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QUIN database integrates and organizes structural-geological information from published and 
unpublished sources to constrain deformation in seismotectonic studies. The initial release, QUIN1.0, 
comprised 3,339 Fault Striation Pairs, mapped on 445 sites exposed along the Quaternary faults of 
central Italy. The present Data Descriptor introduces the QUIN 2.0 release, which includes 4,297 Fault 
Striation Pairs on 738 Structural Sites from southern Italy. The newly investigated faults span ~500 km 
along the Apennines chain, with strikes transitioning from ~SE to ~SW and comprehensively details 
Fault Striation Pairs’ location, attitude, kinematics, and deformation axes. Additionally, it offers a 
shapefile of the fault traces hosting the data. The QUIN 2.0 release offers a significant geographic 
extension to the QUIN 1.0, with comprehensive description of local geometric-kinematic complexities 
of the regional pattern. The QUIN data may be especially relevant for constraining intra-Apennine 
potential seismogenic deformation patterns, where earthquake data only offer scattered or incomplete 
information. QUIN’s data will support studies aimed at enhancing geological understanding, hazard 
assessment and comprehension of fault rupture propagation and barriers.

Background & Summary
Open shared databases in seismic hazard research provide a landmark platform for scientists, researchers and 
policymakers to access and analyse vast geological and seismological data, enabling a deeper understanding of 
earthquake hazards and improving our ability to assess and mitigate seismic risks.
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In a recent Data Descriptor1, QUIN (QUaternary fault strain INdicators) was introduced as a comprehensive 
geological database designed to integrate and organize geological information to analyse Quaternary deforma-
tion and strain, primarily for seismotectonic studies and geodynamic modeling. The initial release1 focused on 
the Northern and Central Apennines extensional belt and included structural field data on fault geometry and 
kinematics: specifically, 3,339 Fault Striation Pairs (hereinafter “FSPs”) mapped at 445 Structural Sites (herein-
after “SSs”) and derived strain indicators were included in the database. Given that the regional stress field in 
Italy has remained relatively unchanged over the last 3 million years2–4, it is feasible to extend the observation 
of structural data relevant to seismogenic purposes at least to the entire Quaternary period, encompassing the 
last 2.58 million years5. Covering the extension back this far opens up a wealth of data that can significantly 
improve our understanding of present deformation patterns which often appear incomplete when relying just 
on earthquake data.

Open-access databases on present-day stress patterns are widely available in the literature (e.g.6–12). However, 
they primarily rely on indicators such as focal mechanisms, borehole breakouts, and overcoring data. Less infor-
mation is available on geological fault data, which might provide insights into stress variations at the local and 
regional fault scale (e.g.13–21). In this regard, Italy stands out as an exception. Indeed, due to the excellent expo-
sure conditions of the intra-Apennine normal faults and their accessibility, some fault/slip databases are availa-
ble in the literature (e.g.22–26), but they do not refer to southern Italy and do not provide detailed strain pattern 
data as those given in the QUIN database.

The methodology employed in QUIN and the criteria used to compile the database were fully described by 
Lavecchia et al.1, together with its main features and applications. Lavecchia et al.1 also included examples illus-
trating how the database can be used to investigate the entral Apennines region’ seismic potential and deforma-
tion patterns. We here present the QUIN 2.0 database which extends the coverage to the Quaternary extensional 
faults in the Southern Apennines of Italy and Sicily, along a length of ~500 km (Figs. 1, 2). QUIN 2.0 incorpo-
rates a wide collection of FSP records, including both unpublished (2006) and literature data (2291), distributed 
along 738 SS. For each FSP, the database provides information on the major Quaternary fault hosting the SS 
(Host Fault, hereinafter “HF”), geometric and kinematic parameters, and a quality assessment of the data. The 
additional FSP records of the QUIN 2.0 significantly enlarge the area considered by QUIN 1.0 (Fig. 1), providing 
a comprehensive view of the potential seismogenic structures of Central and Southern Italy.

