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A 10-m annual grazing intensity 
dataset in 2015–2021 for the 
largest temperate meadow steppe 
in China
Chuchen Chang  1, Jie Wang  1 ✉, Yanbo Zhao1, Tianyu Cai1, Jilin Yang1,2, Geli Zhang  3, 
Xiaocui Wu4, Munkhdulam Otgonbayar5, Xiangming Xiao  6, Xiaoping Xin7 & Yingjun Zhang1

Mapping grazing intensity (GI) using satellites is crucial for developing adaptive utilization strategies 
according to grassland conditions. Here we developed a monitoring framework based on a paired 
sampling strategy and the classification probability of random forest algorithm to produce annual 
grazing probability (GP) and GI maps at 10-m spatial resolution from 2015 to 2021 for the largest 
temperate meadow in China (Hulun Buir grasslands), by harmonized Landsat 7/8 and Sentinel-2 images. 
The GP maps used values of 0–1 to present detailed grazing gradient information. To match widely 
used grazing gradients, annual GI maps with ungrazed, moderately grazed, and heavily grazed levels 
were generated from the GP dataset with a decision tree. The GI maps for 2015–2021 had an overall 
accuracy of more than 0.97 having significant correlations with the statistical data at city (r = 0.51) and 
county (r = 0.75) scales. They also effectively captured the GI gradients at site scale (r = 0.94). Our study 
proposed a monitoring approach and presented annual 10-m grazing information maps for sustainable 
grassland management.

Background & Summary
Grasslands cover around 40% of the earth’s surface and provide a wide range of ecosystem services, such as 
food supplies, carbon sequestration, and climate mitigation1. Grazing is the main land use in grasslands and 
produces about 30% of the world’s meat supply2. In China, about 18 million people rely on grasslands to survive 
with grazing as their main source of income3. However, the effects of grazing activities on ecosystem services 
are spatially complex, which depend on grazing intensity (GI) and local environmental conditions. For example, 
the negative and positive effects of grazing were observed divergently in warmer and colder areas4. In addi-
tion, grazing may have variable effects on the structure and function of grasslands in the short and long term5. 
Despite this significant spatial and temporal variability, existing studies on the effects of grazing on grasslands 
have primarily focused on local scales with limited field survey data4. One of the main obstacles to regional 
grazing studies is the absence of large-scale, long-term, and high-quality grazing information maps. Without 
these data, it is difficult to achieve a comprehensive understanding of grazing impacts, which is necessary to 
develop context-dependent grazing management strategies for sustainable grassland conservation. Therefore, 
it is essential to improve grazing monitoring techniques and produce annual maps at regional and large scales.
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GI is a general indicator used to quantify the degree of grassland utilization, also called grazing pressure6. It 
was challenging to document the spatio-temporal distribution and dynamics of GI in grasslands continuously 
over large regions using traditional field survey approaches7. Another widely used approach involves spatializ-
ing the statistical data describing livestock numbers to produce GI distribution maps8. This method considered 
only the number of livestock carried but not the impacts of grazing on grasslands9. Satellite observations and 
the Google Earth Engine (GEE) platform provide an opportunity to map the spatiotemporal patterns of GI at 
local, regional, and global scales using long-term multi-source remote sensing archive data and state-of-the-art 
cloud-computing capability10. Moreover, it is promising to monitor the GI considering the consequences on 
grasslands by satellite techniques based on the characteristics of vegetation dynamics11. In grassland ecosystems, 
the feeding behaviors of herbivores directly influence the vegetation states12,13. For instance, livestock grazing 
may remove vegetation but manures will increase vegetation vitality in the short term14. In the long term, veg-
etation compositions may shift to some extent due to grazing15,16, which can change the density and height of 
vegetation. In field surveys, the GI can be assessed by the structure and function parameters of grass (e.g., height, 
coverage, edible pasture, and residual biomass)17, which can be captured by remote sensing.

Optical images were the dominant data type used in previous studies on GI mapping, e.g., Moderate 
Resolution Imaging Spectroradiometer (MODIS, 250-m/500-m resolution), Landsat (30-m resolution), 
Sentinel-2 (10-m resolution), etc. (Table 1). Previous studies have demonstrated that temporally intensive 
MODIS observations can be used to detect GI by phenology features18,19. However, the coarse-spatial resolution 
of these data makes it hard to characterize the spatial heterogeneity of grazing activities. In recent years, Landsat 
images have been widely used in grazing studies due to their high spatial resolution (30-m) and long image 
archive9,20. For example, Landsat data were used to capture the dynamics of grazing pressure in the steppe of 
northern Kazakhstan from 1985 to 20179. However, the 16-day time interval may be insufficient to capture the 
grassland dynamics caused by the behavior of free-grazing livestock21,22. Currently, a combined time series of 
Landsat and Sentinel-2 images can be used to achieve improved observations with high spatial (10-m) and tem-
poral (≤ 10-day) resolutions, which have been widely used to monitor vegetation phenology and crop types23,24. 
However, no studies have attempted to monitor the dynamics of GI in grasslands based on the 10-m harmonized 
Landsat and Sentinel-2 time series.

