fairly compare different datasets, but we list some 
characteristics here as a rough reference.
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Methods
The generation of the SDCD follows three steps (See Fig. 1): a) Driving Scenario Generation, creates static city 
scenarios, including road maps and buildings, as well as dynamic elements like pedestrians and background 
vehicles. b) Severe Driving Conditions Generation, simulates different weather conditions and common per-
turbations from data transmission. c) Depth Map Generation and Collection, generates and collects dense, 
long-range ground-truth depth maps for accurate depth estimation.

Scenario Construction. The driving scenario is constructed as a modern city based on realistic rendering of 
Unreal Engine 5 (UE5)18. We designed a dedicated generation pipeline to construct the driving scenarios, which 
encompasses the generation of a topographic map, static scenarios, and dynamic elements, as illustrated in Fig. 2.

Topographic map as the foundation of city driving scenarios is generated based on the City Simple of UE5, 
covering 12 squares kilo meters. It provides significant guidance for the layout of roads and transportation 
networks throughout the city. Additionally, the topographic map serves as a crucial reference for accurately 
positioning and establishing static scenarios and dynamic elements.

Static scenarios are constructed based on the topographic map, which are mainly composed of structured 
roads, unstructured roads and buildings. Structured roads, such as urban freeways or arterial roads, exhibit a 
grid or linear layout, well-defined lane divisions and clear traffic signals. These characteristics provide geometric 
cues that contribute to improved accuracy in depth estimation19. On the contrary, unstructured roads, such as 
city streets and non-arterial urban roads, lack clear road demarcation and defined traffic rules, resulting in a 

Fig. 1 The steps of SDCD generation.

Fig. 2 The Generation Pipeline of Digital City Driving Scenario.
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complex road environment that poses challenges for algorithms to accurately estimate the distance and spatial 
relationships of objects20. Furthermore, buildings, serving as the fundamental elements of static scenarios, are 
created in diverse architectural styles and functionalities. They encompass a range of structures, including resi-
dential buildings, commercial establishments, and urban infrastructure, playing a crucial role in the generation 
of realistic driving scenarios.

Dynamic elements are constructed based on static scenarios, including dynamic transportation systems 
(traffic lights and signs), background agents (pedestrians, background vehicles), weather and day-to-night 
light variations. Background agents and transportation systems are randomly set into the city driving  
scenario, their behaviours follow the pre-set scripts which are provided by the MASS AI and Traffic AI from UE5.  
In addition, weather and day-to-night light variations will follow the settings of the dynamic sky system, as 
shown in Fig. 2.

perturbation Generation. Due to the fluctuations in the real-world environment and the limitation of 
the sensor, the driving environment data under diverse perturbed conditions cannot be perfectly observed and 
collected, hindering the research on the robustness of depth estimation solutions21–27. Benefiting from the realis-
tic rendering capabilities of UE5, common perturbations encountered in image depth estimation tasks include: 
extreme weather and the perturbation generated during data acquisition and transmission, which can be effec-
tively simulated and replicated within digital city driving scenarios28.

In this part, we provide a detailed introduction to the generation of common perturbations, including com-
plex lighting conditions, rain, snow, and Gaussian noise, presented in the following manner:

Complex Lighting Condition. In complex lighting conditions, particularly during night-time conditions, 
cameras will experience disturbances caused by glare and lens flares, resulting in a degradation of image quality. 
Specifically, the glare and lens flares give rise to complications such as blurring, scattered light, and reflections, 
compromising edge details of objects within the captured image.

Based on the city driving scenario above, we set up a series of light sources to create complex light conditions 
(See Fig. 3), such as the changing sunlight, the diverse building light, high intensity streetlamps and the bright 
beam light of background vehicles. Furthermore, we set a series of materials attributes of the objects in the sce-
narios, such as material reflection, refraction, roughness and ambient diffuse reflection, to further simulate real 
light variations.

