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Naïve Bayes Classifiers and 
accompanying dataset for 
Pseudomonas syringae isolate 
characterization
Chad Fautt  1,2,3 ✉, Estelle Couradeau2,3 ✉ & Kevin L. Hockett1,3 ✉

the Pseudomonas syringae species complex (PSSC) is a diverse group of plant pathogens with a 
collective host range encompassing almost every food crop grown today. As a threat to global food 
security, rapid detection and characterization of epidemic and emerging pathogenic lineages is 
essential. However, phylogenetic identification is often complicated by an unclarified and ever-
changing taxonomy, making practical use of available databases and the proper training of classifiers 
difficult. As such, while amplicon sequencing is a common method for routine identification of PSSC 
isolates, there is no efficient method for accurate classification based on this data. Here we present a 
suite of five Naïve bayes classifiers for PCR primer sets widely used for PSSC identification, trained on 
in-silico amplicon data from 2,161 published PSSC genomes using the life identification number (LIN) 
hierarchical clustering algorithm in place of traditional Linnaean taxonomy. Additionally, we include a 
dataset for translating classification results back into traditional taxonomic nomenclature (i.e. species, 
phylogroup, pathovar), and for predicting virulence factor repertoires.

Background & Summary
The Pseudomonas syringae species complex (PSSC) has been co-evolving with plants since before the emergence 
of angiosperms1, and has diversified into one of the most economically important groups of plant pathogens in 
the world, with a collective host range spanning almost every major food crop grown today2. Critically, while 
there are many pathogens within PSSC, there is also a wide range of virulence exhibited throughout the spe-
cies complex, including non-pathogenic plant epiphytes and strains isolated from rain and snowpack with no 
known pathogenicity to plants3,4. The ability to discriminate between lineages within the PSSC and rapidly pre-
dict potential pathogenicity of novel lineages is crucial for preventing epidemic outbreaks5, detecting emerging 
pathogenic strains6, and untangling correlations between virulence factors carried by a pathogen, its host range, 
and its virulence7. Although the efforts to catalog PSSC diversity and to understand the molecular determinants 
of virulence have yielded great insights into their ecology and behavior8, currently there is no efficient way to 
leverage these insights to efficiently predict the identity and pathogenicity of newly discovered PSSC strains. This 
is especially true for those researchers or labs that do not specialize on PSSC.

A major barrier to the characterization of PSSC strains is the inconclusive or inaccurate taxonomic iden-
tities of published genomes. By one estimate, 42% of all published PSSC genomes are misclassified at the spe-
cies level, based on analysis of phylogenetic relationships described by average nucleotide identity (ANI) and 
multi-locus sequence analysis (MLSA)9. As genomes deposited in databases such as GenBank often serve as 
reference sequences for identification of isolates found on or near diseased plants, the high rate of misclassifica-
tion has a direct, negative impact on our ability to efficiently recognize pathogenic lineages. Specifically, one of 
the most effective methods for classification of amplicon sequences is the naïve Bayes classifier10, which heavily 
relies on accurate training data to generate accurate predictions. The designation of 13 phylogroups based on 
MLST has clarified phylogenetic relationships within PSSC11, however most published genomes aren’t ascribed 
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to a phylogroup in public databases and thus their use in classification is limited. While Berge et al. 201411 have 
addressed this shortcoming by providing a reference database of phylogroup type strains allowing classification 
based on the CTS gene, there has since been no broader effort to make the classification process more efficient. 
Yet another approach to circumvent the inaccurate taxonomy at the species level while allowing for placement 
into clades below the species and phylogroup level is the clustering of genomes by ANI (Average Nucleotide 
Identity)12. This approach assigns a life identification number (LIN) to each unique genome in a database, cre-
ating hierarchical clusters of genomes that largely recapitulate traditional phylogenetic clades described by the 
core genome, and allow for higher resolution than traditional PSSC taxonomy (Fig. 1). Using LINs to generate 
an ANI-based taxonomy, we trained high resolution naïve Bayes classifiers for commonly used PCR primer sets 
targeting gyrB, gapA, CTS, rpoD13, and pgi14 (Table 1). As our classifiers report identity based on a difficult to 
interpret LIN, we also generated a comprehensive key describing key features for each of the 2,161 reference 
genomes in our training set along with their assigned LIN. This key allows for translation from classifier output 
to prediction of species, pathovar and phylogroups. As the vast majority of the genomes used in this study had 
no phylogroup assigned, we also provide new phylogroups assignments for over 2,000 publicly available PSSC 
genomes, based on previously suggested methods11.

