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Chromosome-level genome 
assembly and annotation of rare 
and endangered tropical bivalve, 
Tridacna crocea
Jun Li1,2,3,4,7, Haitao Ma1,2,3,4,7, Yanpin Qin1,2,3,4,7, Zhen Zhao1,2, Yongchao Niu5, Jianmin Lian5, 
Jiang Li5, Zohaib Noor1,2,6, Shuming Guo1,6, Ziniu Yu1,2,3,4 ✉ & Yuehuan Zhang1,2,3,4 ✉

Tridacna crocea is an ecologically important marine bivalve inhabiting tropical coral reef waters. 
High quality and available genomic resources will help us understand the population structure and 
genetic diversity of giant clams. This study reports a high-quality chromosome-scale T. crocea genome 
sequence of 1.30 Gb, with a scaffold N50 and contig N50 of 56.38 Mb and 1.29 Mb, respectively, which 
was assembled by combining PacBio long reads and Hi-C sequencing data. Repetitive sequences cover 
71.60% of the total length, and a total of 25,440 protein-coding genes were annotated. A total of 1,963 
non-coding RNA (ncRNA) were determined in the T. crocea genome, including 62 micro RNA (miRNA), 
58 small nuclear RNA (snRNA), 83 ribosomal RNA (rRNA), and 1,760 transfer RNA (tRNA). Phylogenetic 
analysis revealed that giant clams diverged from oyster about 505.7 Mya during the evolution of 
bivalves. The genome assembly presented here provides valuable genomic resources to enhance our 
understanding of the genetic diversity and population structure of giant clams.

Background & Summary
Giant clams are tropical marine shellfish mainly distributed in the Indian Ocean, Western Pacific, and South 
China Sea. There are twelve species of giant clams, divided into two genera, with10 species in Tridacna and 2 in 
Hippopus1. They play a crucial role in coral reef ecosystems, contributing over 60% of the biomass of coral reef 
ecosystems2. Giant clams support coral reef biodiversity, offer habitats, breeding and feeding grounds to various 
marine organisms, and have extremely important ecological value3,4. Giant clams are hermaphrodites, initially 
functioning as males and later developing female gonads and functioning both as male and female5. To avoid 
the occurrence of self-fertilization, giant clams first release sperm, and then eggs6. Bivalves often form symbiotic 
associations with bacteria, algae, and other marine fauna7. There is a symbiotic relationship between giant clams 
and zooxanthellae. Unlike intracellular symbiosis in stony corals, the zooxanthellae in clams are intercellular 
and live within the mantle8. The symbionts supply nutrients to the host through photosynthesis. While also 
obtaining some essential nutrients from the host. Notably, symbionts are not transmitted vertically and must 
be acquired from the environment during the ontogeny of the second larval stage, veliger9. Additionally, some 
bivalves from deep sea engage in symbiosis with chemosynthetic bacteria, which are the primary producers of 
deep-sea cold seeps and vents10.

Among Tridacna species, T. crocea is the smallest, with a maximum shell length of no more than 20 cm, 
growing at a rate of about 4 cm per year, reaching sexual maturity in 1–2 years11. The shell is shallow, with two 
equal sides and the same shape and size. Despite its slow growth and small size, T. crocea is known for its vibrant 
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colors and beautiful appearance, making it valuable in food markets, the aquarium trade markets and tropical 
coral reef ecosystems12. Moreover, its photoautotrophic characteristics contribute to oxygen production, bene-
fiting marine organisms13. However, anthropogenic disturbances, such as global warming, habitat destruction 
and over-harvesting, have led to declining giant clam populations, resulting in giant clams been listed on the 
IUCN red list (IUCN, 2007).