The Southern Apennines area is characterized by an interconnected pattern of normal-to-oblique faults that 
generated some of the most destructive earthquakes in Italy27, such as the Campania-Lucania 1980 earthquake 
(Mw 6.9)28, the Messina Strait 1908 earthquake (Mw 7.1)29–31, the Basilicata 1857 earthquake (Mw 7.1)32–35, the 
Southern Calabria 1783 seismic sequence (Mw 7.1)31,36,37 and the March-June 1638 Central Calabria earthquakes 
(Mw 7.1)38,39. Despite this, in contrast to the Central and Northern Apennines21,40–47, since 1981 the area has 
undergone only minor-to-moderate seismicity (Mwmax 5.748) with a consequent lack of extensive information on 
the active (instantaneous) and seismogenic stress field.

The long-term structural data provided by QUIN 2.0 advances the understanding of the Quaternary defor-
mation patterns in the Southern Apennines of Italy and Sicily, providing valuable insights for seismotectonic 
studies and related research fields. The database can be integrated with geodetic49 and seismological data to carry 
out formal stress inversions at the regional scale. This is useful for investigating local-scale effects that control 
active deformation, seismogenic faulting, and seismic hazard in a region where high seismogenic potential is 
suggested by both historical seismicity and Quaternary faults, even if only moderate seismicity was recorded in 
instrumental times. Furthermore, the database can be exploited for further elaborations on structural analysis, 
high-detail fault segmentation and distribution (e.g.50–53), geodynamic reconstructions and seismic hazard as 
well as for geothermal and petroleum exploration.

By freely sharing and collaborating on multidisciplinary data and fully integrating structural and seismo-
logical data, the scientific community can foster innovation, accelerate seismotectonic research progress, and 
facilitate evidence-based decision-making, ultimately leading to more effective earthquake preparedness and 
resilience strategies.

Methods
QUIN 2.0 Database: structure and building process.  The development of the QUIN 1.0 database1 
involved a systematic approach, integrating existing data from the literature with newly acquired information. 
The database was aimed to create a comprehensive and detailed repository of Quaternary fault/slip data for the 
Northern-Central Italy intra-Apennine extensional belt. In this second release, focused on the extensional belt 
of southern peninsular Italy and north-eastern Sicily, we followed the same approach and method introduced 
for QUIN 1.0, which we briefly recall below. A complete description of the QUIN database’s structure, building 
process and usage, can be found in the first release1.

The QUIN database-building process consists of several key steps needed for the database’s comprehensive-
ness. First, we reviewed literature sources to gather relevant fault-related data. Second, we incorporated new and 
unpublished data from the present paper’s authors. Third, we carried out targeted campaigns to collect missing 
information and bridge data gaps in the database. These campaigns involved field surveys, geological mapping, 
and fault plane analysis. The acquired data were integrated into the database, ensuring a complete coverage of 
FSPs and SSs. The latter, in the QUIN database, are grouped into four distinct categories based on their proxim-
ity and characteristics concerning the HFs: (1) SS located on or near the main HF trace within its damage zone, 
(2) SS representing syn-kinematic faults outside the HF damage zone, (3) SS consisting of faults observed along 
structures antithetic to the HF, and (4) SS comprising scattered Quaternary fault planes, not directly related to 
any major HF. This categorization system facilitates efficient organization and retrieval of data. A quality control 
process was implemented to ensure data accuracy and reliability. Data validation and verification procedures 
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were performed to identify and rectify possible inconsistencies or errors. Detailed information may be found in 
Lavecchia et al.1.

