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An open relaxation-diffusion MRI 
dataset in neurosurgical studies
Ye Wu  1, Xiaoming Liu  2,3 ✉, Yunzhi Huang4, tao Zhou  1 & Fan Zhang  5

Diffusion MRI (dMRI) is a safe and noninvasive technique that provides insight into the 
microarchitecture of brain tissue. Relaxation-diffusion MRI (rdMRI) is an extension of traditional dMRI 
that captures diffusion imaging data at multiple TEs to detect tissue heterogeneity between relaxation 
and diffusivity. rdMRI has great potential in neurosurgical research including brain tumor grading and 
treatment response evaluation. However, the lack of available data has limited the exploration of rdMRI 
in clinical settings. To address this, we are sharing a high-quality rdMRI dataset from 18 neurosurgical 
patients with different types of lesions, as well as two healthy individuals as controls. The rdMRI data 
was acquired using 7 TEs, where at each TE multi-shell dMRI with high spatial and angular resolutions is 
obtained at each TE. Each rdMRI scan underwent thorough artifact and distortion corrections using a 
specially designed processing pipeline. The dataset’s quality was assessed using standard practices, 
including quality control and assurance. This resource is a valuable addition to neurosurgical studies, 
and all data are openly accessible.

Background & Summary
Diffusion magnetic resonance imaging (dMRI) is a noninvasive imaging technique that can probe the diffusion 
of water molecules in biological tissues to characterize the underlying microstructure1,2. There have been many 
methods proposed for extracting tissue microstructure and measuring from the dMRI signals using either signal 
representation or tissue modeling approaches2–6. Most of the existing methods use standard dMRI data that is 
acquired with a single echo time (TE) and thus provide information primarily on diffusivity. Recently, studies 
have shown that integrating dMRI with multiple TEs can better characterize tissue microstructure than dMRI 
with a single TE7–11.

Relaxation-diffusion MRI (rdMRI) is an advanced technique that combines measurements of tissue relaxa-
tion times (T1 and T2) and diffusion imaging to investigate the microstructural and physiological characteristics 
of tissues12–15. In rdMRI, transverse relaxation refers to the time that it takes for the transverse magnetization 
of a tissue to decay after an excitation pulse. Combining with diffusion imaging, transverse relaxation time is a 
crucial imaging parameter to study tumor characteristics, including tumor grading, edema assessment, necrotic 
areas, and treatment response assessment16–19. Table 1 gives a summary of potential neurosurgical applications 
that can benefit from using rdMRI.

The development of relaxation-diffusion imaging with multi-echo is still evolving, challenged by the lack of 
effective acquisition protocols and robust data processing and analysis methods. These efforts promise to improve 
its clinical applicability and enhance our understanding of glioma biology and treatment response. rdMRI7–11 
acquired diffusion signals at different TEs following diffusion sensitizing gradients, which have some challenges. 
First, acquiring multiple echoes requires additional scan time, which can limit its application in specific clinical 
settings or when fast imaging is necessary. Second, rdMRI data with multi-echo requires more complex process-
ing and analysis techniques than single-echo dMRI. Separating signal contributions from different compartments 
and estimating microstructure parameters involve advanced modeling and fitting algorithms. Third, rdMRI can 
be more sensitive to susceptibility-induced artifacts due to the longer echo time. This can lead to distortions and 
signal loss, particularly in regions prone to susceptibility effects, such as the frontal lobes or areas near air-tissue 
interfaces. Currently, no open rdMRI datasets are available for broad scientific and clinical investigations.
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Given the above, we disseminate a dataset of rdMRI scans acquired at 3 T. We make available a high-quality 
rdMRI dataset from a cohort of 18 neurosurgical patients with different types of lesions, plus two healthy indi-
viduals as controls. We comprehensively describe the dataset’s design, acquisition, and preparation. The rdMRI 
data is acquired on a 3 T Philips MRI scanner with 7 TEs. At each TE, multi-shell diffusion-weighted images 
with high spatial and angular resolutions are acquired. Each rdMRI scan is well processed for artifact and dis-
tortion corrections using a newly designed rdMRI-specific processing pipeline. Image quality is assessed using 
quality metrics implemented in multiple popular tools. Using this new resource, we also provide codes, prelimi-
nary results, and perspectives for future projects. Constituting an essential new resource for neurosurgical stud-
ies, all data are openly available. We expect this dataset to serve as a valuable resource for refining acquisition 
techniques, optimizing acquisition parameters, and establishing standardized approaches for rdMRI in studying 
gliomas.