Despite the ecological importance of giant clams, their genomic features have remained unclear. In fact, pre-
vious molecular studies of giant claims have focused on phylogeographical patterns14,15, as well as the expression 
and functional analysis of specific genes16,17. Limited transcriptome data are available18,19. Recently, a genomic 
survey and resources for T. crocea were conducted, which involved determining the genome size, predicting 
unique content, and providing partial annotations, and assemblies20. The lack of genomic information has been 
a hindrance to the study of the evolutionary and ecological characteristics of giant clam. Recently, the Pacific 
Biosciences (PacBio) high-fidelity reads (HiFi) have been successfully applied to various complex species and 
sex chromosomes, such as cultivated apple (high heterozygous)21, cultivated alfalfa (utotetraploid)22, and human 
X chromosome23. In the present study, the chromosome-level genome of T. crocea was analyzed for the first time 
using PacBio HiFi reads, Phase genomics Proximo Hi-C technologies, and Illumina short-read sequencing. In 
order to predict the relationship between T. crocea and other bivalves, gene prediction, functional annotation 
and phylogenetic analysis were performed. The genome sequence of the giant clam is an important resource for 
genetic and breeding studies.

Methods
Experimental samples collection and sequencing.  T. crocea were sampled from a tropical marine bio-
logical research station in Sanya, Hainan province. The giant clams were immediately anaesthetized, and muscle 
was extracted for DNA isolation using the modified cetyltrimethylammonium bromide (CTAB) method. The 
quality and quantity of genomic DNA were assessed using a NanoDrop 2000 spectrophotometer (Thermo Fisher 
Scientific) and a Qubit 2.0 fluorometer (Thermo Fisher Scientific). DNA integrity was confirmed using a 0.8% 
agarose gel.

Three distinct genome libraries were created and sequenced in accordance with the manufacturer’s instruc-
tions to produce a chromosome-scale assembly of the giant clam: (i) In accordance with the standard PacBio 
methodology, PCR-free SMRTbell DNA libraries were created utilizing the BluePippin size selection system. The 
PacBio Sequel system was used to produce long reads; (ii) Phase Genomic’s Hi-C chromosomal conformation 
captured reads were prepared with the Proximo Hi-C (Animal) Prep Kit and sequenced; (iii) Purified DNA was 
sheared using a focused ultrasonicator (Covaris) and then used for 350-bp paired-end library construction with 
the Next Ultra DNA library prep kit (NEB) for Illumina sequencing, the Illumina NovaSeq. 6000 platform was 
used to sequence short reads (150 bp in length). RNA was extracted from the giant clam mantle and sequenced 
on the Illumina NovaSeq platform in order to fully aid gene annotation. To construct a high-quality refer-
ence genome for the Tridacna crocea, the whole genome sequencing generated ~167 × Pacbio Sequel long reads 
(218.24 Gb) (Table 1), ~105 × Hi-C reads (136.70 Gb) and ~45 × Illumina paired-end reads (58.50 Gb) (Table 2).

Genome assembly with Pacbio data and Hi-C data.  The Pacbio reads were firstly assembled with 
Falcon software packages (v2.0.5)24 to build the primary contigs and alternate haplotigs (alternative sequences 
for regions within the primary contigs where heterozygosity was detectable with the long reads). Tool arrow 
(v2.2.2) as implemented in SMRTlink6.0 (Pacific Biosciences of California, Inc) was used to polish the contigs. 
The FALCON-Phase software (v0.2.0-beta) was then used to perform a Hi-C-based contigs phasing, resulting in 
phased, diploid contigs. The chromosome-scale scaffolds were constructed from the phased contigs using Phase 
Genomics’ Proximo Hi-C genome scaffolding platform25. Subsequently, Juicebox (v1.8.8)26 was used for a round 
of polishing to fix minor mistakes in chromosome assignment, ordering, and orientation during chromosomal 
scaffolding. After a draft set of scaffolds was generated, FALCON-Phase was run again for Hi-C based scaffold 
phasing. The Illumina sequencing data were further used to improve the assembly by Pilon (v1.22) software27. 

Library
Subread 
number

Total bases 
(Gb)

Average 
length (bp)

Max Reads 
Length (bp)

DC13 13,376,796 53.25 3,981 209,166

DC23 16,368,970 67.8 4,142 262,698

DC27 19,474,512 97.19 4,991 260,834

Total 49,220,278 218.24 4,434 262,698

Table 1.  Statistic of Pacbio whole genome sequencing data.