A second barrier to characterization of new PSSC isolates, even once identified, is the functional diversity 
exhibited throughout the species complex. Specifically, host range and virulence can vary considerably among 
pathogenic strains belonging to the same pathovar, while strains belonging to different pathovars can none-
theless exhibit similar host ranges. These complex patterns stem, at least in part, from the formal definition of 
pathovar as ‘a strain or set of strains with the same or similar characteristics, differentiated at infrasubspecific 
level from other strains of the same species or subspecies on the basis of distinctive pathogenicity to one or 
more plant hosts’15. This definition leaves room for broad interpretations of what should be considered a distinct 
pathovar. As such, some pathovars, such as pv. avii, have been delineated due to their ability to cause disease on 
a single host16, while pathovars are defined based on their different host ranges among a small defined group 

Fig. 1 Comparison of clustering within PSSC that results from a maximum likelihood phylogenetic tree 
and LIN assigned based on ANI. Digits from left to right in each LIN correspond to inclusion of a strain in 
increasingly smaller clades within the phylogeny. Figure adapted from Vinatzer et al.12.

Target gene Forward sequence (5′-3′) Reverse Sequence (5′-3′) primer names Source

gapA TCGARTGCACSGGBCTSTTCACC GTGTGRTTGGCRTCGAARATCGA gapA + 312 s/
gapA−874 ps Hwang et al.13

gyrB TCBGCRGCVGARGTSATCATGAC TTGTCYTTGGTCTGSGAGCTGAA gyrB + 271 ps/
gyrB−1022 ps Hwang et al.13

CTS CCTGRTCGCCAAGATGCCGAC CGAAGATCACGGTGAACATGCTGG gltA + 513 s/
gltA−1130 s Hwang et al.13

rpoD GYGAAGGCGARATYGRAATCG CCGATGTTGCCTTCCTGGATCAG rpoD + 364 s/
rpoD−1222 ps Hwang et al.13

PGI GCGTACTACCGYAMYCCBTC CCACATMGGRAARATRTTYT pgi Yan et al.14

Table 1. Primer sets accepted by Syringae.org for isolate characterization.
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of hosts (P. savastanoi pvs. savastanoi, nerii, fraxini, mandevillae and retacarpa)17. Additionally, it has also been 
argued that pathogens sharing a wide common host range, regardless of a shared pathogenic potential for any 
single host, should also be considered as belonging to a single pathovar18. Given the inconsistent criteria for 
delineating between pathovars, and recent evidence that host ranges in PSSC strains overlap with no discernable 
modularity19, some groups have called into question the validity of pathovar designations for epidemiological 
and disease management purposes20. Further, properly assigning a given isolate to an appropriate pathovar 
requires performing host range tests that are prohibitively laborious to many labs.

An alternative phylogenomic approach to predicting pathogenic potential would be beneficial, as others 
have demonstrated that comparative genomics can discriminate between strains known to have different host 
ranges21 and correctly identify strains capable of infecting a given host22. In both of the above cases, presence of 
virulence factors, particularly those associated with the type III secretion system (T3SS), were highly correlated 
with known virulence patterns. Assuming T3SS effector proteins are conserved at some phylogenetic level, these 
results indicate that a phylogenomic signal may be present in PSSC that could be useful for assessing pathogenic 
potential without laborious experimental assays. In a recent contribution we showed the validity of such an 
approach by accurately predicting the presence of 77 type III effector (T3E) subfamilies in PSSC with a median 
accuracy of 80% using only single amplicon sequence data23. We provide here a dataset for ANI based interpreta-
tion of taxonomy of PSCC, a HMMER-based survey of known virulence factors associated with the T3SS, type 3 
effectors (T3E), and the Woody Host and Pseudomonas (WHOP) region associated with woody host infection24 
among our training set of genomes. With these data, we aim to provide a means for preliminary assessment and 
hypothesis generation regarding virulence traits from cost-effective amplicon sequencing data.

Methods
Reference PSSC genomes. All genome assemblies classified as ‘Pseudomonas syringae group’ (taxid 136849) 
were downloaded from the GenBank via NCBI in November 2021, resulting in 2,468 RefSeq records recovered25. 
Genomes were checked for completeness and assembly quality with BUSCO v5.3.1 using the pseudomonadales_
odb10 lineage database26, and genomes with a BUSCO score ≥99 were kept for further processing (Fig. 2a). 
A CSV file (metadata.csv)27 summarizing each genome (and used as a backend database at www.syringae.org)  
was generated. Data included in this file are NCBI-submitted taxonomic data, type strain designations, phy-
logroups as assigned in this study, LIN clusters assigned for classification purposes, presence/absence of key 
virulence factors, and metadata found in each genome’s Biosample record.

Assigning phylogroups to genomes. Phylogroup assignment of each genome was based on ANI shared 
with previously classified reference strains representing Phylogroups 1a,1b,2a,2b,2c,2d,3,4,5,6,7,9,10,11, and 1328 
(Table 2). Reference strains for phylogroups 8 and 12 were not found among the 2,161 genomes characterized 
by SYRINGAE, either because they were not represented in the GenBank database or did not make it past the 
BUSCO quality check described above.