Starting from the FSPs data, we perform kinematic analysis and deformation axes calculation. After calcu-
lating the rake values (Aki and Richards54 convention), we classify the FSPs in kinematic classes corresponding 
to pitch ranges of 0–30° for strike-slip faults, 30–60° for oblique faults, and 60–90° for dip-slip faults (see Data 
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Fig. 1  Map view of the QUIN 2.0 database projected on a shaded relief map of the Southern Apennines of 
Italy and northeastern Sicily along the trace of the faults (red and blue lines) hosting the QUIN’s data (i.e., HF). 
White circles represent the location of the 738 SS while arrows indicate the slip direction of each of the 4297 
FSP. The inset shows the data coverage of the QUIN 1.01 (Northern and Central Apennines) and the QUIN 2.0 
releases (Southern Apennines and northeastern Sicily).
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Record section). Additionally, the attitudes of the principal deformation axes are determined based on two sce-
narios: a compressional axis at 30° or 45° in the slip plane. The first scenario rests on Anderson’s theory, which 
suggests an angle of ~30° between the rupture plane and the maximum principal stress (σ1) in the upper crust. 
The second scenario considers conventional P-T deformation axes at 45°, as obtained from focal mechanisms 
and classically used for an initial depiction of SHmin horizontal trajectories. The theory beneath the previous 
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Fig. 2  T30- and T45-axis computed in this database from the input fault/striation pairs data (see next section), 
on a shaded relief map of the Southern Apennines of Italy and northeastern Sicily. The inset shows the Shmin 
orientation from the IPSI focal mechanism database7,9 for comparison with the QUIN database (see “Technical 
validation” section).
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choices is discussed in Lavecchia et al.1. The above calculations and graphic representations are performed using 
the F-SPA tool specifically developed in MATLAB by Andrenacci et al.55 for use in QUIN.
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Fig. 3  Photographic documentation of some of the fault planes cropping out along the Southern Apennines 
extensional belt of Italy included in the QUIN 2.0 database. Each photograph has coordinates reported and the 
slickenlines (red arrows) drawn.
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Host faults and their tectonic context.  Following Lavecchia et al.56, an updated and detailed review of 
the HF traces was performed in the present Data Descriptor and a new fault traces map was carried out on a GIS 
platform (Fig. 1). The database is stored in ZENODO57 in shapefile format (.shp) and contains 245 HF records. 
The related attribute table provides information on the individual HF name and dip direction, as well as on the 
name and the age of activity (i.e., fault onset) of the fault system containing the HFs. Furthermore, in the attribute 
table we report information on the possible involvement of the fault in historical/instrumental earthquakes. The 
QUIN 2.0 HF database covers ~500 km of the Campania, Lucania, and Calabria extensional belt in Southern Italy, 
encompassing the Peloritani mountains in northeastern Sicily58–61. The fault traces were extracted from the liter-
ature and were integrated/updated with data from unpublished maps related to the newly acquired FSPs (i.e., col-
lected in the new field campaigns). In particular, we consulted the online version of the Structural and Neotectonic 
Models of Italy (scale 1:500.000; https://www.socgeol.it/438/structural-model-of-italy-scale-1-500-000.html), 
the ITHACA catalog (https://sgi.isprambiente.it/ithaca/viewer/) and the sheets of the Geological Map of Italy 
at 1:100.00 (http://sgi.isprambiente.it/geologia100k/) and 1:50.000 (https://www.isprambiente.gov.it/Media/
carg/) scales. Other detailed traces of Late Pleistocene-Holocene faults, accessible on online maps and reposi-
tories, together with all the published papers also used to compile the QUIN fault/slip database, were also con-
sidered17,19,26,28,30,35,36,61–97. We opted not to utilize the DISS database (https://diss.ingv.it/) for QUIN host faults, 
as it serves different applications and lacks the requisite details for our specific purposes. We derived the age of 
the fault-systems’ activity from the geological literature3,28,35,38,62,63,65,98–109 and from the evidence of earthquake 
activity in historical and instrumental times27,110.

The HFs included in the QUIN 2.0 database57 affect different lithologies across the extensional belt. In 
Campania and Lucania regions, the faults displace platform-to-basinal Meso-Cenozoic limestones, Cenozoic 
siliciclastic turbidites and Pliocene-Quaternary clastic infill of intra-Apennine extensional basins66,98,108,111,112. 
Conversely, in Calabria, the normal faults either mark the contact between the Pliocene-Quaternary infill of 
extensional basins and the crystalline basement or displace the crystalline basement80,113,114. Representative 
examples of well-exposed fault planes from different locations of the Southern Apennines are reported in Fig. 3.