Data
rawReads 
(M)

Raw Bases 
(Gb)

Clean Reads 
(M)

Clean 
Bases (Gb)

clean 
Rate (%)

Q20 Rate 
(%)

Q30 Rate 
(%)

Hi-C 911,301,806 136.7 888,213,450 129.98 95.09 97.12 92.06

Re-sequencing 389,989,060 58.5 386,035,170 53.97 92.29 95.39 86.61

RNA-seq 462.76 69.41 420.09 63.01 90.79 96.68 88.8

Table 2.  Statistic of illumina data.
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Finally, the Pacbio reads were initially assembled with Falcon software packages, producing an initial contig 
assembly, then the assembly was integrated with Phase Genomics Hi-C data to orient and order contigs into 
chromosome-scale scaffolds. About 78.88% of the 1.30 Gb final Tridacna crocea assembly was assigned to 18 
superscaffolds (Fig. 1), with a scaffold N50 and contig N50 of 56.38 Mb and 1.29 Mb, respectively (Table 3). The 
length distribution of pacbio long reads indicates the peak length is longer than 4 kb (Fig. S1). This result is con-
sistent with the results of other aquatic animals28–32.

Repeat annotation.  There are a large number of repeat sequences in the Tridacna crocea genome, which 
can be divided into two categories according to the distribution pattern, namely tandem repeat sequences and 
interspersed repeat sequences. Tandem repetitive sequences were identified using GMATA33 and Tandem Repeats 
Finder (TRF, version 4.07b)34 with default parameters. The interspersed repeat contents of the Tridacna crocea 
genome were identified using two methods, de novo repeat identification and known repeat searching against 
existing databases. RepeatModeler (v1.0.11) and MITE-hunter35 were used to de novo predict repeat sequences in 
the genome, the homology-based approach involved applying RepeatMasker (version 1.331) (http://www.repeat-
masker.org/) and Repbase database36 to identify TE repeats in the assembled genome. The results showed that 
71.60% of the assembly consisted of repetitive sequences (Table 4, Fig. 2). The proportion of repeat elements was 
higher than that of close relatives of mollusks, such as Patinopecten yessoensis (39%)37, Crassostrea gigas (43%)38 
and Sinonovacula constricta (40%)29, given that repetitive sequences are the main drivers of genome amplifica-
tion, T.crocea presents a larger genome size compared to the three closely related species (Table 5). Among these 
repetitive sequences, transposable elements (TEs) accounted for 55.83% of the T. crocea genome size, with DNA 
transposons to be the most predominant type (37.68% of the genome size).

Gene prediction and functional annotation.  Gene prediction in a repeat-masked genome was per-
formed using reference guided transcriptome assembly, homology search and ab initio prediction. By combin-
ing transcriptome alignment, homologous protein prediction and ab initio prediction. In detail, proteins of four 

Fig. 1  Hi-C contact heatmap and Circos plot illustrate the characterization of Tridacna crocea genome, (A) Genome-
wide analysis of chromatin interactions in the Tridacna crocea genome. (B) I: Syntenic regions within the Tridacna 
crocea assembly base on homology searches carried out by conducting with MCscan (version 0.8) requiring at 
least 10 genes per block; II: GC content in non-overlapping 1 Mb windows; III: Percent coverage of TEs in non-
overlapping 1 Mb windows; IV: Gene density calculated on the basis of the number of genes in non-overlapping 1 Mb 
windows; V: The length of scaffolds in the size of Mb.