Remote sensing-based algorithms for monitoring grazing intensities can be broadly categorized into differ-
ence simulation and machine learning (ML) methods. Difference simulation methods are widely used in grass-
land utilization intensity studies such as grazing and mowing detections18,25. These methods often estimate the 
differences between potential and actual vegetation states using various satellite-based vegetation indices. Then 
the differences were used as indicators to quantify the grassland utilization states. However, it is challenging to 
accurately estimate the potential states of vegetation using these approaches26. In recent years, ML methods have 
shown significant promise for mapping the processes of gradual change and random behaviors in land surface 
usage27,28. Several studies have successfully monitored the grazing or mowing intensity in different grassland 
ecosystems using various ML methods, such as Random Forest (RF) regression9, convolutional neural networks 
(CNN)16, and the artificial neural network (ANN)29. The RF method based on the probability of class members 
has proven to be more successful than directly using RF classifier30,31. Previous studies have also suggested that 
integrating this method and field samples with different GI gradients can detect more detailed grazing behaviors 
while also reducing the interference of climatic factors9. However, existing studies were mainly conducted based 
on satellite images at a specific time of the year (Table 1). Thus, it remains challenging to automatically monitor 
the interannual dynamics of GI over large spatial areas.

This study aimed to develop a spatial-adaptive and time-stable approach to monitor the interannual dynam-
ics of GI at 10-m resolution at a regional scale by integrating RF classification probability and a paired GI sam-
pling strategy based on harmonized Landsat and Sentinel-2 time series. One of the largest grasslands in China, 
Hulun Buir grasslands, was selected due to its complex grazing activities within a total area of 2.62 × 105 km2. 
The three objectives of the study were to (1) develop a phenology- and ML-based approach to map the grazing 

Method Satellite Images used Spatial resolution Study period Samples References

Random forest (RF) Landsat Images from April to October of each year with 
16-day time interval 30-m 1985-2017 Field data (2009, 2010, 

2015, and 2016)
9

Convolutional neural 
networks (CNN) Sentinel-2 Images of all the year round with 16-day time 

interval 20-m 2017, 2018 Field data (2017 and 
2018)

16

Artificial neural network 
(ANN) Landsat Image of July 25, 2014 30-m 2014 Field data (2014) 29

K-means clustering RapidEye Images from April 24 to August 2, 2013, with 
about monthly time interval 5-m 2013 Visual interpretation 

(2013)
48

NDVI threshold Landsat Images from March 16 to September 24, 2015, 
with 5- and 13-day time interval 30-m 2015 Public and government 

data in 2015
8

RF Sentinel-2 Images from August 23 to November 1, 2018, 
with more than a 15-day time interval 20-m 2018 Field data (2018) 68

Difference simulation MODIS Images from the day of year 97 to 225 with a 
16-day time interval 250-m 2001–2014 Field data (2011, 2013 

and 2014)
69

RF and decision-tree Landsat + Sentinel-2 Images in the growing season identified by LST 
automatically with a 10-day time interval 10-m 2015–2021

Field data and 
visual interpretation 
(2015–2021)

This study

Table 1. Summary of the main literature related to the monitoring of grazing intensities in grasslands. The 
characteristics of the previous studies are shown in the table.
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probability (GP) and GI automatically based on remote sensing metrics and multi-year field samples, (2) gen-
erate 10-m resolution annual GP and GI maps from 2015 to 2021 in Hulun Buir grasslands, and (3) evaluate the 
resultant GP and GI maps at three spatial levels (i.e., experiment sites, county, and city) using grazing experi-
ment site and government statistical data during 2015 to 2021.

Methods
Study area. Located in the eastern part of the Eurasian steppe belt, Hulun Buir grasslands are in the northeast 
of Inner Mongolia (47°05′–53°20′ N, 115°31′–123°00′ E), China, with a total area of 2.62 × 105 km2 (Fig. 1a). It 
plays a vital role in the husbandry of China with intensive livestock production. It is also an important ecological 
barrier between Northeast China and the Beijing-Tianjin region27. Hulun Buir grasslands are flat and the eleva-
tion ranges from 600-m to 750-m above sea level. The study area is characterized by the temperate continental 
monsoon climate, which has mild and short summers, but cold and long winters. The mean annual temperature 
varies from −5 °C to 5 °C from 2015 to 2021 (Fig. 1b). The mean annual precipitation is around 200 mm to 
600 mm from 2015 to 2021 with a decreasing trend from the northeast to the southwest (Fig. 1c). Grasslands are 
distributed from east to west, along with the dryness gradient of climate22 (Fig. 1a).