A genome was assigned to a given phylogroup if it was the most closely related to the reference strain for that 
phylogroup, based on ANI. To minimize inaccurate phylogroup assignments, 175 genomes sharing less than 
95% ANI to any reference strain were left unassigned. These genomes might reflect understudied groups within 
PSSC, or genomes mischaracterized as PSSC. Further work beyond the scope of this study would be needed to 
properly account for their true identity.

Assigning LIN clusters to genomes. A significant barrier to PSSC classification is unreliable and incon-
sistent taxonomic assignments. As such, SYRINGAE utilizes hierarchical clustering based on ANI values as an 
alternative to the Linnean taxonomy files typically used for Bayesian classification. Pairwise ANI between all 
genomes was calculated using fastANI v1.33 with default settings. Using the algorithm previously described12, 
each genome was assigned to LIN cluster (Fig. 2b). To describe the algorithm briefly, a random genome was des-
ignated as belonging to group ‘0’ at every ANI bin (e.g. assuming ANI bins of 80, 90, and 95% would give a LIN 
number of ‘0.0.0’). Each subsequent randomly selected genome was assigned a LIN number based on the genome 
it has the highest ANI with among genomes already assigned a LIN number. If, for example, the second genome 
selected had an ANI of 92% with the first genome, its LIN number would be assigned as ‘0.0.1’, as it meets the 
threshold for belonging to the same group as the first genome at the 80 and 90% ANI levels but differs from the 
first genome at the 95% level, and so a new group ‘1’ is created for it. All genomes were sequentially assigned LIN 
numbers in this way. For SYINGAE, ANI bins at 1% increments between 80–99% were used.

A drawback to using LIN clustering for classification is that the LIN number assigned to a given genome is 
highly dependent on the order of genomes selected for clustering (i.e. unless the same set of genomes is used 
and the order that these genomes are selected for clustering is preserved, the genomes are assigned different LIN 
numbers every time). Thus, classification models built with our LIN ‘taxonomy’ will always return LIN numbers 
that can only be interpreted when used in conjunction with a database that explicitly describes the genome each 
LIN number represents. We overcome this limitation by first providing such an interpretive database in the 
provided ‘metadata.csv’ file27 as well as by lowering the barrier to use with syringae.org, which uses metadata.csv 
to translate classification results automatically and the display classification results to the user using traditional 
taxonomic nomenclature and an interactive phylogenetic tree.

Building the PSSC Phylogenetic tree. As a key component of visualizing and exploring the classifiers 
and dataset through the online portal hosted at www.syringae.org, a concatenated and masked gene alignment 
based on the core genome of PSSC was constructed using 120 bacterial marker genes within the BAC120 marker 
gene set with GTDB-TK 2.1.1 (using the ‘identify’ and ‘align’ commands)29. From this alignment, FastTree230 with 
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default settings was used to construct an approximately maximum-likelihood phylogenetic tree from nucleotide 
sequences (Fig. 2c).

Screening genomes for virulence factors of concern. We generated a single HMM file containing 
HMMs for all virulence factors of concern (VFOC). This HMM file can be found in the data record VFOC.hmm. 
As a first step, representative gene sequences were gathered as follows:

Canonical T3SS: nucleotide sequences from PSSC strains DC3000 (GCF_000007805.1) and B728a 
(GCF_000012245.1), as annotated by NCBI (and available in data record ‘canonicalT3SS.fasta’) were used as a 
database along with the ‘annotate from database’ tool within the Geneious prime 2019 software package31, using 
85% identity threshold for annotation of T3SS genes in all 2,161 genomes.

RefSeq accession Phylogroup

GCF_000172895.1 1a

GCF_001910465.1 1b

GCF_000145825.2 2a

GCF_003698965.1 2b

GCF_000177515.1 2c

GCF_003205905.1 2d

GCF_000012205.1 3

GCF_000156995.2 4

GCF_016599635.1 5

GCF_008692855.1 6

GCF_000452485.1 7

GCF_000452825.1 9

GCF_000452665.1 10a

GCF_000452785.1 10b

GCF_900104015.1 11

GCF_000452865.1 13

Table 2. Reference genomes used for phylogroup assignment.

Fig. 2 Schematic of bioinformatic pipeline used for generating dataset and classifiers, including their 
incorporation into a web portal for accessing dataset and classifiers – syringae.org.
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WHOP: previously annotated nucleotide sequences in strain NCPPB 333524 were used as a database along 
with the ‘annotate from database’ tool within the Geneious prime 2019 software package31, using 85% identity 
threshold for annotation of WHOP genes in all 2,161 genomes.

T3E genes: T3E nucleotide sequences contained in PsyTEC32 were obtained from David Guttman on 
September 17th, 2021.