Assembly feature Statistic

Assembly length 1,303,319,575

Contig N50 (bp) 1,291,020

Scaffold N50 (bp) 56,384,102

Number of predicted protein-coding genes 25,440

Repeat content (%) 71.6

Complete BUSCOs (%) 94.2

Table 3.  Features of Tridacna crocea genome.
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mollusks (Crassostrea gigas, Crassostrea virginica, Mizuhopecten yessoensis, Octopus bimaculoides) were down-
loaded from NCBI DataBase for homolog prediction, GeMoMa39 was used to align the homologous peptides to 
the assembly and then got the gene structure information. For RNAseq-based gene prediction, filtered mRNA-seq 
reads were aligned to the reference genome using STAR40. The transcripts were then assembled using StringTie241 
and open reading frames (ORFs) were predicted using PASA42. For the de novo prediction, RNA-seq reads were 
de novo assembled using stringtie and analyzed with PASA to produce a training set. Augustus43 with default 
parameters were then utilized for ab initio gene prediction with the training set. Finally, EVidenceModeler 
(EVM)44 was used to produce an integrated gene set of which gene with TE were removed using TransposonPSI 
package (http://transposonpsi.sourceforge.net/) and the miscoded genes were further filtered. Untranslated 
regions (UTRs) and alternative splicing regions were determined using PASA based on RNA-seq assemblies. We 
retained the longest transcripts for each locus, and regions outside of the ORFs were designated UTRs. We pre-
dicted 25,440 protein-coding genes with an average gene length of 25,946 bp and an average 8.43 exons per gene. 
Functional annotation based on public databases (including SwissProt, NR, KEGG, KOG and Gene Ontology) 
estimated that 23,017 (90.48%) genes could be classified by at least one of the databases (Fig. 3). In addition, we 
annotated four types of non-coding RNAs in the T. crocea assembly, including micro RNA (miRNA), transfer 

Class Order Super family
Number of 
elements

Percentage of 
sequence (%)

Class I 1,463,284 17.12

LINE 722,103 8.45

Unknown 647,388 6.67

CR1-Zenon 10,831 0.36

I 13,525 0.43

RTE-X 19,919 0.53

L1-Tx1 5,211 0.12

Other 25,229 0.34

LTR 591,839 6.92

Unknown 539,078 5.53

Pao 6,390 0.17

Gypsy 26,845 1.01

DIRS 4,001 0.12

Other 15,525 0.1

SINE 149,342 1.75

tRNA-RTE 70,833 0.94

Unknown 50,851 0.53

MIR 19,458 0.22

Other 8,200 0.06

Class II 2,923,451 38.71

DNA 2,823,422 37.68

Maverick 16,618 0.44

Unknown 2,578,864 34.9

TcMar-Mariner 7,207 0.16

TcMar-Tc1 13,056 0.24

hAT-Tip100 44,615 0.51

P 69,177 0.66

Other 93,885 0.76

RC 100,029 1.03

Helitron 100,029 1.03

Total TEs 4,386,735 55.83

Tandem Repeats 106,486 0.93

Tandem repeat 66,402 0.89

SSR 40,084 0.04

Simple repeats 21,650 0.23

Other 25,337 0.27

Unknown 1,387,494 14.32

Low complexity 1,331 0.02

Total Repeats 5,929,033 71.6

Table 4.  Repeat content in the assembled Tridacna crocea genome. Note: “Other” refers to a sequence that is 
classified by softwares but does not belong to any of the above categories, and “Unknown” refers to a sequence 
that cannot be classified.
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RNA (tRNA), ribosomal RNA (rRNA), and small nuclear RNA (snRNA). The tRNA genes were predicted by an 
improved tool for tRNA detection, tRNAscan-SE (version 1.3.1)45 with default paramerters. The rRNA fragments 
were predicted by aligning to invertebrate template rRNA sequences using BlastN (version 2.2.24) at an E-value 
of 1e-5. The snRNAs as well as miRNAs were identified using INFERNAL (version 1.1.1)46 to search against the 
Rfam database (release 12.0). A total of 1,963 non-coding RNA (ncRNA) were determined in the Tridacna crocea 
genome, including 62 micro RNA (miRNA), 58 small nuclear RNA (snRNA), 83 ribosomal RNA (rRNA), and 
1,760 transfer RNA (tRNA) (Table 6).

Comparative genomic and phylogenetic analysis.  We clustered the protein-coding genes into gene 
families for T. crocea Aplysia californica (GCF_000002075.1), Crassostrea gigas (GCF_902806645.1), Crassostrea 
virginica (GCF_002022765.2), Helobdella robusta (GCF_000326865.1), Lottia gigantean (GCF_000327385.1), 
Mizuhopecten yessoensis (GCF_002113885.1), Octopus bimaculoides (GCF_001194135.1), Drosophila melano-
gaster (GCF_000001215.4), Homo sapiens (GCF_000001405.39) and Nematostella vectensis (GCF_000209225.1) 
(Table 7). 27,422 gene families were identified, of which 3,109 were shared by all eleven species. Comparing with 
other ten species, there are 347 specific gene families in the T. crocea assembly (Fig. 3), among these T. crocea spe-
cific families, 953 genes are supported by evidence of gene functional annotation. These T. crocea specific genes 
were significantly (P < 0.05) enriched in zinc ion binding, extracellular ligand-gated ion channel activity, integral 
component of membrane, ion transport related gene ontology (GO) categories (Table 8).