Under the influence of policy, the GI of Hulun Buir has changed in the last few years. As one of the largest 
pastoral areas in China, there was intensive livestock production and grassland utilization. To restore grassland 
ecosystems and raise herdsmen’s income, the Grassland Ecological Compensation Policy (GECP) was proposed 
in China in 2010, which was the largest grassland conservation program in the world. The first five-year program 
(GECP-I) was implemented in Hulun Buir from 2011 to 201532, and the second five-year program (GECP-II) 
was launched in 20163,33. However, how the grazing activities have been changed along with the conservation 
policy remains unclear in this region.

Data. Landsat and Sentinel-2 data and preprocessing. We used all the Landsat-7/8 and Sentinel-2 (LC/S2) 
Surface Reflectance (SR) images from 2015 to 2021 at the Google Earth Engine (GEE) platform to establish the RF 
model. Landsat data collected at the GEE platform including all available Level-2 Landsat-7 Enhanced Thematic 
Mapper (ETM+) and Landsat-8 Operational Land Imager (OLI) surface reflectance data from the United States 
Geological Survey (USGS). Landsat data has a 30-m spatial resolution and 16-day temporal resolution. Sentinel-2 
(S2) data included all available Level-2 Sentinel-2A and Sentinel-2B Multi-Spectral Instrument (MSI) data from 
the European Space Agency (ESA). Sentinel 2 A/B data provided 5-day interval observations at 10-m spatial 
resolution. The harmonized LC/S2 dataset was generated by four main steps, including excluding poor-quality 
observations, harmonizing LC/S2 images, producing spectral bands (SBs) and vegetation indices (VIs), and con-
structing time series.

Landsat images were pre-processed using the quality control layer (pixel_qa) to mask out all poor-quality 
observations caused by clouds, cloud shadows, snow, and scan line corrector gaps. The quality band was pro-
duced by the CFmask algorithm34. S2 images were also pre-processed to ensure high-quality observations. The 
band of cloud mask QA60 was used to identify the good observations (Gobs) on the GEE platform. Gobs were 
identified as the pixels without opaque and cirrus clouds. The number of Gobs and total observations were 
analyzed in Fig. S1. Compared with the single dataset of Landsat or Sentinel-2, the harmonized time series sig-
nificantly improved the frequency of Gobs about by three times at the pixel scale. Second, the SBs from LC/S2 
were harmonized using the ordinary least squares (OLS) regression35. Landsat 8 has improved calibration and 

Fig. 1 (a) The location and grassland types of Hulun Buir grasslands in China. (b,c) the distributions of mean 
annual temperature and mean annual precipitation from 2015 to 2021. The temperature and precipitation maps 
were derived from the Global Land Data Assimilation System (GLDAS) data products.
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signal-to-noise characteristics than Landsat 736. We harmonized the Landsat 7 and Sentinel-2 data to the stand-
ard of the Landsat 8 data. For Landsat 7 data, we converted the values of band 1 (blue), band 2 (green), band 3 
(red), band 4 (near-infrared), and band 5 (shortwave-infrared) to match Landsat 8 bands using the OLS regres-
sion coefficients35. For Sentinel-2 data, band 2 (blue), band 3 (green), band 4 (red), band 8 A (near-infrared), 
and band 11 (shortwave-infrared) were converted using another set of OLS regression coefficients37. Third, 
three VIs were calculated by the harmonized LC/S2 data, including the Normalized Difference Vegetation Index 
(NDVI)38, Enhanced Vegetation Index (EVI)39, and Land Surface Water Index (LSWI)40. NDVI and EVI are 
closely related to vegetation coverage, greenness, and production41. LSWI is a good indicator to monitor the 
dynamics of land surface moisture40. Using the surface reflectance values of blue, red, near-infrared (NIR), and 
shortwave-infrared (SWIR) bands from the LC/S2 images, the VIs were calculated according to the following 
Eqs. (1–3).
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Where ρBlue, ρRed, ρNIR and ρSWIR are the surface reflectance values of blue, red, near-infrared (NIR), and 
shortwave-infrared (SWIR) bands of Landsat and Sentinel-2.

Finally, because the raw LC/S2 time series have uneven observation frequency for individual pixels, we 
restructured the time series of SBs and VIs with a 10-day interval24. The NDVI and EVI were composited by 
calculating the maximum value within 10 days, and other bands were processed by the 10-day mean value con-
sidering the differences in land surface greenness and wetness24. If there were no good-quality observations in 
10 days, the data gaps were filled with the linear interpolation method42. These processes aimed to generate con-
sistent remote sensing data at spatial and temporal scales to reduce the uncertainties resulting from data sources.

MODIS Land cover data. We used the MODIS land cover product (MCD12Q1) to extract the permanent 
grasslands of Hulun Buir. The MCD12Q1 hosted on NASA LP DAAC at the USGS EROS Center (https://lpdaac.
usgs.gov/products/mcd12q1v006), generated based on the Terra and Aqua data, provides the annual global land 
cover maps at 500-m spatial resolution since 2001. MCD12Q1 contains five land cover classification systems. 
In this study, we used the International Geosphere-Biosphere Programme (IGBP) classification scheme43. The 
annual MCD12Q1 land cover maps from 2010 to 2021 were used to extract the permanent grasslands (LC_
Type1 = 10) for the study period of 2015 to 202142.