The Southern Apennines of Italy have undergone extensive deformation over time, resulting in a presently 
complex geometric and kinematic setting. The Quaternary extensional belt dissects a pre-existing Mio-Pliocene 
fold-and-thrust belt (e.g.58,115,116). The Miocene-Pliocene compressional phase was driven by the convergence of 
the Eurasia and Nubia plates, involving the opening of the Tyrrhenian Sea and the deformation of the western 
Adria Plate59,112,117. As a result, both the compressional structures and the younger normal faults exhibit an 

Thematic group A: FSP identification and SS location

Ord_No SS FSP Lon Lat Reg Loc SS_Pos Seism Fault F_Acronym F_DipDir

293 MONPAR2 MONPAR2h 15.45300 40.74225 Basilicata Muro_
Lucano 1 Monte_

Paratiello MONPAR NNE

294 SENER1 SENER1b 15.20040 40.74207 Campania Senerchia 1 Irpinia_1980_
Eq Senerchia SENER E

295 IF8 IF8a 15.31151 40.74028 Campania Colliano 1 Irpinia_1980_
Eq Irpinia IF NE

296 MONTC7 MONTC7a 15.59407 40.73859 Basilicata Bella 1 Irpinia_1980_
Eq Monticello MONTC SSW

297 MONPAR3 MONPAR3a 15.48540 40.73841 Basilicata Muro_
Lucano 1 Monte_

Paratiello MONPAR NNE

298 MONPAR3 MONPAR3b 15.48540 40.73841 Basilicata Muro_
Lucano 1 Monte_

Paratiello MONPAR NNE

Thematic group B: FSP geometry, quality ranking and references

Strike Dip_dir Dip Trend Plunge Rake Kin Q_loc Q_res Ref

281.0 11.0 64.0 327.7 56.2 −67.6 LN A A Bel21

356.0 86.0 57.0 112.1 54.1 −104.9 PN A A Sga20

315.0 45.0 60.0 45.0 60.0 −90.0 PN A A PP

141.0 231.0 56.0 190.5 48.4 −64.5 LN A A Bel21

250.0 340.0 85.0 68.2 19.5 −160.4 RS B A PP

254.0 344.0 74.0 59.7 40.7 −137.3 RS-N B A PP

Thematic group C: FSP deformation axes

P45_Trend P45_Plunge B45_Trend B45_Plunge T45_Trend T45_Plunge P30_Trend P30_Plunge B30_Trend B30_Plunge T30_Trend T30_Plunge

228.7 63.8 90.7 20.1 354.7 16.1 264.4 69.8 90.7 20.1 360.0 2.0

226.5 73.4 4.3 12.5 96.7 10.8 166.8 76.9 4.3 12.5 273.4 3.8

225.0 75.0 135.0 0.0 45.0 15.0 11.3 90.0 135.0 0.0 45.0 0.0

104.0 67.6 306.0 20.9 213.1 7.7 144.4 68.0 306.0 20.9 38.5 6.3

115.7 17.3 263.7 69.8 22.6 10.1 100.1 19.5 263.7 69.8 8.2 5.3

120.5 41.0 270.6 44.9 16.6 15.4 100.6 44.6 270.6 44.9 5.6 5.0

Table 1.  Quin 2.0 thematic groups with examples of records.
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arcuate orientation across the region, ranging from NW-SE in Campania-Lucania to N-S in northern Calabria 
and NE-SW in southern Calabria and the Peloritani Mountains of Sicily.