Methods
participants. The MRI data was collected from 18 patients (including glioma, meningioma, diffuse large 
B-cell, multiple sclerosis, cortical cerebral infarction, and brain abscess) and two healthy individuals (11 females 
and 9 males; age range: 28.0–70.0 years; median age: 51.0 years; IQR: 21.5 years). All participants provided 
written informed consent before participation and signed informed consent regarding publishing their data. 
The Research Ethics Committee, Faculty of Medicine in Union Hospital, Tongji Medical College, Huazhong 
University of Science and Technology, China, approved the study protocols (approve number: 2021-IEC-0984).

Image acquisitions. All MRI scans were acquired using a Philips 3 T MRI (Ingenia CX, Netherlands) scan-
ner with a gradient strength of 80 mT/m and switching rates of 200 mT/m/msec, equipped with 32-channel head 
coils.

The rdMRI data is scanned using a multi-shell, multi-echo dMRI sequence (Fig. 1) with a fixed repe-
tition time (TR) = 4000 ms, {4, 8, 8, 16} noncollinear diffusion-encoding directions at each of four b = {400, 
800, 1600, 3200}s/mm2 respectively, Δ = {35.9, 40.9, 45.9, 50.9, 55.9, 60.9, 65.9}ms, δ = {19.9, 24.9, 29.9, 
34.9, 39.9, 44.9, 49.9}ms, echo times: TE = {75, 85, 95, 105, 115, 125, 135}ms, 1.5 mm isotropic voxel size. 
Together with four acquisitions without diffusion weighting (b = 0 s/mm2); the number of averages = 1; field 
of view = 160 mm × 160 mm; matrix = 130 × 130; flip angle = 90; 96 axial slices with gap = 0; multi-band fac-
tor = 4. These diffusion data were obtained using a spin-echo echo-planar imaging sequence.

In addition, T1-weighted three-dimensional (3D) turbo field-echo (TFE) parameters include 250 sagit-
tal 1 mm slices; 1 mm isotropic; 250 × 250 matrix; repetition time/echo time (TR/TE) = 8.568/4.154 ms; flip 
angle = 8. T2-FLAIR was also acquired with the parameters including 250 sagittal 1 mm slices; 1 mm isotropic; 
250 × 250 matrix; repetition time/echo time (TR/TE) = 4800/306.987 ms; flip angle = 90.

Image processing. The acquired MRI scans were converted from DICOM to Neuroinformatics Informatics 
Technology Initiative (NIfTI) format using dcm2niix in MRIcroGL (v1.2) (https://www.nitrc.org/plugins/mwiki/
index.php/mricrogl) and then organized following the Brain Imaging Data Structure (BIDS) format20. Facial infor-
mation was removed from all the MRI scans using PyDeface (v2.0.2) (https://github.com/poldracklab/pydeface).  
MRI image was reoriented using ‘fslreorient2std’ in the Functional Magnetic Resonance Imaging of the Brain 
(FMRIB) Software Library tool (FSL v6.0.3)21 to match the approximate orientation of the standard template 
images, and the axis-aligned and centered using pnlNipype22 to ensure non-diagonal alignment in the affine 
transform.

Applications dMRI rdMRI

Tumor Grading

Low-grade gliomas typically exhibit higher apparent 
diffusion coefficient (ADC) values compared to high-grade 
gliomas35,36. This is due to the presence of less densely 
packed tumor cells and less restrictive tissue structures, 
allowing for greater water diffusion.

Due to increased cellularity, nuclear-to-cytoplasmic ratio, 
and necrotic areas, higher-grade gliomas often exhibit 
shorter transverse relaxation times than lower-grade 
gliomas37–40 Thus, rdMRI can be a useful technique for 
grading different gliomas.