MODIS Land surface temperature (LST) data. The MODIS land surface temperature (LST) data product level-3 
(MOD11A2 and MYD11A2) from 2015 to 2021 were used to determine the nighttime LST-based thermal grow-
ing season in this study44. The LST products have a spatial resolution of 1 km and a temporal interval of 8 days, 
provided by NASA LP DAAC at the USGS EROS Center (https://lpdaac.usgs.gov/products). MOD11A2 and 
MYD11A2 provided the nighttime LST at ~22:30 and ~1:30 a.m. local solar time, respectively. We calculated the 
mean nighttime LST of MOD11A2 and MYD11A2 for the good-quality pixels based on the quality control layer.

Ground reference data. Ground reference data of different GI levels are essential to generate the training and 
validation samples required to develop an RF model of GI mapping. To do so, more than 100 GI samples were 
collected in a field survey conducted in Hulun Buir from July to September 2021 (Fig. 2). These GI samples 
were collected from different GI levels (ungrazed and heavily grazed) by paired sampling within adjacent areas 
(<1 km apart). Thus, the different GI levels of adjacent samples were primarily driven by grazing activities, as 
neighboring plots typically had similar climates and environments4. In the fieldwork, samples with different GI 
levels were determined based on the state-of-the-art industrial standard in the Evaluating criterion for balance 
of forage supply and livestock requirement45. The enclosed plots without livestock grazing were selected as the 
ungrazed samples. Then, using the ungrazed samples as benchmarks in paired sampling, the heavily grazed 
samples were determined based on the reduction rates of vegetation coverage, grass height, edible forage, and 
residual biomass (Table 2). These evaluating criteria based on vegetation status are unaffected by grassland type 
and climate zone and represent a more practical approach than that based only on livestock number for grass-
land management.

The grasslands of Hulun Buir have been separated into public and private regions. The public grasslands were 
used for free grazing, while parts of the private grasslands were enclosed as grazing prohibition areas restricted 
by GECP46. During the field trip, we also investigated the utilization of grasslands over the past few years by the 
survey of herdsmen. The investigation covered the locations of public and enclosed grasslands, grazing route, 
number of livestock, grassland production from 2015 to 2021. Based on the field survey information, we further 
verified the stability of the field samples by visual interpretation of high-resolution images from Google Earth 
and the high-resolution earth observation system of China (GF1/GF2) from 2015 to 2021. We digitized the 
multi-year unchanged regions of interest (ROIs) for ungrazed and heavily grazed samples during 2015 to 2021. 
Then, the samples were split into training and validation groups randomly with a proportion of about 8:2 at the 
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pixel scale. The training samples consisted of ungrazed (45 ROIs, 1.53 × 105 pixels) and heavily grazed (60 ROIs, 
1.97 × 105 pixels) ones. The validation samples comprised ungrazed (35 ROIs, 3.61 × 104 pixels) and heavily 
grazed (28 ROIs, 3.55 × 104 pixels) ones, which were used to evaluate the accuracy of the GI maps in 2015–2020 
by calculating the confusion matrixes.

Methods
Figure 3 shows the workflow of mapping the annual GI from 2015 to 2021. There were three main sections. We 
first developed a phenology- and RF-based approach to producing annual GP datasets by selecting sensitive 
variables (SBs and VIs) based on harmonized LC/S2 images. Then, the annual 10-m GI maps were generated 
based on the resultant GP maps across the permanent grasslands in the study area. Finally, the resultant GP and 
GI maps were evaluated by accuracy assessment and cross-comparison with third-party datasets at three spatial 
scales from 2015 to 2021. The detailed information is described in the following text.

extraction of permanent grasslands. This study focused on the permanent grasslands during the study 
period without considering the grasslands that had land-use conversions (e.g., grassland reclamation). The per-
manent grasslands were extracted based on the MCD12Q1 land cover dataset from 2011 to 2021. LC_Type1 
land cover had an IGBP classification scheme with a value of 10 denoting the grasslands47. We first identified 
the grassland pixels to map the annual grassland maps from 2011 to 2021. Then, the grassland frequency (GF) 
map was generated by the sum of the annual grassland maps. Finally, the permanent grasslands were extracted 
by identifying the pixels with always grassland cover (GF equal to 11) during 2011–2021. This map provided the 
permanent grasslands (7.63 × 104 km2), which was about third of all Hulun Buir grasslands, for GI analyses in the 
following studies.