Rain. Rain, as the common weather, is always accompanied by a series of physical phenomena, such as the 
light scattering and occlusion effects, which severely degrades the accuracy of depth estimation solutions29,30. 
Images captured on rainy days always compose with complicate environmental information, which can be pre-
sented as31:

= +I B R (1)rain rain

Where Irain is the observed image of the monocular camera in rainy days, B is the clean background information 
of the environment, and Rrain is the rain-specific information. In general, Rrain can be divided into three different 
conditions:

•	 Only Rainstreaks: Rainstreaks in images can obscure scene content, reducing the visibility of the clean back-
ground and interfering with the analysis and processing conducted by depth estimation algorithms. The 
image captured in rainy days that only contains rainstreaks information Rs can be modelled as:

R B R (2)srain = +

Fig. 3 The effect drawing of city scenarios with complex light-sources.
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•	 Only Raindrops: When raindrops stick to the camera lenses, the resulting images often exhibit occlusion 
or blurring in random small regions. These imperfections are caused by the refraction of raindrops, creating 
masks that obscure or distort parts of the captured scene, which can be formulated as:

�R M B R(1 ) (3)drain = − +

Where M is the distortion mask, � is the Hadamard product and Rd is the raindrops information.
•	 Rainstreaks and Raindrops: Rainstreaks and raindrops may appear simultaneously in the rain image 

observed in the real physical world. Based on the formulation above, this kind of image can be modelled as:

I M B R R(1 ) ( ) (4)sd s d� ρ= − + +

Where ρ is the global atmospheric lighting coefficient, it is notable that the fusion between rainstreaks and 
raindrops will change the light conditions that lead to image content distortion and then further damage image 
semantic information.

Based on the modeling of the image captured in rainy days, we divided the rain generation into two steps: 
Rainstreaks Simulation and Raindrop Simulation.

Rainstreaks Simulation. Taking inspiration from the physics and appearance rendering of rain32, rain-
streaks are simulated by the particle system in UE5, enabling the physical simulation of their force and movement 
for a realistic rainstreaks falling process. Moreover, customized materials and textures can be utilized to achieve 
a photorealistic appearance of rainstreaks. The specific parameters value for generating rainstreaks are outlined 
in Table 2.

The value of particle spawn rate represents the max amount of rain particles spawned per second; the rain 
particle fall rate is used to adjust the falling speed of rain (the bigger the faster). In order to simulate the rainfall 
in reality while ensuring that the scene information is not completely covered, the value of 0.9 and 2000.0 are 
set for particle spawn rate and rain particle fall rate respectively. In addition, to best simulate real world rain and 
observe the attribute of rain particles easily, the rain particle scale is set to 1.0 to simulate the real raindrop size 
which the diameters range is typically 1 mm33, and the rain particle alpha is 1.5. The base colour of rain particle 
is custom, the intensity of rain refraction and rain ambient light are set as 0.8 and 1.0 respectively, making the 
fusion between rain and the driving scenario more smoothly.

Raindrop Simulation. The raindrop masks are designed to simulate the raindrops adhering to the camera 
lenses. We divided the raindrop mask simulation into two steps: static raindrop mask simulation and dynamic 
raindrop mask simulation. The detailed generation process is illustrated in Fig. 4. First, texture coordinates are 
acquired using the Visible Screen Resolution function and the TextCoord [0] function in UE5. Subsequently, the 
static raindrop mask and dynamic raindrop mask are generated separately, utilizing the corresponding normal 
texture and base colour texture. Finally, the raindrop mask simulation is completed by combining and blending 
these two masks.

Snow. The accumulation of snow on the ground and surfaces poses challenges in extracting depth cues from 
texture information, leading to low accuracy and unreliable depth estimation25,34. Furthermore, the high albedo 
of snow introduces fluctuations in the intensity and colour of reflected light, resulting in an unstable performance 
of depth estimation35.

We divided snow simulation into two parts: the snow coverage simulation and the snow particle simulation. 
The specific generation of snow coverage is shown in Fig. 5. First, the vertex object surface is obtained by the 
Vertex normal WS function and Mask (B) function, then the height of snow coverage and the contrast between 
snow and scene object are generated based on Power (0) function and Saturate function, at last, the snow RGB 
Mask is obtained via the Saturate function result and the texture sample of snow base colour. Additionally, the 
snow normal mask is generated based on the fusion between the texture sample of snow normal and the UV 
texture coordinate. Finally, the simulation of the snow coverage effect is completed by the combination of the 
snow RGB mask and snow normal mask.