Figure 1 shows the alignment of the extensional HF in Southern Italy. Crustal stretching has been sug-
gested to have formed both low-angle (LANFs) and high-angle (HANFs) normal faults66. According to some 
authors118–120, the LANFs in the internal (i.e., western) side of the extensional belt are associated with an early 
extensional stage preceding the formation of high-angle normal faults bounding the Quaternary basins. Other 
authors highlight the contemporaneous activity of east-dipping and antithetic west-dipping faults bounding 
the major intra-mountains Quaternary basins66,98,107,121. The timing of the onset of extensional tectonics also 
is debated. Some authors propose a regional strike-slip phase during the early stages of intramountain basin 
development122–124, while others argue for dominant extensional tectonics during the same period66,98. The age of 
activity for high-angle extensional tectonics ranges from the Late Pliocene to Early Pleistocene and may become 
progressively younger toward the east, at a regional scale3.

Data Records
The new FSPs data in QUIN 2.0 are 2,006, while data from the literature are 2,291, for a total of 4,297 FSPs 
data, grouped in 738 SS distributed quite homogeneously along the intra-Apennines Quaternary faults of the 
Southern Apennines. Both new and previous FSPs are quality selected (see the “Technical Validation” section) 
and elaborated to obtain kinematic and deformation axes information. QUIN 2.0 database is stored and availa-
ble in the Zenodo repository125 both in shapefile (.shp) and text (.txt) format.

To make the QUIN 2.0 data tables fully mergeable with QUIN 1.0 and even to promote the future use of inte-
grated databases, we maintained the same structure (Table 1). Therefore, the records are organized into 34 fields, 
each referring to a single FSP. The 34 fields are organized into three thematic groups (A, B, C) defined as follows: 
A) FSP identification and SS location (fields 1 to 12); B) FSP geometry, quality ranking and references (fields 13 
to 22); C) FSP deformation axes (fields 23 to 34).

In addition to the QUIN 2.0 release, we also provide a new release of the HF database with this Data 
Descriptor. The database is stored in Zenodo57 as a shapefile (.shp) and contains 245 linear records (polylines) 
of the faults hosting the FSPs or neighboring them, traced on a GIS platform. We kept the same structure as the 
QUIN 1.0 HF table of contents to make the records mergeable. A map view representation of the QUIN 2.0 HF 
is offered in Fig. 1.

QUIN 2.0 database records description.  In the following, we provide a brief description of each field of 
the QUIN 2.0 database and of the HF database (in brackets the short names reported in the QUIN’s table):

	 1)	 Ordinal Number (Ord_No): uniquely identifies each FSP.
	 2)	 Survey Site (SS): contains one or more FSPs; “OF” (Off fault) is reported for those SSs not associated to a 

certain fault.
	 3)	 FSP identification Code (FSP): expressed as the acronym of the fault containing the SS, plus a cardinal 

number which refers to the Survey Site (SS) and a lowercase letter to identify the individual FSP; “OF” (Off 
fault) is reported for those FSPs not associated to a certain fault.

	 4)	 Longitude (Lon) of the FSP in decimal degrees (WGS84).
	 5)	 Latitude (Lat) of the FSP in decimal degrees (WGS84).
	 6)	 Region (Reg): administrative region of the data location.
	 7)	 Locality (Loc): municipality of the data location.
	 8)	 Position (SS_Pos): position and prevailing dip-direction of the SS with respect to the Host Fault (1 = SS 

located on or near the main fault trace within the damage zone; 2 = SS representing syn-kinematic faults 
outside the damage zone; 3 = SS consisting of faults observed along antithetic structures; 4 = SS comprising 
scattered Quaternary fault planes).

	 9)	 Coseismic Displacement (Seism): it reports when the SS is located on a fault plane displaced during an 
instrumentally recorded seismic event (earthquake name and year reported); “NaN” = no information.

	10)	 Host Fault (Fault): name of the Quaternary fault hosting the SS; “OF” (Off fault) is reported if the FSP is 
not associated to a fault.

	11)	 Host Fault Acronym (F_Acronym): acronym of the fault hosting the SS; “OF” (Off fault) is reported if the 
FSP is not associated to a fault.