Automatic identification of thermal growing season at the pixel scale. Due to the limitations 
of temperature to vegetation productivity, the start and end of the growing season can be defined as the first 
day when the minimum temperature is higher and lower than 5 °C, respectively, following previous studies48.  
This rule can be realized at a pixel scale with a 1-km spatial resolution based on the nighttime LST time series 
derived from MOD11A2 and MYD11A249. The nighttime LST was calculated as the mean of MOD11A2 (over-
pass time is ~22:30 l.s.t) and MYD11A2 (overpass ~1:30 am l.s.t) observations50. The thermal growing seasons 
(TGS) were defined as the period between the first day with nighttime LST above and below 5 °C for each year 

Fig. 2 The spatial distribution of field data and permanent grasslands. (a) The distribution of permanent 
grasslands and field samples in the study area. The field samples include training samples to establish Random 
Forest models and validation samples for calculating a confusion matrix. (b,d) show the field photos of 
ungrazed samples. (c,e) show the field photos of heavily grazed samples.

Reduction rate of 
vegetation coverage (%)

Reduction rate of 
grass height (%)

Reduction rate of 
edible forage (%)

Reduction rate of 
residual biomass (%)

Ungrazed Benchmark Benchmark Benchmark Benchmark

Moderately grazed 11–20 11–20 11–20 11–20

Heavily grazed >20 >20 >20 >20

Table 2. The industrial standard of national forestry and grassland administration in China for Evaluating the 
balance of forage supply and livestock requirement. This criterion was used as a reference to collect field samples 
with different grazing intensity levels. *The edible forage is the plant species that can be eaten by animals except 
inedible or poisonous grass. The residual biomass is the quality of existing green living organic dry matter on 
grasslands after grazing.
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(2015–2021). This nighttime LST-based TGS was used to extract the metrics of SBs and VIs within the annual 
growing season in the following works.

Signature analysis of different grazing intensities. There were obvious spectral differences in grass-
lands with different grazing intensities, which can be used to develop remote sensing-based approaches to mon-
itor GI. SBs of LC/S2 data included blue, green, red, NIR, and SWIR. VIs included the NDVI, EVI, and LSWI, 
which have been widely used to study vegetation dynamics across multiple spatial scales51.

To select the sensitive metrics to build the RF model for GI mapping, we compared the seasonal character-
istics of SBs and VIs for the heavily grazed and ungrazed samples (Figs. 4, 5). Typical sample analyses showed 
the signatures of the harmonized LC/S2 time series within the TGS could classify the ungrazed and grazed fields 
with low noise interference (Fig. 4). Furthermore, a set of LC/S2-based SBs and VIs in TGS were analyzed based 
on the multi-year (2015–2021) training ROIs of ungrazed (45 ROIs, 1.53 × 105 pixels) and heavily grazed (60 
ROIs, 1.97 × 105 pixels) grasslands (Fig. 5). The SBs (Fig. 5a) and VIs (Fig. 5b) of heavily grazed and ungrazed 
samples had significant differences with P < 0.01 except the NIR band with P < 0.05. VIs of the ungrazed sam-
ples were higher than those of the heavily grazed samples because ungrazed grasslands often have greater vege-
tation biomass, coverage, and moisture than the heavily grazed grasslands52. These analyses showed the SBs and 

Site scale

County scale

Prefecture city scale

Step 2: Classification of grazing intensity

Landsat 7/8 Sentinel-2 MOD11A2/
MYD11A2

MCD12Q1
Field
data

Google
Earth

Elimination of bad
observation

Harmonization of Landsat
and Sentinel-2

Spectral Bands (SBs)
Vegetation Indices (VIs)

(1) Analyses of remote sensing signals

LSTLC_Type1 Paired samples of grazing
intensity in 2015-2021

Annual grazing probability maps at 10-m from 2015 to 2021

Statistical
data

Samples
for training

Samples for
validation

Accuracy assessment

Annual grazing intensity maps at 10-m from 2015 to 2021

Comparisons at three spatial
levels

Thermal
growing
season
(TGS)

Permanent
grassland

Mean values of SBs and VIs

Blue Green Red NIR SWIR

NDVI EVI LSWI

Step 1: Random forest probability model

Ungrazed
samples

Heavily grazed
samples

Spectral
bands (SBs)

Vegetation
indices
(VIs)

Random Forest

Decision Tree 1 Decision Tree 2 Decision Tree n...

The proportion of
trees classified as

heaily grazed

Grazing probability

(2) Building random forest model

Input data

Grazing probability (GP)

Ungrazed Heavily
Grazed

0 GP 0.2 0.2 GP 0.6 0.6 GP 1

Moderately
Grazed

Threshold training

Fig. 3 The workflow for grazing intensity mapping by combining the time series of Landsat 7/8 and Sentinel-2. 
It included three main sections of grazing probability mapping, grazing intensity mapping, and accuracy 
assessment and comparisons.
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VIs within the TGS were promising variables that can be used to indicate grazing gradients to produce annual GI 
maps. We used the SBs and VIs as variables to establish the RF model for GI mapping (see the following section).