A phylogenetic tree was constructed using the eleven animal species (Fig. 4). Protein sequences were 
extracted from each family and concatenated to form one supergene for each species, and the maximum like-
lihood method47 was used to reconstruct the phylogenetic tree. The divergence time among the eleven animals 
was estimated using the MCMCtree program (version 4.4) as implemented in the Phylogenetic Analysis of 
Maximum Likelihood (PAML) package48, with a correlated rates clock and JC69 nucleotide substitution model. 
The divergence time between T. crocea and M. yessoensis was predicted to be about 505.7 million years ago 
(MYA). Compared with the common ancestor of T. crocea, M. yessoensis, C. gigas and C. virginica, Tridacna 
crocea shows 93 and 15 events of gene family expansion and gene family contraction, respectively. The expanded 
genes in T. crocea are related with “DNA replication” (GO:0006260), “DNA-directed DNA polymerase activ-
ity” (GO:0003887), “nucleotide binding” (GO:0000166), “methyltransferase activity” (GO:0008168), and so on. 
On the other side, the contracted genes in the T. crocea were significantly (P < 0.05) enriched in GO terms for 
“iron ion binding” (GO:0005506), “heme binding” (GO:0020037), “oxidoreductase activity, acting on paired 
donors, with incorporation or reduction of molecular oxygen” (GO:0016705), and “oxidation-reduction pro-
cess” (GO:0055114).

Fig. 2  Distribution of divergence rate of each type of TE. The divergence rate was calculated between the 
identified TE elements in the genome by homology-based method and the consensus sequence in the Repbase.

Assembly feature
Tridacna 
crocea

Crassostrea 
gigas

Patinopecten 
yessoensis

Sinonovacula 
constricta

Assembly size (Mb) 1,303 647 998 1,220

Contig N50 (kb) 1,291 1,814 38 977

Scaffold N50 (kb) 56,384 58,463 804 65,930

Number of predicted 
protein-coding genes 25,440 30,724 26,415 28,594

Repeat content (%) 72 43 39 40

Complete BUSCOs (%) 94.2 95.6 94.4 91.9

Table 5.  Features of Mollusk assemblies.
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Data Records
The raw Illumina, PacBio, Hi-C sequencing and full length transcriptome data are deposited in the NCBI SRA 
database under the accession numbers SRR1713764449, SRR1713764550, SRR1713764351, and SRR2565102152, 
respectively. The genome assembly and annotations are available from the Figshare53,54 and the assembly genome 
are also deposited at the NCBI with accession number GCA_032873355.155.

Fig. 3  Intersections of gene families between eleven animals (Tridacna crocea, Aplysia californica, Crassostrea 
gigas, Crassostrea virginica, Helobdella robusta, Lottia gigantea, Mizuhopecten yessoensis, Octopus bimaculoides, 
Drosophila melanogaster, Homo sapiens and Nematostella vectensis). The figure was constructed by UpSetR, 
in which the rows represent the gene families and the columns represent their intersections. Black filled circle 
represents part of a given intersection; light gray circle represents not a part of the intersection. Bar chart placed 
on top of the matrix represents the size of the intersections. A second bar chart represents the size of the each set.

Type
Copy 
number

Average 
length (bp)

Total length 
(bp)

% of 
genome

miRNA 62 85 5,269 0.0004

tRNA 1,760 75 131,548 0.0101

rRNA 83 93 7,681 0.0006

snRNA 58 165 9,549 0.0007

Table 6.  Non-coding RNAs in the Tridacna crocea assembly. Note: ‘% of genome’ was calculated by the non-gap 
genome size 1,303,216,875 bp.
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Technical Validation
Evaluation of the genome assembly.  The Hi-C heatmap exhibits the accuracy of genome assembly, with 
relatively independent Hi-C signals observed between the 18 pseudo-chromosomes (Fig. 1B). To evaluate the 
quality of the genome assembly, the completeness of the genome assembly was assessed using the conserved 
metazoan gene set “metazoan_odb10” from the Benchmarking Universal Single-Copy Orthologs (BUSCO) 
v4.054. The genome assembly was found to have a high level of completeness (94.2%). 74.2% were complete and 
single-copy, 20% complete and duplicated, 0.6% fragmented, and 5.2% were missing (Table 9). This demonstrates 