	12)	 Host Fault Dip-Direction (F_DipDir): approximate direction of the Host Fault (expressed with respect to 
the North); “OF” (Off fault) is reported if the FSP is not associated to a fault.

	13)	 Strike (Strike; in degrees): azimuth angle of a FSP plane with respect to the North.
	14)	 Dip direction (Dip_dir; in degrees): direction of the fault plane dip with respect to the North, expressed 

with the right-hand rule strike direction.
	15)	 Dip angle (Dip; in degrees): angle of dip of the fault plane measured.
	16)	 Trend (Trend; in degrees): direction of the slip vector.
	17)	 Plunge (Plunge; in degrees): dip of the slip vector.
	18)	 Rake: (Rake) calculated using the Aki-Richard’s annotation54.
	19)	 Rake-based kinematics (Kin): fault regimes classification (PN = Pure dip-slip Normal fault; NF = Normal 

fault; NS = Normal Strike; SN = Strike Normal; SSL = Strike-Slip Left; SSR = Strike-Slip Right; PSS = Pure 
Strike-Slip). Further information on rake ranges can be found in Andrenacci et al.55.

	20)	 Location quality ranking (Q_loc): precision in the location with respect to the trace of the Host Fault: 
A = precise location from available GPS and/or available tabulated data sets, or original field map (expect-
ed error in the order of a few meters to some tenths of m); B = approximate location from clear maps and 
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sketch (expected error in the order of some hundreds of meters); C = approximate location from not fully 
clear maps and sketch (expected error up to 1 km).

	21)	 Data resolution quality ranking (Q_res): precision in reporting the FSP attitude data (slickenside and slick-
enline) from the original reference source to the database: A = data from tablets and published tabulated 
dataset or original field booklets; B = FSP attitudes derived from clear published stereoplots projections 
(expected reproduction error in the order of 1–2°); C = FSP attitudes derived either from not so clear and 
easily readable published stereoplots projections or from fixed −90° rake for dip-slip faults (expected error 
up to about 5°).

	22)	 Reference (Ref): source paper used for deriving the SS location (Lat and Lon) and the FSP attitude (strike, 
dip, dip-angle, trend, and plunge). All remaining data from this database are calculated in this work. Data 
reference key: Alo1330; Ama1862; Bel2128; Bel2235; Bon2263; B&S0064; Bro0965; Bro1166; Bro1767; Bru1668; 
Cas02b69; Cif0470; Cif0771; DB0572; DB0673; DG1374; Fac1175; Fer0876; Fer1977; Fes0378; FW1226; Gam2179; 
Ghi7980; Imp1081; Jac0136; Mac1482; Mas0583; San1684; Scu2017; Sga2085; Tan0586; Tan0787; Tan1588; Tor9589; 
Tri1890. Data from this paper are labeled as “PP” (i.e., present paper).

	23)	 Trend of the P45-axis (P45_trend; in degrees): trend of the shortening axis.
	24)	 Plunge of the P45-axis (P45_plunge; in degrees): plunge of the shortening axis.
	25)	 Trend of the B45-axis (B45_trend; in degrees): trend of the neutral axis.
	26)	 Plunge of the B45-axis (B45_plunge; in degrees): plunge of the neutral axis.
	27)	 Trend of the T45-axis (T45_trend; in degrees): trend of the extension axis
	28)	 Plunge of the T45-axis (T45_plunge; in degrees): plunge of the extension axis.
	29)	 Trend of the P30-axis (P30_trend; in degrees): trend of the minimum extension axis.
	30)	 Plunge of the P30-axis (P30_plunge; in degrees): plunge of the minimum extension axis.
	31)	 Trend of the B30-axis (B30_trend; in degrees): trend of the neutral axis.
	32)	 Plunge of the B30-axis (B30_plunge; in degrees): plunge of the neutral axis.
	33)	 Trend of the T30-axis (T30_trend; in degrees): trend of the maximum extension axis.
	34)	 Plunge of the T30-axis (T30_plunge; in degrees): plunge of the maximum extension axis.