Parameters Types Size

Particle Spawn Rate 2000.0

Rain Particle Scale 1.0

Rain Particle Base Colour Custom

Rain Particle Alpha 1.5

Rain Refraction Intensity 0.8

Rain Ambient Light Intensity 1.0

Rain Particle Fall rate 0.9

Table 2. The specific parameters for generating rainstreaks. Rain Particle Base Colour is set by RGB value and 
other parameters are configured to maximize the simulation of rainstreaks falling in real world. The standard 
value unit is defined by the UE5.
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Following similar simulation procedures as rainstreak particles. Snowflakes are simulated using the particle 
system in UE5 as well, the parameters of snow particle simulation are shown in Table 3. The number of particle 
spawn rate represents the max amount of snowflakes particles spawned per second; the snowflakes particle fall 
rate is used to adjust the falling speed of snow (the smaller the slower). In order to simulate the snow in reality 
while ensuring that the scene information is not completely covered, the value of 0.25 and 1800.0 are set for par-
ticle spawn rate and snow particle fall rate respectively. As the opacity of snowflakes is higher than rain particles 
and the snowflakes is earlier than rain particle to be observed, the snowflakes alpha is smaller than rain particle 
alpha which is 0.43. In addition, to best simulate real world snow, the snowflakes scale is set to 2.25 to simulate 
the real snow size which the diameters range is typically 2.25 mm36. The base colour and normal of snowflakes 
are custom, the snow ambient light is 1.5 which is higher than rain particles, as the high albedo of snow.

Fig. 4 The generating process of the raindrops mask. the final raindrops mask is generated by the fusion 
between the result of the static raindrop mask module and the dynamic raindrops mask module. The Visible 
Screen Resolution, Texture Sample and TexCoord [0] are the material functional node in UE5. ⊙ is the 
Hadamard product.

Fig. 5 The simulation process of the Snow Coverage. The material sphere on the left of each module is the 
corresponding visual effect, ⊙ is the Hadamard product.
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Gaussian Noise. During the process of capturing, encoding, and transmitting images, noise can be intro-
duced from various sources including sensor devices, thermal effects, signal interference, compression artifacts, 
and challenging lighting conditions, affecting image quality and clarity37. As it is difficult for depth estimation 
models that extract reliable features from noise images, the image with noise will adversely affect the quality of 
images. which can be formulated as:

= +A x y H x y B x y( , ) ( , ) ( , ) (5)

where x,y are the coordinates of the pixel, A(x,y) represent the noisy image, H(x,y) represent the noise informa-
tion of each pixel and B(x,y) is the information of each pixel from the original image.

The widespread utilization and favourable mathematical properties of Gaussian noise make it a common 
choice for modeling randomness or uncertainty, allowing for the simulation of real-world noise38. In order to 
generate the device communication perturbation during driving, we imposed the Gaussian noise on the RGB 
image, it can cause the loss of fine details in the image, making it difficult for the depth estimation algorithm 
to accurately determine the distance of objects in the scene. The Gaussian Probability Density Function p(z) is:

π σ
=

μ

σ

− −

p e(z) 1
2 (6)

z( )

2

2

2

where z represents the gray value of the image pixel, μ represents the average value of the pixel value, and σ rep-
resents the standard deviation of the pixel value. we assign each pixel a random probability value from a standard 
Gaussian distribution μ σN ( , )2  and impose it on the RGB images. The noisy image is shown in Fig. 6.

Ground-truth Depth Map Generation. Different from the sparse depth map collected from the LiDAR 
which is difficult to fully demonstrate the environmental information. We complete the information migration 
from the digital world to the real data collection via UE5 (Fig. 7). First, the whole digital world is obtained by the 
combination between city scenario and scene capture component, then the depth map is generated based on the 
combination of Post-Process material and RGB image which captured from the digital world.

Data Records
SDCD is available under ScienceDB repositories39 in zip compression format. In order to better use the dataset 
for depth estimation tasks under different conditions, we divide SDCD into several folders according to the type 
of perturbation with the RGB images and the corresponding ground-truth depth maps, each folder stored with 
the data file and two txt files (the location index of each training and testing data). The data directory hierarchy 
and content are shown in Fig. 8.