For each gene, nucleotide sequences from the above homologue search were aligned with MAFFT33 using 
default settings, and alignments were used as input for creation of HHM files using HMMER v3.3.234 (Fig. 2d).

The VFOCs detailed in data records GENOME_VFOC.json and PROTEIN_VFOC.json are those that were 
found using the above HMM models. HMMER output files were manually inspected and filtered by E-value, 
with an E-value < 10−20 were considered to be statistically significant hits. In instances where two genes were 
identified as more than one virulence factor (a common occurrence among closely related T3E subfamilies), the 
identification with the lowest E-value was chosen as the official annotation.

PSSC primer set selection. Over the last two decades, several PCR primers have been developed, often as 
part of MLST schemes, for building evolutionary accurate phylogenies and aiding in classification of unknown 
isolates. More recently, there has been interest in utilizing single amplicon sequences for these purposes. To inves-
tigate which primer sets provide the most value for classification using a single amplicon, we conducted a short 
but thorough in-silico investigation of 16 commonly used primer sets23. Briefly, we assessed in-silico amplifica-
tion in 2,161 genomes representing the full diversity of the species complex as we currently know it, investigated 
concordance between pairwise amplicon distance and whole genome ANI, and assessed resolution of naïve Bayes 
classifiers trained from amplicon data, as well as the potential for functional prediction based on the classification 
results. The best performing primer sets based on these metrics are represented in the classifiers presented here 
(see Table 1).

training Naïve Bayes classification models. For each marker gene, a classification model was trained 
using the scikit-learn v0.24.1 feature-classifier plugin in QIIME 2 v2020.8.0. Training naïve Bayes classifiers 
requires both a list of sequences, and an associated taxonomy file for each sequence (typically in the format 
‘Order_Pseudomonadales; Family_ Pseudomonadaceae; Genus_Pseudomonas; Species_syringae;’). LIN numbers 
assigned to each genome were used to construct a hierarchical taxonomy, with ANI bins within each LIN number 
acting as taxa levels, and groups acting as individual taxa (e.g., a taxonomy format of ‘80%_0; 90%_0; 95%_1) 
(Fig. 2e). in silico amplicon sequences and the LIN taxonomy file used for training classifiers can be found in 
data records ‘LIN_taxonomy.tsv’ and the five FASTA files labeled in accordance with the primer sets outlined in 
Table 1.

Data Records
All necessary data are deposited at Zenodo27.

Data include:

In silico amplicon sequences
FASTA files containing sequences, used as input for training classifiers.
(CTS_Hwang.fasta, gapA_Hwang.fasta, gyrB_Hwang.fasta, pgi_Yan.fasta, and rpoD_Hwang.fasta)

LIN_taxonomy.tsv
LIN numbers associated with each reference genome, used as input for training classifiers

Classifiers
 Qiime 2 classifier artifacts for each PCR primer set listed in Table 1. Classifiers take as input untrimmed 
amplicon sequences and return predicting LIN groups.

Metadata.csv
 The metadata file links LIN groups assigned to each reference genome used to train classifiers with their 
species, phylogroup, pathovar, and virulence factors. Columns are described in Table 3

VFOC.hmm

Contains HMM files useful for screening whole genomes for canonical T3SS, T3E family, and WHOP genes.

PROTEIN_VFOC.json and GENOME_VFOC.json
 The VFOC files describe all canonical T3SS, T3E, and WHOP genes in the 2,161 genomes used in this 
dataset, as detected by HMMER, in an easy to query JSON format. Each file contains the same data, with 
RefSeq protein (PROTEIN_VFOC.json) and genome accessions (GENOME_VFOC.json) as top-level keys. 
Additional keys found in each file are described in Table 4.

PSSC.tree.txt
A newick tree file describing a core genome phylogeny of genomes used in this work.

https://doi.org/10.1038/s41597-024-03003-x
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technical Validation
Genome records used in creation of this dataset were validated for assembly quality using BUSCO (ref), and all 
genomes with a reported BUSO score <99 were removed from the dataset. Accuracy of the classification models 
and functional predictions were investigated and published separately23. Beyond the T3SS, T3E, and WHOP 
genes, which were annotated using HMM models built for this study, all gene annotations were taken directly 
from the NCBI Prokaryotic Genome Annotation Pipeline.

Usage Notes
The data described in this work are also available within a functional tool - syringae.org (usage described in 
Supplementary Figures 1-4, Supplementary File 1)

Code availability
All scripts used in the generation of classifiers and dataset, as well as source code for the web app hosted at 
syringae.org are available on GitHub at https://github.com/cwf30/SYRINGAE35. To aid in reproducibility, a conda 
environment YAML file (SYRINGAE_env.yml) and a readme file outlining scripts used (README.txt) are also 
provided.
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