Host Faults database records description. 

	 1)	 Ordinal Number (Ord_No): it uniquely identifies each fault trace (numbers increase from north to south).
	 2)	 Fault longitude start point (X_start): longitude of the trace start point in decimal degrees (dd.mmmmm; 

WGS84 reference frame).
	 3)	 Fault latitude start point (Y_start): latitude of the trace start point in decimal degrees (dd.mmmmm; 

WGS84 reference frame).
	 4)	 Fault longitude endpoint (X_end): longitude of the trace endpoint in decimal degrees (dd.mmmmm; 

WGS84 reference frame).
	 5)	 Fault latitude endpoint (Y_end): latitude of the trace endpoint in decimal degrees (dd.mmmmm; WGS84 

reference frame).
	 6)	 Region (Reg): administrative region where the fault is located (in the case of multiple regions, they are all 

reported from north to south).
	 7)	 Host Fault Name (H_F): name of the fault hosting the SS.
	 8)	 Host Fault Key (HF_key): gives information on the generic dip-direction of the fault toward the Tyrrhe-

nian Hinterland (east- to north-dipping normal faults in Fig. 1) or the Adriatic-Ionian Foreland (west- to 
south-dipping normal faults in Fig. 1).

	 9)	 Fault System Name (F_S): name of the fault system consisting of a number of along-strike or perpendicu-
lar-to-strike interconnected HF; “N_A” is reported for those HFs not included in a fault system.

	10)	 Fault System Onset (F_S_Onset): the age of the oldest recorded displacement and/or of the oldest syn-tec-
tonic deposits among the HFs attributed to the FS; “N_A” is reported for those HFs not included in a fault 
system.

	11)	 Fault System Seismogenic Activity (F_S_Seism): evidence of seismogenic or potentially seismogenic activi-
ty from integrated geological and seismological data; “NaN” = no information.

Technical Validation
Of the 4,297 FSPs contained in the QUIN 2.0 release, 47% derive from new observations, while 53% are from the 
literature (Fig. 4a). The latter are subdivided into literature A (25%) and literature B (28%), which are internal 
(i.e., at least one author of the present paper is author of the paper from that reference) and external (i.e., no 
authors from this paper are authors of the literature B papers), respectively. As a whole, the new FSPs (47% of 
the database) and those from the internal literature (28%) represent more than 70% of the database information, 
giving a general guarantee of homogeneity in the survey methodology and database classification.

Following Lavecchia et al.1, we assign two different quality rankings defined as Q_loc and Q_res, which 
represent the resolution of the source information in terms of localization and reproducibility of the FSP, respec-
tively (Fig. 4a). Each quality ranking is subdivided into three classes from A to C, where A represent the most 
reliable. Regarding Q_loc, ~19% of the QUIN 2.0 FSP data falls into class A, ~78% into class B, and ~3% into 
class C (A is best). As for Q_Res, ~56% of the data are class A, ~43% class B, and ~1% class C (Fig. 4a).

Still, there are sources of uncertainty in constructing the QUIN databases. These can derive from the orig-
inal accuracy in the field survey (e.g., precision in measuring strikes and dips, trends and plunges), or from 
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Fig. 4  Characteristics of the QUIN 2.0 database. (a) Cake diagram describing the percentage of FSP data original 
or derived from the literature (Literature A = references containing at least one of the authors of the present paper; 
B = other authors only). The histograms represent the quality rankings for FSP data localization and resolution (A is 
best). (b) Density contours of pole stereographic projections (poles to planes) subdivided for SS lying on Tyrrhenian- 
and foreland-dipping Host Faults. The poles represented in the stereonet have been grouped on the basis of the Host 
Faults. To a Host Fault are associated major and minor fault planes falling within its damage zone, and which can 
therefore have synthetic or antithetic dip-direction with respect to the Host Fault (specified in the “Position” record 
in the database). (c) Rake histogram with rake-based kinematic bins and corresponding pitch angles with relative 
frequency expressed in percent (key: PN = Pure Normal fault, NF = Normal Fault, NS = Normal Strike-slip fault, 
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imprecisions introduced by digitizing data from pre-existing maps and stereographic projections (i.e., operator 
errors). In the first case, the data acquired with tablet computers or devices equipped with a gyroscope, mag-
netometer, accelerometer and integrated GPS are the most reliable, especially when checked by acquiring double 
measurements with a compass. In the second case, the uncertainty may be minimized by considering the quality 
parameter assigned to the source data (i.e., Q_res) and making use of the Andrenacci et al.55 tool, which high-
lights, by returning a warning, when the slickenline does not lie exactly on the fault plane.