Parameters Types Size

Particle Spawn Rate 1800.0

Snowflakes Scale 2.25

Snowflakes Base Colour Custom

Snowflakes Normal Custom

Snowflakes Alpha 0.43

Snow Ambient Light Intensity 1.5

Snow Particle Fall rate 0.25

Table 3. The specific parameters for generating snowflakes. Snowflakes base colour and Snowflakes normal are 
set by custom texture sample and other parameters are configured to maximize the simulation of snow falling in 
real world. The standard value unit is defined by the UE5.

Fig. 6 The original image and corresponding Gaussian noisy image. A is the original image, B is the 
corresponding Gaussian noisy image.
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technical Validation
To investigate the reliability of the depth estimation models trained on the SDCD in the real-world applications, 
we adopt two the-state-of-the-art estimation solutions (BTS40 and NeWCRFS41) on KITTI and SDCD respec-
tively, which hyperparameters are shown in Table 4. To validate the performance of these two models trained 
under SDCD and KITTI, we obtain a series of city driving videos from the YouTube (https://www.youtube.
com/@jutah), a total of 2000 images were extracted from these videos every 10 frames to create the evaluation 
dataset. Images of the evaluation dataset are not in both KITTI and the proposed SDCD datasets, all of them 
are high resolution (1280×720), the content of images are daily city traffic scenario which can highly reflect the 
reliability of SDCD in real-world applications.

The results from the validation dataset demonstrate that models (BTS and NeWCRFS) trained on the SDCD 
have better performance of depth estimation from single image than that trained on the KITTI (See Fig. 9), they 

Fig. 7 The Schematic Diagram of Ground-truth Depth Map Generation.

Fig. 8 The data directory hierarchy and content of SDCD. The directory hierarchy have two levels, level A 
consists of 13 folders about driving conditions, level B consists of 13 folders about driving scenes and two txt file 
about the location index of each training and testing data. Each folder in level A has its own level B folders.
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are able to estimate scene information at further distances. Moreover, models trained on SDCD have a clearer 
features estimation of scene object in the near distance than models trained on KITTI.

To further investigate the specific impact on depth estimation performance under different driving condi-
tions and perturbations. We train BTS and NeWCRFs on the corresponding training data types of SDCD, then 
assess the results with evaluation metrics which include Scale Invariant Logarithmic Error (SILog), Absolute 
Relative Error (Abs Rel), Square Relative Error (Sq Rel), Root Mean Square Error (RMSE), and the Logarithm 
Root Mean Square Error (log RMS)42. These metrics are formulated as:

n
y y

n
y ySI log 1 ( ) 1 (log log )

(7)
* *

i
i i

i
i i

2
2

2

∑ ∑ = − −





−





∑=
−

∈T

y y

y
Abs Rel 1

(8)

*

*i T

i i

i

BTS NeWCRFS

Batch Size 4 5

Epochs 1000 1000

Learning Rate 1e-4 2e-5

Weight Decay 1e-2 1e-2

Adam Eps 1e-3 1e-3

Table 4. The hyperparameters of BTS model and NeWCRFS model. These hyperparameters of each model are 
same in training on both KITTI and SDCD.

Fig. 9 The performance comparison of depth estimation models (BTS, NeWCRFs) which were adopted on 
KITTI and SDCD respectively. RGB Image row are the images that not belong to the KITTI or SDCD. (a) is 
the RGB images that not in KITTI or SDCD, (b) is the depth estimation result from NewCRFS that adopted on 
KITTI, (c) is the depth estimation result from NeWCRFs that adopted on SDCD, (d) is the depth estimation 
result from BTS that adopted on KITTI, (e) is the depth estimation result from BTS that adopted on SDCD. 
The mosaic regions in RGB images are used to protect people’s privacy which is not impacting the training 
performance.
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Where yi and y*
i

 are the predicted depth and ground truth depth respectively at the pixel indexed by i, T is the 
total number of pixels in all the evaluated images.

The experimental results (see Tables 5, 6) provide a benchmark for depth estimation performance. It is nota-
ble that both BTS and NeWCRFs have generally good depth estimation performance under sunny / normal 
driving conditions. However, some depth estimation results from these two models on sunny / normal type 
achieve lower performance than that on other types, after analysing the results, we figure out the main causes are 
shadow variations, reflections and refractions (see Fig. 10).