Edema Assessment

In areas of edema, there is typically an increase in 
extracellular fluid and disruption of tissue architecture, 
leading to changes in water diffusion41,42. The ADC values 
in regions affected by edema are generally higher compared 
to normal tissue because the restricted diffusion barriers are 
disrupted, allowing for increased water movement.

Edema around a glioma is associated with malignancy of the 
tumor. Transverse relaxation time maps can help visualize 
and quantify peritumoral edema43,44. The extent of T2 
hyperintensity surrounding the tumor reflects the degree of 
edema, which can influence treatment decisions and surgical 
planning.

Necrotic Areas

dMRI reflects the mobility of water molecules within 
tissues. In necrotic areas, there is a disruption of tissue 
architecture, loss of cell membrane integrity, and breakdown 
of cellular components45,46. These changes result in 
increased extracellular space, reduced cellular density, and 
altered water diffusion patterns.

High-grade gliomas often contain necrotic regions. Necrotic 
areas typically have longer transverse relaxation times than 
solid tumor regions, reflecting the increased water content 
and altered tissue composition47,48. In this way, rdMRI can 
help identify and evaluate the presence and extent of necrosis 
within a glioma.

Treatment Response 
Assessment

During successful treatment, there are often changes in 
tumor biology and tissue architecture that can be reflected 
in dMRI-derived microstructure values. Generally, an 
effective treatment leads to decreased cellularity, increased 
extracellular space, and improved tissue organization49–52. 
These changes result in increased water diffusion and higher 
neurite-related values within the treated region.

Transverse relaxation time can also be used to monitor 
treatment response in gliomas. Changes in transverse 
relaxation time throughout treatment can indicate 
alterations in tumor characteristics53–55, such as reduction in 
edema or necrosis, response to therapy, or recurrence. Serial 
transverse relaxation time measurements provide valuable 
information for assessing treatment efficacy and guiding 
further management decisions.

Table 1. Transverse relaxation time provides valuable information about tumor characteristics.

https://doi.org/10.1038/s41597-024-03013-9
https://www.nitrc.org/plugins/mwiki/index.php/mricrogl
https://www.nitrc.org/plugins/mwiki/index.php/mricrogl
https://github.com/poldracklab/pydeface


3Scientific Data |          (2024) 11:177  | https://doi.org/10.1038/s41597-024-03013-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

The preprocessing pipeline for diffusion-weighted images (DWI) was performed separately for each TE ses-
sion, as shown in Fig. 2. This involved denoising using MRtrix323, correcting for eddy current-induced distor-
tion, motion, and bias field using FSL21.

To make sure the gradient table is in the correct order, we used the following two strategies, as reported by 
Cai et al.24 and Snoek et al.25. Firstly, we exported the actual gradient table from the DICOM using the latest 
version of dcm2niix, instead of using the predefined gradient table. This ensured that the corrected ordering 
corresponded with the DWI volume and that all gradients had been reoriented into subject space without any 
reordering of image volumes. Secondly, we used ‘dwigradcheck’ in MRtrix3 to correct any possible issues with 
the diffusion gradient table further.

Next, for each subject, to align the DWIs across multiple TE sessions (Fig. 2), a joint eddy current-induced 
distortion correction and motion correction were performed in concatenated DWIs over all of the TE sessions. 
To further correct for distortions caused by magnetic field inhomogeneity, an EPI distortion correction was con-
ducted regarding the T1-weighted image using Advanced Normalization Tools (ANTs v2.5.0)26. To this end, we 
first generated a T2-weighted-like contrast image from a T1-weighted image using in-house software. For each 
participant, a nonlinear registration (restricted to the phase-encode direction) was computed from the b0 image 
to the synthetic T2-weighted image to make an EPI corrective warp. Then, the warp was applied to each DWI, 
followed by reorientation of the corresponding gradient directions. Each individual’s T1-weighted image was 
also transformed from structural space into diffusion space via rigid registration using FSL21. Finally, processed 
DWIs were split into the corresponding TE session.