Monitoring of grazing probability based on random forest. An RF classifier was applied to quantify 
GP using the harmonized LC/S2 data within the TGS. According to the results of signature analyses, the mean 
values of five SBs and three VIs within the TGS were used as input variables to build the RF model. The RF model 
was trained by the multi-year reference data from 2015 to 2021. Based on the probability of the RF classifier, the 
GP from ungrazed to heavily grazed has been generated. Specifically, two contrasting ends of the grazing gradient, 
heavily grazed and ungrazed samples, were used to train the RF model based on all the pixels from the training 
ROIs. RF is an ensemble learning algorithm, which is more accurate and robust to noise than single algorithms53. 
The RF model was established using the scikit-learn library in Python54. This model calculated the mean proba-
bility by all trees for each class. We used the probabilities of the heavily grazed class to indicate the GP of grass-
lands. The probability shows how likely a pixel belongs to the heavily grazed class. We tuned two parameters of 
the RF model: (1) n_estimators into 1000, which was the number of trees in the forest; and (2) max_features into 
sqrt, which was the number of features to consider when looking for the best split. Ten-fold cross-validation was 
adopted to select the best RF model. This generalized model trained by multi-year samples was applied to produce 
the annual GP maps based on the SBs and VIs of LC/S2 from 2015 to 2021.

To reduce the salt-and-pepper noise on the resultant maps, a smoothness approach was employed to improve 
the accuracy, which was a commonly used method of post-classification processing, especially for high spatial 

Fig. 4 The remote sensing signatures of grasslands in different grazing intensities were analyzed based on the 
LC/S2 harmonized time series of 2021. A couple of paired samples in heavily grazed and ungrazed were taken 
as an example. (a–h) show the time series of spectral bands (blue, green, red, NIR, and SWIR) and vegetation 
indices (NDVI, EVI, and LSWI) in 2021. The growing season was marked with a green shadow in (a–h), 
identified by the start and end times of LST over 5 °C.
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Fig. 5 The boxplots of eight metrics for all ungrazed and heavily grazed samples. (a) Five spectral bands 
included blue, green, red, NIR, and SWIR, and (b) three vegetation indices included NDVI, EVI, and LSWI. The 
metrics with significant differences between heavily grazed and ungrazed samples were denoted as ** (P < 0.01) 
and * (P < 0.05), respectively.
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resolution images55. We compared four widely used filters of 5 × 5 median filtering, 3 × 3 median filtering, 5 × 5 
mean filtering, and 3 × 3 mean filtering using the ground reference data. At last, the 5 × 5 median filtering had 
the best performance that was used to generate the annual GP maps for 2015–2021.

Classification of grazing intensity. This approach, which used RF-derived class membership probabilities 
for different class types to map land use/land cover, has been widely used in previous studies of forest, cropland, 
and wetland mapping28,56,57. The potential of this approach has also been reported in the grazing pressure identi-
fication in Kazakhstan9. Thus, in this study, a similar method was used to estimate GI based on the resultant GP 
maps and ground samples from different GI levels. To determine the thresholds for different GI levels, we used 
the decision tree algorithm to examine the frequency distribution of the field-based heavily grazed and ungrazed 
samples in the GP map in 2021 (Fig. 2). To extract the majority of the information while not introducing too 
much noise, the thresholds were determined following the cumulative frequency (Fig. 6). A GP threshold of 0.6 
was used to extract the heavily grazed pixels (values ≥0.6) in our annual maps, while the ungrazed areas were 
mapped with a threshold of 0.2 (values ≤0.2) (Fig. 6). Figure 6 shows that these thresholds can extract more than 
90% of the information. Other pixels with GP between 0.2 and 0.6 were classed as moderately grazed areas. The 
decision tree algorithm used here was a data-driven model that established a relationship between GI and GP 
based on samples, which was then applied to GI mapping across larger regions9.

Accuracy assessment and comparison. The classification accuracy of annual GI maps was evaluated 
by a confusion matrix. Based on the field survey and high-resolution images, the validation samples of ungrazed  
(35 ROIs, 3.61 × 104 pixels) and heavily grazed (28 ROIs, 3.55 × 104 pixels) were collected for the study area. These 
validation samples were used to assess the accuracy of the GI map in 2015–2021. A confusion matrix was estab-
lished to calculate the overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA).

We compared our annual GP and intensity maps with the statistical data at two administration levels of the 
prefecture city and county in Hulun Buir. The annual statistical data of livestock numbers at the year-end were 
collected from the statistical yearbooks by Inner Mongolia for the available period of 2015 to 2020. The statis-
tical data in 2021 have not been updated, so it was not used in this study. We collected the large livestock and 
small livestock numbers and converted them to standard sheep unit using the coefficients in Table 358. These 
coefficients were the simplified coefficients because the end-year number of small and large livestock data was 
more abundant than that for different kinds of animals. Then the annual livestock density was calculated by the 
livestock number and county area. At last, we compared our resultant GP map with the annual livestock density 
data at the prefecture city and county scales. This cross-comparison was to evaluate the spatial-temporal agree-
ments between the remote sensing approach and the agricultural statistic approach.