BTS

AbsRel SqRel RMSE RMSElog SILog d1 d2 d3 Types

Driving Conditions↓

0.062 0.012 0.007 0.262 0.254 0.958 0.981 0.988 Sunny

0.373 0.08 0.012 0.384 0.291 0.557 0.819 0.909 Snow

0.265 0.077 0.014 0.342 0.199 0.633 0.769 0.849 Rain

0.271 0.057 0.015 0.471 0.273 0.382 0.619 0.907 Overcast

0.269 0.104 0.015 0.358 0.347 0.705 0.911 0.95 Sleet

0.313 0.164 0.039 0.668 0.473 0.491 0.596 0.681 Night

0.760 0.408 0.054 2.274 0.951 0.045 0.106 0.188 Dust

Perturbation Types↓

0.062 0.012 0.007 0.262 0.254 0.958 0.981 0.988 Normal

0.267 0.054 0.015 0.238 0.147 0.386 0.670 0.895 Pixelate

0.283 0.064 0.017 0.529 0.325 0.387 0.610 0.868 ColourQuant

0.309 0.079 0.018 0.512 0.370 0.411 0.679 0.860 JPEG

0.315 0.070 0.019 0.589 0.357 0.355 0.538 0.768 ZoomBlur

0.357 0.090 0.020 0.761 0.456 0.361 0.516 0.696 MotionBlur

0.923 0.304 0.040 0.917 0.842 0.097 0.207 0.329 GaussianNoise

Table 5. The benchmark of depth estimation performance from BTS model.

NewCRFs

AbsRel SqRel RMSE RMSElog SILog d1 d2 d3 Types

Driving Conditions↓

0.061 0.002 0.030 0.119 0.116 0.949 0.984 0.992 Sunny

0.36 0.072 0.011 0.436 0.353 0.562 0.814 0.909 Snow

0.099 0.017 0.011 0.197 0.178 0.918 0.965 0.982 Rain

0.271 0.1 0.017 0.631 0.626 0.674 0.894 0.944 Overcast

0.259 0.057 0.018 0.71 0.554 0.386 0.662 0.922 Sleet

0.576 0.26 0.027 0.85 0.667 0.414 0.572 0.718 Night

0.796 0.425 0.055 2.348 0.906 0.035 0.075 0.128 Dust

Image Types↓

0.061 0.002 0.030 0.119 0.116 0.949 0.984 0.992 Normal

0.263 0.061 0.019 0.706 0.542 0.416 0.665 0.901 Pixelate

0.265 0.061 0.019 0.766 0.621 0.397 0.675 0.901 ColourQuant

0.311 0.071 0.019 0.762 0.542 0.363 0.545 0.784 JPEG

0.316 0.082 0.022 0.777 0.556 0.336 0.536 0.786 ZoomBlur

0.457 0.142 0.026 1.207 0.756 0.317 0.389 0.519 MotionBlur

0.474 0.156 0.026 1.167 0.576 0.336 0.431 0.52 GaussianNoise

Table 6. The benchmark of depth estimation performance from NewCRFs model.
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Shadow Variations. The light in sunny day can cause strong shadows. Depth estimation in these shadow 
regions may be affected by lighting changes, resulting in inaccurate depth estimation results.

Strong Shadow, Reflections and Refractions. Driving environments in sunny day may have more 
ambient reflections and refractions that can complicate depth estimation process. Especially in the case of trans-
parent and reflective materials, the depth estimation algorithm may be disturbed.

Usage Notes
All data are published in image and txt file format, users can access them entirely without any further permis-
sion. SDCD covers the different weather driving conditions and diverse image perturbations in autonomous 
perception tasks. By providing the RGB images and corresponding ground-truth depth maps, we hope that 
SDCD can be used as a training dataset to improve the performance and robustness of depth estimation algo-
rithms in autonomous application.

As the dataset is quite large, we divide SDCD into 13 folders based on the training data type in order to help 
users use it according to their computing conditions, also we provide corresponding tutorial of how to use this 
data on GitHub website.

Code availability
A git repository is publicly available at https://github.com/ReparkHjc/SDCD, in this repository several python 
scripts for visualisation, benchmarking and data pre-processing are available.
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