The preprocessing pipeline for T1-weighted and FLAIR images consisting of Gibbs ringing artifact removal 
and bias field correction was performed using ANTs26. Brain masks were created using a Convolutional Neural 
Network (CNN) based segmentation tool in pnlNipype22.

Data Records
Our neuroimaging dataset is now available in two formats: raw and preprocessed MRI data, both of which are 
available for all release subjects. Demographic information can be found in the root folder, while the acquisition 
protocol in JSON format is available in the corresponding scan folder. All data can be accessed on OpenNeuro27. 
For each subject, unprocessed and processed images for structural and dMRI are provided, along with annota-
tion maps and derivative results (Fig. 4). Demographic information (Table 2) was included for each participant 
in the data file (“participants.tsv”) as per the BIDS standard. The image quality reports are in the BIDS directory, 
where the information was name-matched with each scan’s name.

Technical Validation
To prompt the quality of our data, we assessed the quality of images using below common approaches:

•	 To assess the quality of each dMRI file, we utilized a measure of data quality known as the neighboring 
DWI Correlation (NDC), which can be found in the DSI Studio software (v2023.07.08) (https://dsi-studio.
labsolver.org). We employed a comprehensive quality control (QC) procedure to meticulously examine each 
file, ensuring that image dimensions, resolution, DWI count, and NDC remained consistent across the board. 
The NDC measure summarizes the pairwise spatial correlation between each pair of dMRI volumes that 
sample the closest points in q-space. It computes a voxel-wise correlation coefficient between every two DWIs 
of the closest b-vector (multiplied by b-value). Then, it calculates the average of those coefficients across 

Fig. 1 Multi-shell, multi-echo dMRI acquisition, and the example rdMRI data from a high-grade glioma 
patient.
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all voxels. Lower NDC values indicate reduced data quality due to noise and misalignment between dMRI 
volumes. Automatically computed quality measures for the entire image series, including the neighboring 
DWI Correlation, number of bad slices, and head motion summary statistics, are provided in the ‘derivatives/
dwiqc/<subject>/<session>/dwi/<subject>_<session>_dwi.qc.txt file’. In our data, none of the dMRI 
voxels were identified as outliers (i.e., with a value greater than three times the mean), as the lowest NDC 
values were significantly higher than the suggested threshold of 0.6 (as shown in Fig. 3a).

•	 We further used 3D Slicer module SlicerDiffusionQC (https://github.com/pnlbwh/SlicerDiffusionQC) for 
quality checking of diffusion-weighted MRI. It identifies bad gradients by comparing the distance of each 
gradient to a median line. The median line is obtained from Kullback–Leibler (KL) divergences between 
consecutive slices. Here, lower KL divergence values represent good data quality and vice-versa. In our data, 
none of the DWIs were identified with bad gradients (Fig. 3b).

•	 Each T1w/FLAIR image underwent thorough examination using the Structural MRI quality checking tool 
(https://github.com/pnlbwh/structuralQC) to ensure the quality and integrity of data. This QC algorithm first 
masks an input image with a foreground mask. Then, it slides a small cube throughout the volume, represent-
ing each cell with intensity histograms. After the histogram representation of the image, it is compared against 
a library of good and bad images and predicted as “pass” or “fail”. Figure 3c indicates none of the T1w/FLAIR 
images were identified as insufficient data.

Fig. 2 Preprocessing pipeline consists of individual and population correction for MRI data.