In addition, we compared our results with the experiment data from a grazing platform at the Hulun Buir 
Meadow Grassland Ecosystem Field observation and experiment station59. This platform has been carrying out 
grazing experiments on beef cattle since 2009. There were 18 grazing plots including 6 levels of GI treatments 
with each treatment repeating 3 times (Fig. 11). Each grazing plot has a size of 5.01 hm2. Thus, we can examine 
the spatial patterns and correlations between our GP maps and the grazing plots with different GI levels. The 
comparison was to evaluate whether our GP dataset can distinguish different grazing states at the site scale.

Data records
The GP and GI datasets for the Hulun Buir grasslands in 2015–202160 were named by the year in a GeoTIFF 
format. The spatial resolution was 10-m. The pixel values of GP and GI maps are non-dimensional. The GI was 
defined following the industrial standard of national forestry and grassland administration in China (Table 2). 
A data description file named “data_description.doc” has been uploaded online to introduce the datasets in 
detail60.

Annual maps of grazing probability from 2015 to 2021. Figure 7 shows the GP map of 2021 in Hulun 
Buir grasslands based on the RF model developed in this study, which received a model score of 0.95 in the 
ten-fold cross-validation. The GP was normalized into 0~1 with the larger value denoting the higher probabil-
ity under heavily grazed. Figure 7 b-n were the zoom-in views of heavily grazed and ungrazed samples in the 
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Fig. 6 Frequency analysis of ungrazed and heavily grazed samples in the grazing probability map in 2021 using 
decision tree algorithm.
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resultant map, Google Earth images, and field photos, respectively. The results demonstrated that the GP maps 
have the potential to clearly distinguish different grazing states at the site scale under various grazing manage-
ment activities (Fig. 7). The developed model was further used to generate the annual GP maps from 2015 to 2020 
(Fig. 8). Based on the resultant maps, the spatial and temporal dynamics of GP from 2015 to 2021 were examined 
at the regional and county scales in Fig. S3.

Annual maps of grazing intensity from 2015 to 2021. We produced the annual GI maps from 2015 
to 2021 based on the resultant GP maps by decision thresholds (Fig. 9a–g). In terms of the spatial patterns, the 
annual GI in the west of Hulun Buir was higher than that of other regions every year (Fig. 9), which was sup-
ported by a recent study on land degradation in the study area during 2015–202161. Figure 9h shows the annual 
dynamics of the proportions of three GI levels (i.e., ungrazed, moderately grazed, and heavily grazed levels) from 
2015 to 2021. The GI in 2017 was the highest with 81% of permanent grasslands under heavily grazed (Fig. 9h). 
However, the trend of heavily grazed was decreasing in the study period. Meanwhile, the proportions of moder-
ately grazed and ungrazed areas had increasing trends. These results suggested that the GI was mitigated from 
2015 to 2021, despite of heavily grazed area still accounting for 33% in 2021. This result was expected due to the 
second phase of the grassland ecological compensation policy implemented from 2016 to 2020 to relieve the 
grazing pressure of grasslands62.

Technical Validation
Accuracy assessment of the annual grazing intensity maps. The accuracy of the GI maps in 2015–
2021 was evaluated using the validation samples by calculating confusion matrixes including the ungrazed and 
heavily grazed classes (Tables S1–S7). The confusion matrixes were calculated at the pixel scale by overlaying the 
validation ROIs and GI maps. The results showed that the GI maps from 2015 to 2021 had the ungrazed class 
with the UA and PA ranging from 0.972 to 0.998 and 0.980 to 0.997, and the heavily grazed class with the UA and 

Livestock species
Standard sheep unit 
accounting coefficient

Large livestock (cattle, buffalos, horses, donkeys, mules, camels, etc.) 4

Small livestock (sheep, goats, and hogs, etc.) 1

Table 3. The conversion coefficients of large and small livestock to standard sheep unit. *Standard sheep unit 
was defined as an adult sheep weighing 45 kg and consuming 1.8 kg of standard hay per day.

Fig. 7 (a) The grazing probability map of Hulun Buir in 2021. (b,e,h,k) show the zoom-in views in Google 
Earth for samples with different grazing intensities. (c,f,i,l) show the zoom-in views in the grazing probability 
map in 2021 for the same samples as in the figures of b, e, h, and k. The purple and green polygons show the 
heavily grazed and ungrazed samples, respectively. (d,g,j,m,n) show the field photos of 2021 for the same 
samples as in the figures of b, e, h, and k.
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PA ranging from 0.978 to 0.997 and 0.975 to 0.998 (Tables S1–S7). The OA of the maps from 2015 to 2021 was 
between 0.985 and 0.997 (Tables S1–S7). The kappa coefficients in 2015–2020 were evaluated between 0.934 and 
0.992 (Tables S1–S7).