Species
Genes 
number

Genes in 
families

Unclustered 
genes

Family 
number

Unique 
families

Average genes 
per family

T. crocea 25,440 22,677 2,763 13,000 1,174 1.74

A. californica 19,425 12,598 6,827 9,569 334 1.32

C. gigas 31,371 28,186 3,185 17,228 859 1.64

C. virginica 34,608 31,521 3,087 16,791 936 1.88

H. robusta 23,426 15,327 8,099 7,951 685 1.93

L. gigantea 23,818 18,798 5,020 12,122 691 1.55

M. yessoensis 24,532 20,468 4,064 13,849 749 1.48

O. bimaculoides 15,842 12,662 3,180 9,611 290 1.32

D. melanogaster 13,972 10,127 3,845 6,791 587 1.49

H. sapiens 23,358 19,976 3,382 9,345 980 2.14

N. vectensis 23,845 17,653 6,192 9,497 1,132 1.86

Table 7.  Statistic analysis of gene families. Note: Unclustered genes refer to special gene of corresponding 
species; Unique families refer to special gene families of corresponding species.

GO ID Involved gene number Qvalue GO description

GO:0003723 3 0.047529 RNA binding

GO:0005515 12 0.147774 protein binding

GO:0003824 3 0.253421 catalytic activity

GO:0003676 4 0.376163 nucleic acid binding

GO:0005524 4 0.376163 ATP binding

GO:0016021 6 0.502908 integral component of membrane

Table 8.  GO enrichment of positive selection genes in Tridacna crocea.

Aplysia

Helobdella

Drosophila melanogaster

robusta

californica

Octopus

Mizuhopecten

Tridacna crocea

yessoensis

bimaculoides

Homo sapiens

Nematostella vectensis

Lottia

640

Crassostrea gigas

gigantea

Crassostrea virginica

532.2

208.2

438.9

505.7

548.1618.8

5

591.2

33.7

480 320 160

MRCA

0

(8364) 643.3

555.7

+177 / -14

+97 / -7

+88 / -12

+93 / -15

+44 /

+65 / -19

-50

+28 / -53

+27 /

+36 / -42

-61

+83 / -54

+235 / -5

Gene families
Expansion / Contraction

Million years ago

Fig. 4  Phylogenetic tree with history of orthologous gene families and divergence times. Numbers on the nodes 
represent divergence times; parentheses represent error range; MRCA represents most recent common ancestor.
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the remarkable completeness and conservation of gene content in giant clam genome assembly, achieving one of 
the best BUSCO scores observed among reported mollusks. Therefore, these results suggested that the quality of 
this genome assembly is high.

Genome annotation and phylogenetic analysis.  By comparing with public databases including Gene 
Ontology, KOG, SwissProt, KEGG and NR, gene function information, motifs and domains of their proteins 
were assigned (Table 10). InterProScan program56 with default parameters was used to identify the GO terms and 
putative domains of genes. For other four databases, the EvidenceModeler-integrated protein sequences against 
the 4 public protein database were compared using BLASTp57 with an E value cutoff of 1e−05. Results from the five 
database searches were concatenated.

The maximum likelihood method was performed to reconstruct the phylogenetic tree according to47. 
The divergence time among the eleven animals were predicted by the MCMCtree program (version 4.4) of 
Phylogenetic Analysis of Maximum Likelihood (PAML) package48, with a correlated rates clock and JC69 
nucleotide substitution model. The TimeTree database was used to predict the calibration times of divergence 
between Octopus bimaculoides and Crassostrea gigas (~554MYA)58.

Code availability
All data processing commands and pipelines are executed according to instructions and guidelines provided by 
relevant bioinformatics software. No custom scripts or code were used in this study.
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