Subject Age Sex Type Grading Subject Age Sex Type Grading

Sub-01 35 M Glioma WHO III Sub-11 34 M Glioma WHO III

Sub-02 35 M Glioma WHO II Sub-12 43 F Gray matter 
heterotopia N/A

Sub-03 62 F Meningioma WHO I Sub-13 28 M Glioma WHO II

Sub-04 64 F Glioma WHO IV Sub-14 50 M Glioma WHO IV

Sub-05 37 M Health control N/A Sub-15 31 F Health control N/A

Sub-06 53 F Diffuse large B-cell 
lymphoma N/A Sub-16 53 F Glioma WHO II

Sub-07 54 F Multiple sclerosis N/A Sub-17 46 M Brain abscess N/A

Sub-08 70 F Multiple sclerosis N/A Sub-18 60 F Glioma WHO III

Sub-09 52 M Diffuse large B-cell 
lymphoma N/A Sub-19 55 F Glioma WHO II

Sub-10 65 M Glioma WHO IV Sub-20 48 F Brain abscess N/A

Table 2. Participant demographics.
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•	 The rdMRI can be used to detect microscopic tissue features noninvasively, and relaxation time is linked to 
tissue biochemical composition. To obtain multi-dimensional imaging measures, mathematical modeling 
is combined with rdMRI data, allowing the measurement and mapping of microscopic tissue features. In a 
recent study8,9, joint moments of relaxation and diffusion were used to derive imaging measures. It was found 
that the estimated relaxation rate from in-vivo clinical data was reliable, as shown in Fig. 4. This supports the 
practical use of rdMRI in clinical settings.

Usage Notes
Our dedicated website will be regularly updated with additional data and analyses (https://github.com/dryewu/RDSI).  
We have created a forum topic where you can ask questions and get answers. This dataset is a valuable resource 
for neuroscientists who want to investigate behavioral models or anatomical systems that are not otherwise 
available, as well as for neuroimagers who wish to test their algorithms in combination with other resources 
available to researchers (for example, ex-vivo MAP dataset (https://www.drcmr.dk/map-datasets)). It will enable 
sharper phylogenetic investigations.

Relaxation-diffusion MRI is a technique that enables the characterization of intricate tissue microstructures 
and provides more detailed information about tissue properties than traditional diffusion MRI methods. This 
makes it particularly useful for studying evolutionary mechanisms and phylogenetics, as discussed in the fol-
lowing aspects.

Refinement of Evolutionary Mechanisms Modeling: Relaxation-diffusion MRI is a technique that provides 
highly detailed images of tissue microstructure, which can offer valuable insights into subtle changes that occur 
in tissue structure over long periods. By using this technique to examine changes in different species and relate 
them to known evolutionary histories, researchers can refine models of evolutionary mechanisms and gain a 
better understanding of the processes that drive evolution. Some studies have shown that transverse relaxation 
rate signals increase within higher-order association bundles during childhood and adolescence, suggesting an 
increase in myelination28–32.

Identifying Future Therapeutic Targets: Relaxation-diffusion MRI can detect changes in tissue microstructure 
that may indicate disease states or potential risks for certain diseases. By identifying areas of abnormality or poten-
tial risk, relaxation-diffusion dMRI can help to pinpoint possible therapeutic targets. For example, in neurode-
generative diseases like Alzheimer’s or Parkinson’s, relaxation-diffusion MRI can highlight areas of altered tissue 
microstructure in the brain that could potentially be targeted for treatment. A study by Ian F Harrison et al.33 
suggests that MR relaxometry studies targeted to the standard and enlarged perivascular space may help detect 
dysfunction of perivascular fluid movement associated with aging and pathological conditions. Lewis et al.34 have 

Fig. 4 FLAIR imaging, pathology sections, and derivatives results include relaxation rate estimated by9, cortical 
parcellation generated by Freesurfer, and intensity distribution.
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Fig. 3 Plots for image quality metrics: (a) Neighboring DWI correlation (NDC), (b) KL divergences of rdMRI, 
and (c) quality score of structural images.

https://doi.org/10.1038/s41597-024-03013-9
https://github.com/dryewu/RDSI
https://www.drcmr.dk/map-datasets


6Scientific Data |          (2024) 11:177  | https://doi.org/10.1038/s41597-024-03013-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

explored the microvascular biomarkers using relaxation rate and found that inflammation is a crucial contributor to 
the tumor microenvironment and could be viewed as a therapeutic target in both vestibular schwannoma groups.

code availability
Qualified researchers can access data from the current study (see the Participants section above for details). 
Scripts, supporting documents, and other information necessary to implement all aspects of data organization, 
preparation, and analysis using open-source software packages. Except for special instructions in the paper, all 
tools always use default parameters. No custom code was instructed.
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