Comparisons of annual grazing probability maps at three spatial scales. We compared the spatial 
and temporal dynamics of annual GP maps with the livestock data from the government at the county and pre-
fecture city scales (Fig. 10). We obtained livestock density by the ratio of livestock number at the year-end to the 
area of each county. Due to the unavailable statistical data in 2021, we did not show the results for this year. At the 
county scale, the spatial patterns of GP maps from 2015 to 2020 were consistent with the spatial distributions of 
the annual livestock density. Both of them showed a decreasing pattern from west to east (Fig. 10a-l). Figure 10m 
shows a significant linear relationship (r = 0.51, P < 0.01) between the grazing probabilities extracted from the 
resultant maps and the livestock density from statistical data in 2015–2020. In some counties, the relationship was 
not consistent which could be caused by the high-producing breeding farm.

Fig. 9 (a–g) The annual grazing intensity maps from 2015 to 2021. (h) Annual dynamics of proportions for 
each grazing intensity level (i.e., ungrazed, moderately grazed, and heavily grazed) from 2015 to 2021.

Fig. 8 The annual grazing probability maps of Hulun Buir grasslands, China, from 2015 to 2020.
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At the prefecture city scale of Hulun Buir, we examined the interannual dynamics of livestock density and GP 
from 2015 to 2020 (Fig. 10n). The results demonstrated the dynamics of livestock density and grazing probabili-
ties agreed well with each other (r = 0.75, P < 0.01). Both variables showed decreased trends from 2015 to 2020. 
Subtle distinguishes in interannual fluctuations between them could be caused by the livestock that included 
free-grazing and house-feeding together.

In addition, we conducted a comparison with the grazing experiment data at the site scale. The grazing 
experiment platform had 6 levels of GI treatments with each treatment repeated 3 times (Fig. 11a). We used the 
GP map in 2015 as an example. The results showed that the estimated grazing probabilities from the resultant 
map were highly consistent with the GI levels of experiment plots (Fig. 11a,b). The correlation between the GI of 
experiment plots and the grazing probabilities of our results was significant (P < 0.05) with a correlation coeffi-
cient of 0.94 (Fig. 11c). With the increases of GI for individual grazing plots, the estimated grazing probabilities 
also increased with the maximum GP occurred at the highest GI of 3.68 per square hectare of standard sheep 
unit (SU/hm2) (Fig. 11c).

The uncertainty of grazing probability and grazing intensity maps. The uncertainty on the annual 
GP and GI maps could be caused potentially by data quality and certain disturbance events. Although the Landsat 
archive has the potential to map the grazing intensity of grasslands, the observation quality was seriously affected 
by local climate conditions63, leading to the effective observations often limited39. To alleviate the uncertainty 
from the input images, we combined Landsat 7/8 and Sentinel-2 data to construct a time series of SBs with high 
observation frequency to map grazing probability and intensity. The number of good observations and total 
observations were analyzed in Fig. S1. Compared with a single dataset of Landsat or Sentinel-2, the harmonized 
time series significantly improved the frequency of good observations about by three times at the pixel scale.

Another potential uncertainty could be caused by some local disturbance events such as wildfire and wild-
life, which affected the status of grassland vegetation. In this study, we analyzed the wildfire distribution from 
MODIS data from 2015 to 2021. The fire events in Hulun Buir were few and almost happened in the ungrown 
season (Fig. S2). The wildlife of Hulun Buir is almost in forest and wetland rather than grasslands according to 
Terrestrial Wildlife Critical Habitat List published by China National Forestry and Grassland Administration 
(https://www.forestry.gov.cn/search/33196). Although the wildfire and wildlife had few impacts in Hulun Buir, 
the disturbance events may be a source of uncertainty of the GP and GI mapping at the regional scale.

Livestock density (SU/hm2)

r = 0.51 (P < 0.01) 

r = 0.75 (P < 0.01) 

Fig. 10 (a–l) The comparison of grazing probability maps with the livestock density. The livestock density was 
obtained by the ratio of livestock number at the year-end to the area of each county. The unit was standard sheep 
unit per hectare (SU/hm2). Shaded areas were counties with missing data. (m and n) The correlations of the 
annual mean grazing probability and the livestock density at the county and prefecture city level.
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Usage Notes
This study produced annual GP and GI maps from 2015 to 2021. A similar approach could be applied to a 
longer period of monitoring by harmonizing Landsat 7/8/9 images in future studies64. The temporal dynamics 
of grazing activities could be detected by the LandTrender approach based on annual GP and GI maps65. As well 
as grazing, further studies on grassland utilization and management practices, such as mowing, enclosure, and 
fertilization, could also be conducted in the future.

The annual 10-m GP and GI maps produced in this work provide critical regional-scale datasets for grass-
land research, such as the relationships between soil microbial communities and GI66, carbon cycle responses, 
and greenhouse gas emissions effects on GI67. The resultant maps can help the government evaluate the effects 
of grassland ecological compensation policy for each county and improve management approaches to achieve 
grassland sustainability.

Code availability
RF was run with scikit-learn (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html) under Python 3.7. The pre-processing and harmonized code of Landsat-7/8 and 
Sentinle-260 has been uploaded to Figshare.
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