Approximately 72% of the data is located on HFs dipping toward the Tyrrhenian-hinterland (or on associated 
antithetic minor structures; west- to south-dipping HF in Figs. 1, 4b), while ~28% is located on HFs dipping 
toward the Adriatic-Ionian foreland (or on associated antithetic minor structures; east- to north-dipping HF 
in Figs. 1, 4b). Predominant dip-slip kinematics is evident from the histogram (5° bin) of rake angle values in 
Fig. 4c. As also observed in the first release, a small percentage of data (~10%) shows a major strike-slip compo-
nent, with tensional axes coaxial with extensional deformation on average. Figure 4d–g display the orientations 
(trend and plunge) of the FSP tensional axes (i.e., T45 and T30) here computed and highlight a near-optimal ori-
entation for most of the FSPs if assuming the Andersonian conditions calculated with θ = 30° (see also Lavecchia 
et al.1). Further validation on the FSP comes from comparing these deformation axes with those of the contem-
porary stress field from focal mechanisms of the IPSI database7, and the TDMT126. The comparison shows a 
substantial co-axiality of the Quaternary and present-day deformation field (Figs. 2, 4i,j).

Usage Notes
Uses of the QUIN database and supporting Host Faults shapefile are fully described in Lavecchia et al.1. We here 
recall/highlight some main opportunities:

	 1.	 To provide geology-based deformation data and constraints on potentially seismogenic faults in peninsular 
Italy that lack seismological data due to inactivity in instrumental or historical times, making input data 
available for seismic hazard assessment.

	 2.	 To better identify and characterize seismogenic sources and the stress regime controlling their activity, 
through comparison of the long-term geological data with present-day geodetic49,127 and seismological 
information48,110.

	 3.	 To guide geoscientists in the field for detailed studies on active tectonics, seismic hazard, structural geology 
and historical seismology18,19,21,31,38,85,128.

	 4.	 To make available a large local-scale dataset that constrains the Quaternary deformation at a regional scale 
(i.e., the whole Apennines), which can be particularly useful in complex areas (for example, the Calabrian 
Apennines close to the Benioff plane located offshore the Calabrian arc) or in areas known to be seis-
mic gaps such as the Morrone fault system in the Abruzzo region129 or the Pollino-Crati fault system in 
Lucania-Calabria19,67.

These objectives may be achieved by exploiting QUIN data with different methods and approaches, including 
rake-angle interpolation, pseudo-focal mechanism computation28,51, stress inversion19,130, static-stress interac-
tion analysis131,132, and slip-tendency evaluation133.

In conclusion, QUIN 1.0 and QUIN 2.0 databases together cover almost the entire extent of peninsular 
Italy for a length of more than 1,000 km along strike and an area of more than 32,000 km2, making available an 
incredible amount of data (a total of 7,636 FSPs on 1,183 SSs) for future integrations and interpretations by the 
geological and geophysical scientific community.

Code availability
The MATLAB code we used in this work to obtain the FSP deformation axes was developed by Andrenacci et al.55 
for use in Lavecchia et al.1 and is available from the ZENODO repository (https://zenodo.org/record/5910783)55, 
together with a complete guide to use.
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